Studii și Cercetări Științifice Chimie și Inginerie Chimică, Biotehnologii, Industrie Alimentară

Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry 2014, 15 (2), pp. 181 - 184

ISSN 1582-540X

SHORT COMMUNICTION

SnPh₃OH.Ph₃AsO·H₂O: SYNTHESIS AND SPECTROSCOPIC STUDIES

Yaya Sow^{*}, Ariman Yavi Kochikpa Okio, Libasse Diop

Université Cheikh Anta Diop, Faculté des Sciences et Technique, Département de Chimie, Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Dakar, Sénégal

*Corresponding author: yayasow81@yahoo.fr

Received: June, 09, 2014 Accepted: July, 30, 2014

Abstract: On allowing SnPh₃OH to react with Ph₃AsO, the adduct SnPh₃OH.Ph₃AsO·H₂O is obtained, its infrared and Mössbauer studies carried out. The coordination of Ph₃AsO to the tin (IV) centre leads to an infinite chain structure containing a *trans* bipyramidal trigonal SnC₃O₂ arrangement with OH and Ph₃AsO being in apical positions. The water molecule bridges through hydrogen bonds the Lewis base and SnPh₃OH.

Keywords: coordinating Ph₃AsO, hydrogen bonds, IR, Mössbauer, trans coordinated SnPh₃ residue

 $[\]textcircled{0}$ 2014 ALMA MATER Publishing House, "VASILE ALECSANDRI" University of Bacău. All rights reserved.

INTRODUCTION

The focus of the many research groups in tri-organotin(IV) chemistry is mainly due to the several applications found within this family [1 - 5]. In the framework of our search for new organotin compounds, we have initiated here the study of the interactions between SnPh₃OH and Ph₃AsO which have yielded the studied derivative, infrared and Mossbauer studies of which have been carried out and a structure suggested on the basis of spectroscopic data. A question raised up: will SnPh₃OH react as a proton donor through hydrogen bonding or will it behave as a Lewis acid through the tin centre?

MATERIALS AND METHODS

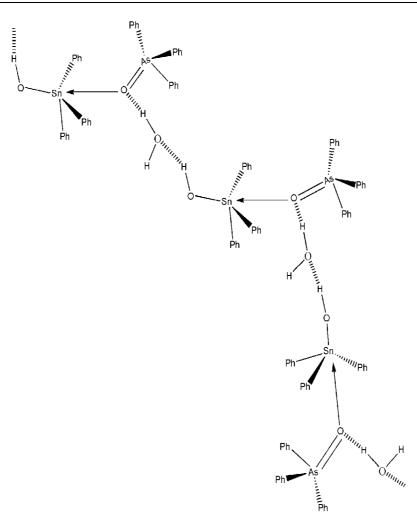
On mixing Ph₃AsO with SnPh₃OH both in ethanol in the 1/1 ratio, a white powder of SnPh₃OH.Ph₃AsO·H₂O was obtained after a slow solvent evaporation. The analytical data reported below, allow suggesting the following formula: HOSnPh₃.Ph₃AsO·H₂O: % C = 59.62 (59.93), H = 4.86 (4.37).

The infrared spectrum has been recorded at the Instituto de Química – U.N.A.M. - Mexico, by means of a BX FT-IR type. C, H, N analyses were performed at the Instituto de Química - U.N.A.M. - Mexico. The Mössbauer spectrum was obtained as described previously [6]. Infrared data are given in cm⁻¹ (abbreviations (br) broad, (vs) very strong, (s) strong, (m) medium, (w) weak, (vw) very weak). Mossbauer parameters are given in mm⁻¹ (abbreviations: Q.S = quadrupole splitting, I.S = isomer Shift, Γ = full width at half-height, A = area).

All the chemicals were obtained from Aldrich-Germany and used as such.

RESULTS AND DISCUSSION

Let us consider the:


- IR data of HOSnPh₃.Ph₃AsO[•]H₂O:

v OH(H₂O,SnPh₃OH) 3425 br; δ OH(H₂O) 1682 s, 1635 s; δ OH(SnPh₃OH) 985 vs, v AsOPh₃ 864 vs (ep)

- Mossbauer data for HOSnPh₃.Ph₃AsO·H₂O:

Q.S. = $3.53(\pm 0.05)$ mm·s⁻¹, IS = $1.23(\pm 0.05)$ mm·s⁻¹, $\Gamma = 0.82(\pm 0.04)$ mm·s⁻¹, A (%) = $100(\pm 1)$

On the infrared spectrum of SnPh₃OH, δ OH appears as a doublet. The widening of vOH is due to the involvement of the OH group in hydrogen bonding. The value of the quadrupole splitting (Q.S = 3.53 mm·s⁻¹) is an indication of the presence of a trans coordinated SnPh₃ residue [7] excluding the interactions through hydrogen bonding involving OH and the oxygen of the Lewis base as one could expect and allow to suggest the structure reported on Figure 1 consisting of the polymerization of SnPh₃OH.Ph₃AsO through H₂O via hydrogen bonds or an oligomer (we have arbitrary chosen the infinite chain).

*Figure 1. Proposed structure for the adduct HOSnPh*₃.*Ph*₃*AsO*·*H*₂*O*

CONCLUSION

The adduct HOSnPh₃.Ph₃AsO.H₂O has an infinite chain structure, the tin(IV) center having a dissymmetrical trigonal bipyramidal environment, the OH group and Ph₃AsO group occupying axial positions, the water molecule bridging through hydrogen bonds HOSnPh₃ and Ph₃AsO.

ACKNOWLEDGEMENTS

We thank Professor Jose D. ARDISSON - Laboratorio de Fisica Aplicada, CDTN/CNEN, Belo Horizonte - M.G. Brazil, for running the Mossbauer spectrum and Dr. Raymundo Cea OLIVARES (Instituto de Química - U.N.A.M. - Mexico) for recording the infrared spectrum and performing the elemental analyses.

St. Cerc. St. CICBIA 2014 15 (2)

REFERENCES

- 1. Evans, C. J., Karpel, S.: Agricultural Chemicals and Medical Uses (Chapters 6 and 7), *Organotin Compounds in Modern Technology (Journal of organometallic chemistry library, 16*), Elsevier Science Ltd., Amsterdam, **1985**, 178-215;
- Gielen, M., Tin as a Vital nutrient: Implication In Cancer Prophylaxis and Other Physiological Processes, Antitumor Active Organotin compounds, Chap.13, (Editor Cardelli, N.F.), C.R.C Press, Boca Raton, 1986;
- Gielen, M., Bouhdid, A., Kayser, F., Biesemans, M., de Vos, D., Mahieu, B., Willem, R.: Di (nbutyl)tin bis(dihydroxybenzoate)s: Synthesis, spectroscopic characterization and *in vitro* antitumour activity, *Applied Organometalic Chemistry*, 1995, <u>9</u> (3), 251-257;
- 4. Ng, S.W., Kumar Das, V.G.: Structural studies on triorganostannates derived from dicarboxylic acids. Crystal structure of tetramethylammonium oxalatotriphenylstannate bis(triphenyltin) oxalate, *Journal of Organometal Chemistry*, **1993**, <u>456</u> (2), 175-179;
- 5. Ng, S.W., Hook, J. M.: Diisoproprylammonium oxalatotriphenyl stannate, *Acta Crystallographica*, **1999**, <u>C55</u>, 310-312;
- De Sousa, G. F., Deflon, V. M., Gambardella, M. T. do P., Francisco, R. H. P., Ardisson, J. D., Niquet, E.: X-ray crystallographic and Mossbauer spectroscopic applications in dependence of partial quadrupole splitting, [R], on the C-Sn-C angle seven-coordinated diorganotin(IV) complexes. *Inorganic Chemistry*, 2006, <u>45</u> (11), 4518-4525;
- Bancroft, G. M., Platt, R. H.: Mossbauer Spectra of Inorganic Compounds: Structure and Bonding in *Advanced Inorganic Chemistry and Radiochemistry*, vol. 15, (Editors Emeleus, H. T., Sharpe, A. G.), Academic Press, NewYork, 1972, 112.