Studii și Cercetări Științifice Chimie și Inginerie Chimică, Biotehnologii, Industrie Alimentară

Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry 2015, 16 (2), pp. 185 - 188

ISSN 1582-540X

SHORT COMMUNICATION

CETONIZATION, DESARYLATION AND ESTERIFICATION IN THE INTERACTIONS BETWEEN PhPO₃H₂ AND SnPh₃Cl: SYNTHESIS OF OC[OPOSnPh₃OEt]₂ AND INFRARED STUDY

Modou Sarr, Aminata Diasse-Sarr, Libasse Diop*

Université Cheikh Anta Diop Faculté des Sciences et Techniques Département de chimie, Laboratoire de Chimie Minérale et Analytique, Dakar- SENEGAL

*Corresponding author: dlibasse@gmail.com

Received: March, 06, 2015 Accepted: June, 19, 2015

Abstract: On allowing $PhPO_3H_2$ to react with $SnPh_3Cl$ in ethanolic media, $OC[OPOSnPh_3OEt]_2$ is obtained by cetonization, desarylation and esterification, has been studied by infrared technic. A discrete structure has been suggested on the basis of infrared data, the anion behaving as a bidentate ligand, the environment around the tin centres being tertrahedral.

Keywords:bidentate, cetonization, desarylation and infrared,
hydrogen bonds, phosphonate, SnPh3 residue,
supramolecular architectures, tetrahedral environment

INTRODUCTION

Because of the various applications found within the organotin (IV) family[1 - 3], our group have been involved in seeking new organo- and halotin (IV) molecules and have reported several papers dealing with[4 - 8]. In this study we have initiated the study of the interactions between $PhPO_3H_2$ and $SnPh_3Cl$ which has yielded the title compound which structure has been determined.

MATERIALS AND METHODS

On allowing PhPO₃H₂ to react with SnPh₃Cl in ethanolic media in 1/1 steochiometry a powder is obtained after a slow solvent evaporation. Its analytical data have allowed to suggest **OC[OPOSnPh₃OEt]₂[A]:** C = 52.16(53.24), H = 4.27 (4.87) as formula. The reaction giving A is:

 $2PhPO_{3}H_{2}+2SnPh_{3}Cl+2EtOH+CO_{2} \longrightarrow O=C(POOSnPh_{3}OEt+2HCl+2H_{2}O+2C_{6}H_{6}+O_{2})$

In this reaction we can consider that two molecules of $PhPO_3H_2$ have being involved in a cetonization giving *in situ* O=C(PO_3H_2)_2 which reacts with two molecules of SnPh₃Cl and two molecules of EtOH by esterification.

The infrared spectrum was recorded at the "Institut de la Matiere Condensee, University of Bordeaux, France" by means of a spectrometer Nicolet 6700 FT-IR, the sample being as Nujol mulls using CsI windows. Infrared data are given in cm⁻¹ (abbreviations: (vs) very strong, (s) strong, (m) medium, (w) weak), (vw) very weak, d (doublet). All the chemicals were purchased from ALDRICH Company and used as such.

RESULTS AND DISCUSSION

Let us consider the ir data of the derivative: vC=O = 1718(vs); $vPO_3 = 1088(s)$, 1068(s), 1039(s); $\delta PO_3 = 693(s)$; vPC = 743(m).

The C=O group appears as a strong band at 1718 cm⁻¹; its presence indicates a cetonization. The presence of SnPh₃ is well characterized by the presence of a medium triplet between 997 and 1045 cm⁻¹ and by a very strong doublet between 710 and 690 cm⁻¹. The stretching vibrations of the PO₃ group appear as a very strong absorption with several components in the 1088 - 1039 region while the deformation modes are assigned to the strong band at 743 cm⁻¹.

The derivative $OC[OPOSnPh_3OEt]_2$ has a discrete structure with monocoordinated $SnPh_3$ residues: it has been obtained by a process of cetonization leading to a dimeric form of the starting acid; the anion $[O=C(PO_3Et)_2]$ behaves as a bidentate ligand, the structure is reported on Figure 1.

CETONIZATION, DESARYLATION AND ESTERIFICATION IN THE INTERACTIONS BETWEEN PhPO₃H₂ AND SnPh₃Cl: SYNTHESIS OF OC[OPOSnPh₃OEt]₂ AND INFRARED STUDY

Figure 1. Proposed structure for OC[OPOSnPh₃OEt]₂

CONCLUSION

The studied derivative has a discrete structure with monocoordinated $SnPh_3$ residues and has been obtained by a process of cetonization, desarylation and esterification leading to a dimeric form of the starting acid; the anion behaves as a bidentate ligand.

ACKNOWLEDGEMENTS

We thank Professor Patrick Rosa and Dr. Sergiu Calancea (ICMCB, Bordeaux University-France) for equipments supports.

REFERENCES

- Alvarez Boo, P., Casas, J. S., Couce, M. D., Farto, R., Fernandez- Moreira, V., Freijanes, E., Sordo, J., Vazquez-Lopez, E.: Synthesis, characterization and antibacterial activity of some new triphenyltin (IV) sulfanylcarboxylates: Crystal structure of [(SnPh₃)₂(p-mpspa)], [(SnPh₃)₂(cpa)] and [(SnPh₃)₂(tspa)(DMSO)], *Journal of Organometallic Chemistry*, **2006**, <u>691</u> (1-2), 45-52;
- Evans, C. J., Karpel, S.: Organotin Compounds in Modern Technology, *Journal of Organometallic Chemistry Library*, <u>16</u>, Elsevier, Amsterdam, 1985;
- Kapoor, R.N., Guillory, P., Schulte, L., Cernvantes-Lee, F., Haiduc, I., Parkanyi, L., Pannell, K.H.: Di(p-tert-butylphenyl)-N,N-di-(iso-butyl)carbamoylmethylphosphine oxide and its organotin and uranyl adducts: structural and spectroscopic characterization, *Applied Organometallic Chemistry*, 2005,19,510-517;
- 4. De Barros, D., Diop, L., Mathieu, B.: MeNHWO₄SnPh₃X (X=Cl, Br), R₄NWO₄SnPh₃(R=Me, Et) and (Snbu₃)₂WO₄ : Synthesis and spectroscopic, studies, *Main Group Metal Chemistry*, **2010**, <u>33</u> (1-2), 91-95;
- Diallo, W., Okio, K.Y.A., Diop, C.A.K., Diop, L., Diop, L.A., Russo, U.: New selenito SnPh₃ residue containing complexes and adducts: Synthesis and spectroscopic studies, *Main Group Metal Chemistry*, 2009, <u>32</u> (2), 93-100;
- 6. Diassé-Sarr, A., Barry, A. H., Jouini, T., Diop L., Mathieu, B., Mahon, M. F., Molloy, K. C.: Synthesis, Spectroscopic studies and crystal structure of (Et₄N)(SnMe₃)₇(HAsO₄)₄.2H₂O, *Journal* of Organometallic Chemistry, **2004**, <u>689</u> (12), 2087-2091;

- 7. Diop, L., Mahieu, B., Mahon, M.F., Molloy, K.C., Okio, K.Y.A.: Crystallographic report: Bis(triphenyltin) oxalate, *Applied Organometallic Chemistry*, **2003**, <u>17</u>, 881-882; Sarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L., Cattey, H.: Bis (cyclohexylammonium)
- 8. tetrachlorido-(oxalato)stannate(IV), Acta Crystallographica, 2013, E69, m473-m474.