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Abstract: The uncatalyzed oxidation of L(-)arabinose by manganese 
(VII) in acidic medium of H2SO4 and constant ionic strength (using 
potassium nitrate) were investigated kinetically. The change in 
concentration of manganese (VII) was followed using spectrophotometric 
method. The study showed that the reaction rate increases by raising the 
concentration of L(-)arabinose, manganese (VII) and H+ and is independent 
of salt concentration. 
The optimum condition of the reaction (highest rate value) found at 0.02 M 
of L(-)arabinose, 0.0003 M of manganese (VII), 0.5 M of H+ and 0.5 M of 
KNO3. Findings from stoichiometry measurements revealed that one mol of 
arabinose consumed two mol of manganese (VII). The temperature 
influence on the reaction was carried under constant experimental 
conditions, it was found that the rate of the reaction enhanced by raising the 
temperature. The activation energy of the reaction was evaluated and found 
to be 22.74 kJ·mol-1. Activation functions namely, frequency factor, free 
energy change and the entropy change of the uncatalyzed oxidation were 
also evaluated at various temperatures. Spot test analysis of the uncatalyzed 
reaction products revealed the presence of formic acid supporting the 
proposed mechanism. Reaction rate law was established and it was in strong 
agreement with the experimental results. 
 

Keywords:  activation energy, ionic strength, pseudo-first order, 
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INTRODUCTION 
 
Carbohydrates are a major source of energy which is compared with fuel by many 
investigators [1 – 9]. The study of the carbohydrates and their derivatives has greatly 
enriched chemistry, particularly with respect to the role of molecular shape and 
conformation in chemical reactions [10]. The biological and economic of the 
carbohydrates and mainly of mono and di-saccharides were highly dependable for the 
study of their bio and physiochemical properties and reactivities [1, 11 – 16] their 
microbiological and physiological activities depend largely on their redox behavior [17, 
18]. 
Potassium permanganate is widely used as an oxidizing agent in synthetic as well as in 
analytical chemistry and also as a disinfectant [19, 20]. It has been used in the 
determination of content of pharmaceutical formulation [21, 22], as oxidizing agent for 
removal of organic molecules and heavy metals from the nuclear wastes [23] and in the 
estimation of ascorbic acid [24]. During oxidation by permanganate, it is evident that 
the Mn(VII) in permanganate is reduced to various oxidation states in acidic, alkaline 
and neutral media. Consequently, the mechanism by which this multivalent oxidant 
oxidizes a substrate depends not only on the substrate but also on the medium [25]. 
Sugars may be oxidized in both acidic and basic environments, and this topic has been 
extensively studied in the literature [17, 26 – 28]. N-bromosuccinamide and potassium 
iodate, for example, may be chelated by transition metal ions in both acidic and basic 
environments (e.g., Os(VIII) [8], Pd(II) [29, 30], Ru(VIII) [6], ruthenate ion [3], 
Mn(VII) [31, 32], Hg(II) [33, 34]. 
Odebunmi and Owalude [35] investigated the rate at which alkaline permanganate anion 
oxidized glucose, galactose, fructose, maltose, and sucrose. 
The kinetics of potassium permanganate's oxidation of D-glucose, D-sorbitol, and D-
mannitol in NaHCO3/NaOH have been investigated by Okoro and Odebunmi [8]. 
Kumar [36] investigated the effects of alkaline potassium bromated on the ruthenium 
(III) catalyzed oxidation of D-galactose and lactone. Salt (KCl) was demonstrated to 
have a beneficial impact, and the authors reported a zero-order rate concerning sugar 
content and a first-order rate in potassium bromide and ruthenium(III). Based on 
experimental results, a rate law and an appropriate mechanism are provided. Many 
oxidants, including Ti(III) [37], V(V) [6], and Cr(VI) [38, 39], have been studied for 
their ability to oxidize various mono- and disaccharides. Sugars are oxidized 
catalytically by transition metal ions [11], inorganic acids [14], organometallic 
complexes [17], and enzymes [40 – 44] in both acidic and alkaline conditions. Data is 
abundant, but the correlation is challenging because of differences in the reaction 
conditions [41].  
The significance of this investigation lies in the fact that there has been no intensive 
work reported in connection with the oxidation potential of KMnO4 towards sugars in 
acidic medium in order to clarify the mechanism and create a rate law. 
The goals of the present study were to determine the stoichiometry, activation functions, 
and mechanism of the uncatalyzed oxidation of L(-)arabinose by manganese (VII) in an 
acidic medium of H2SO4 and constant ionic strength and to develop the rate law to 
describe the route of the reaction.  
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MATERIALS AND METHODS 

All chemicals were of analytical grade and were used without further purification. 
Potassium permanganate (99-100 %) as source of manganese (VII), L(-)arabinose 
(99 %), sulfuric acid (95-98 %), potassium nitrate (99 %) were supplied from Sigma 
Aldrich CO LTD. All solutions were prepared using deionized double distilled water. 
All experiments used to investigate the uncatalyzed oxidation of L(-)arabinose by acidic 
manganese (VII) were carried out at room temperature. The course of the reaction was 
followed spectrophotometrically by observing the change in absorbance of manganese 
(VII) as a function of time using the Jasco Model V570 UV/VIS (180-1100 nm) 
spectrophotometer (JASCO International Co, Tokyo, Japan). 
The temperature range 303 K-323 K was used to investigate the effect of temperature on 
the uncatalyzed reaction. 

The absorption maxima (λmax) 

The maximum absorption wavelength of manganese (VII) was determined from its 
aqueous solution absorption spectra (λmax). 

Stoichiometry 

Stoichiometric measurements were carried by taking different sets of reaction mixtures 
containing different amounts of L(-)arabinose and manganese (VII) at constant 
concentration of [H+] and a constant ionic strength, in all sets always the concentration 
of manganese (VII) is much greater than L(-)arabinose, these different sets were 
allowed to react at room temperature for 72 hours, and finally the remaining 
[manganese (VII)] in each set was estimated. 

Spot test analysis of the uncatalyzed reaction products 

It was found that when manganese (VII) reacts with sulfuric acid the following reaction 
takes place [14]. 

The oxygen formed [O], reacts with sugar (arabinose) to form a corresponding acid. 
Hence, 

Adding 1,8-dihydronaphthalene-3,6-disulfonic acid (chronotropic acid) to the different 
mixtures of [manganese (VII)]:[arabinose] proved the existence of formic acid in the 
reaction products.  

Spectrophotometric measurements 

KMnO4 dependence 
The process was investigated at different starting manganese (VII) concentrations 
ranging from 0.00005 M to 0.0004 M to see if the addition of potassium permanganate 

2 KMnO4 + 3 H2SO4 K2SO4 + 2 MnSO4 + 5 [O] + 3 H2O

RCHO + [O] RCOOH
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increased, decreased, or had no influence on the pace of the uncatalyzed reaction. The 
temperature was steady at 303 K, while the concentrations of arabinose and sulfuric acid 
were steady at 0.02 M and 0.1 M, respectively. In addition, spectrophotometric 
recordings of absorbance were made at 60-second intervals to track the progress of the 
reaction.  

Arabinose dependence 
Researcher examined the impact of arabinose doses ranging from 0.01 M to 0.05 M. 
Constants of 0.0001 M for manganese (VII) and 0.1 M for sulfuric acid was used. The 
room was maintained at a steady 303 K.  

H2SO4 dependence 
By keeping the concentrations of arabinose (0.02 M), manganese (VII) (0.0001 M), and 
303 K constant, the effect of hydrogen ion concentration was investigated.  

KNO3 dependence 
The effect of salt concentration was studied by changing the concentration of potassium 
nitrate (0.3-1.1 M) at a constant concentration of arabinose 0.02 M, manganese (VII) 
0.0001 M and at a temperature of 303 K. 

Temperature dependence 
Keeping the concentrations of manganese (VII), arabinose, sulfuric acid, and potassium 
nitrate constant while varying the temperature from 303 K to 323 K allowed for a study 
of the temperature dependency. According to the published methods [45, 46], the 
activation energy (Ea) and other activation functions were calculated. 

Proposed mechanism and rate law 

In an acidic medium, the stable reduction product of potassium permanganate is the 
manganate ion [MnO4

-], i.e., Mn+7, which reacts with arabinose to form a complex. This 
complex eventually forms the aldonic acid in the presence of a nucleophile [14]. 

RESULTS AND DISCUSSION 

The absorption maxima (λmax) 

The spectrum of manganese (VII) shows two maxima, one at 525 nm for manganese 
dioxide (MnO2), a reduction product of MnO4

-  and the other at 545 nm for MnO4
- , the 

maxima at 545 nm was considered as λmax (Figure 1). 
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Figure 1. The maximum absorption (λmax) of KMnO4 as source of manganese (VII) 

Stoichiometry 

Since two moles of manganese (VII) are used up for every mole of arabinose, the 
following stoichiometric equations for the uncatalyzed redox reaction can be written: 

Product qualitative analysis 

Since the sugar combines with the oxygen created in the process to make the acid, we 
have:  

The development of a violet pink color proved that formic acid had been produced. 

Spectrophotometric measurements 

Manganese (VII) dependence 
Absorbance was determined after every 60 seconds (Table 1). 

Table 1. Manganese (VII) dependence 
Time [s] 0.00005 M 0.0001 M 0.0002 M 0.0003 M 0.0004 M 

0 0.0931 0.0902 0.4817 0.7409 0.9093 
60 0.0927 0.0752 0.4546 0.6721 0.9026 

120 0.0904 0.0731 0.4509 0.6716 0.8954 
180 0.0878 0.067 0.4415 0.6686 0.8936 
240 0.0866 0.0578 0.4408 0.6671 0.8914 
300 0.0839 0.0663 0.4351 0.6647 0.8877 
600 0.0818 0.0557 0.4235 0.6623 0.8857 

C5H10O5 + 2 MnO4
-

C5H10O5 + 2 MnO4
- + H C4H8O5 + HCOOH + 2 MnO3

-

Arabinose Erythronic acid Formic acid

RCHO + [O] RCOOH
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From the slope of the ln Ao-A∞/At-A∞ with time (Table 2, Figure 2), the values of the 
rate constants (Table 3) were calculated. The findings demonstrate that the reaction 
follows first-order kinetics concerning manganese (VII). 

Table 2. Values of ln Ao-A∞/At-A∞ for manganese (VII) dependence 
Concentration of 

manganese (VII) [M] 
0.00005 0.0001 0.0002 0.0003 0.0004 

ln(A0-A600/A0-A600) 0 0 0 0 0 
ln(A0-A600/A60-A600) 0.036039936 0.570544858 0.626677536 2.081989314 0.33393309 
ln(A0-A600/A120-A600) 0.273040522 0.684489118 0.753342341 2.134357299 0.889120827 
ln(A0-A600/A180-A600) 0.633043256 1.116156598 1.173513597 2.523822066 1.094383953 
ln(A0-A600/A240-A600) 0.856186808 2.799021979 1.213178853 2.795755782 1.420780537 
ln(A0-A600/A300-A600) 1.682865381 1.180105323 1.612880257 3.488902962 2.468099531 
ln(A0-A600/A600-A600) 3.35 3.65 3.20 8.05 4.35 

NB: A600 = A∞ 

Figure 2. The effect of manganese (VII) concentration 

Table 3. Rate constants values for manganese (VII) dependence 
Concentration of manganese (VII) [M] 0.00005 0.0001 0.0002 0.0003 0.0004 

The slope = k 0.0051 0.0063 0.0054 0.0132 0.0072 

Arabinose dependence 
Absorption was measured at 60 second intervals (Table 4). 

Table 4. Arabinose dependence 
Time [s] 0.01 M 0.02 M 0.03 M 0.04 M 0.05 M 

0 0.2505 0.1896 0.2313 0.2296 0.2565 
60 0.2461 0.1874 0.2214 0.226 0.2518 

120 0.2434 0.1844 0.2182 0.2145 0.2491 
180 0.2363 0.1831 0.2175 0.2115 0.2466 
240 0.2296 0.1815 0.2167 0.211 0.2346 
300 0.2169 0.1795 0.2134 0.208 0.2327 
600 0.1949 0.1782 0.2087 0.1845 0.2169 
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From the slope of the line depicting ln Ao-A∞/At-A∞ with time (Table 5, Figure 3), the 
values of the rate constants (Table 6) were calculated. These findings demonstrate that 
the reaction rate is proportional to the concentration of arabinose and follows 
first-order kinetics concerning arabinose. 

Table 5. Values of ln Ao-A∞/At-A∞ for arabinose dependence 
Concentration of 

arabinose [M] 
0.01 0.02 0.03 0.04 0.05 

ln(A0-A∞/At-A∞) 0 0 0 0 0 
ln(A0-A600/A60-A600) 0.082443669 0.214409871 0.576347913 0.083188819 0.126342289 
ln(A0-A600/A120-A600) 0.136619403 0.609064063 0.866658108 0.407684865 0.206862666 
ln(A0-A600/A180-A600) 0.29490232 0.84437815 0.943198185 0.513045381 0.287682072 
ln(A0-A600/A240-A600) 0.471443514 1.239690887 1.038508365 0.531737514 0.805264479 
ln(A0-A600/A300-A600) 0.927140748 2.171249091 1.570387398 0.651881825 0.918819178 
ln(A0-A600/A600-A600) 1.35 3.65 3.2 1.6 1.6 

NB: A600 = A∞ 

Figure 3. The effect of arabinose concentration 

Table 6. Rate constants values for arabinose dependence 
Concentration of arabinose [M] 0.01 0.02 0.03 0.04 0.05 
The slope = k 0.0023 0.0061 0.0053 0.0026 0.0027 

H2SO4 dependence 
Absorbance was determined after every 60 seconds (Table 7). 

Table 7. H2SO4 dependence 
Time [s] 0.1 M 0.2 M 0.3 M 0.4 M 0.5 M 

0 0.1775 0.1832 0.2052 0.2192 0.2231 
60 0.1627 0.171 0.1898 0.2131 0.2221 

120 0.1593 0.152 0.1835 0.208 0.2211 
180 0.1557 0.1248 0.1773 0.2062 0.2186 
240 0.1545 0.1163 0.172 0.2015 0.2163 
300 0.1449 0.0952 0.166 0.1909 0.2135 
600 0.0947 0.0507 0.1231 0.1841 0.2122 
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From the slope of the ln Ao-A∞/At-A∞ versus time curves (Table 8, Figure 4), the rate 
constant values (Table 9) were calculated, showing that the reaction rate is proportional 
to the H+ concentration. 

Table 8. Values of ln Ao-A∞/At-A∞ for H2SO4 dependence 
Concentration of 

H2SO4 [M] 
0.1 0.2 0.3 0.4 0.5 

ln(A0-A600/A0-A600) 0 0 0 0 0 
ln(A0-A600/A60-A600) 0.196920356 0.096594022 0.207733064 0.1909053 0.096228032 
ln(A0-A600/A120-A600) 0.248213651 0.268496234 0.306948912 0.384322672 0.202711512 
ln(A0-A600/A180-A600) 0.305554197 0.581167113 0.415257108 0.462623522 0.532464799 
ln(A0-A600/A240-A600) 0.3254224 0.703006949 0.51816062 0.701730924 0.977775816 
ln(A0-A600/A300-A600) 0.500413035 1.091093456 0.649066191 1.641278518 2.126398525 
ln(A0-A600/A600-A600) 1.25 1.95 1.45 2.45 3.15 

NB: A600 = A∞ 

Figure 4. The effect of H2SO4 concentration 

Table 9. Rate constants values for H2SO4 dependence 
Concentration of H2SO4 [M] 0.1 0.2 0.3 0.4 0.5 
The slope = k 0.0019 0.0032 0.0024 0.0041 0.0052 

KNO3 dependence 
Absorbance was determined after every 60 seconds (Table 10). 

Table 10. KNO3 dependence 
Time [s] 0.3 M 0.5 M 0.7 M 0.9 M 1.1 M 

0 0.2077 0.1988 0.2054 0.204 0.1798 
60 0.1988 0.1971 0.1992 0.1947 0.173 

120 0.198 0.1945 0.197 0.1908 0.171 
180 0.1973 0.1937 0.1962 0.1862 0.1667 
240 0.1944 0.193 0.1955 0.1791 0.1649 
300 0.1927 0.1922 0.1943 0.1737 0.1599 
600 0.1821 0.1921 0.1812 0.1591 0.1531 
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Straight lines were also shown for the ln Ao-A∞/At-A∞ versus time data (Table 11, 
Figure 5), suggesting that the reaction rate is insensitive to changes in salt content 
(Table 12). 

Table 11. Values of ln Ao-A∞/At-A∞ for KNO3 dependence 
Concentration of 

KNO3 [M] 
0.3 0.5 0.7 0.9 1.1 

ln(A0-A∞/At-A∞) 0 0 0 0 0 
ln(A0-A600/A60-A600) 0.4271836 0.29266961 0.29598088 0.232092 0.293944 
ln(A0-A600/A120-A600) 0.4762732 1.02663879 0.42634269 0.348121 0.399863 
ln(A0-A600/A180-A600) 0.5212969 1.4321039 0.47830243 0.504904 0.674594 
ln(A0-A600/A240-A600) 0.7329931 2.00746804 0.5260931 0.808706 0.816564 
ln(A0-A600/A300-A600) 0.8817384 4.20469262 0.6137404 1.123416 1.367741 
ln(A0-A600/A600-A600) 1.75 6.25 1.45 2.45 2.55 

NB: A600 = A∞ 

Figure 5. The effect of KNO3 concentration 

Table 12. Rate constants values for KNO3 dependence 
Concentration of KNO3 [M] 0.3 0.5 0.7 0.9 1.1 
The slope = k 0.003 0.0106 0.0024 0.0038 0.0042 

Temperature dependence 
From the slope of the plots of ln Ao-A∞/At-A∞ versus time (Table 13, Figure 6), the rate 
constant values (Table 14) were determined, suggesting that the reaction rate rises with 
increasing temperature. 
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Table 13. Temperature dependence 
T A Time [s] Ao-A∞ At-A∞ Ao-A∞/ At-A∞ ln Ao-A∞/ At-A∞ 

30
3 

K
 

0.2547 0 0.0307 0.0307 1 0 
0.2519 60 0.0307 0.0279 1.100358423 0.09563597 
0.2419 120 0.0307 0.0179 1.715083799 0.53946194 
0.2354 180 0.0307 0.0114 2.692982456 0.9906493 
0.2312 240 0.0307 0.0072 4.263888889 1.45018163 
0.2253 300 0.0307 0.0013 23.61538462 1.46189839 
0.224 600 0.0307 0 ∞ 1.55 

30
8 

K
 

0.2432 0 0.0069 0.0069 1 0 
0.242 60 0.0069 0.0057 1.210526316 0.19105524 

0.2418 120 0.0069 0.0055 1.254545455 0.22677332 
0.241 180 0.0069 0.0047 1.468085106 0.3839589 
0.238 240 0.0069 0.0017 4.058823529 1.40089316 

0.2371 300 0.0069 0.0008 8.625 1.41466496 
0.2363 600 0.0069 0 ∞ 1.95 

31
3 

K
 

0.3296 0 0.293 0.293 1 0 
0.3155 60 0.293 0.2789 1.050555755 0.049319314 
0.273 120 0.293 0.2364 1.239424704 0.214647323 

0.2477 180 0.293 0.2111 1.387967788 0.327840654 
0.2421 240 0.293 0.2055 1.425790754 0.354726575 
0.199 300 0.293 0.1624 1.804187192 0.700110181 

0.0366 600 0.293 0 ∞ 2.85 

31
8 

K
 

0.267 0 0.0369 0.0369 1 0 
0.2588 60 0.0369 0.0287 1.285714286 0.251314428 
0.2558 120 0.0369 0.0257 1.435797665 0.361720559 
0.2557 180 0.0369 0.0256 1.44140625 0.3656192 
0.251 240 0.0369 0.0209 1.765550239 0.568462392 

0.2393 300 0.0369 0.0092 4.010869565 1.389008067 
0.2301 600 0.0369 0 ∞ 3.35 

32
3 

K
 

0.2712 0 0.0211 0.0211 1 0 
0.2661 60 0.0211 0.016 1.31875 0.276684318 
0.2653 120 0.0211 0.0152 1.388157895 0.327977613 
0.2633 180 0.0211 0.0132 1.598484848 0.469056211 
0.2557 240 0.0211 0.0056 3.767857143 1.326506443 
0.2545 300 0.0211 0.0044 4.795454545 1.5676685 
0.2501 600 0.0211 0 ∞ 4.25 

Figure 6. The effect of temperature 
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Table 14. Rate constants values for temperature dependence 
Temperature [K] 303 308 313 318 323 
The slope = k 0.0035 0.0037 0.0038 0.0048 0.0062 

Using the Arrhenius equation [47], the activation energy (Ea) was determined from the 
slope of the plot of 1/Tx103 versus ln k (Table 15, Figure 7). 

𝑘 = 𝐴𝑒ି
ಶೌ
ೃ೅  or    ln 𝑘 = ln 𝐴 −

ாೌ

ோ்
 

Table 15. Values of 1/T х 103 and ln k 
T [K] 103  1/T 103 k  1/sec ln k 
303 3.300 3.50 -5.65499231 
308 3.247 3.70 -5.59942246 
313 3.195 3.80 -5.57275421 
318 3.145 4.80 -5.33913936 
323 3.096 6.20 -5.08320599 

Figure 7. ln k versus 1/T for arabinose – manganese (VII) reaction 

Using the following equations, both the entropy change of activation (ΔS#) and the free 
energy change of activation (ΔG#) (Table 16) were determined: 

∆𝑆# = 2.303𝑅 ൬log 𝐴 − log
𝑅𝑇

𝑁ℎ
൰ , 𝐽 ∙ 𝐾ିଵ 

where R/N is the Boltzmann's gas constant 1.3805×10-23 J·K
-1 and h is Planck's constant

6.62×10-34 Js. 

∆𝐺# = ∆𝐸௔ − 𝑇∆𝑆# ,  𝑘𝐽 ∙ 𝑚𝑜𝑙ିଵ 

-5.8
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-5
3.05 3.1 3.15 3.2 3.25 3.3 3.35

ln
k

103  1/T  K-1
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Table 16. Activation functions of the uncatalyzed oxidation of L(-)arabinose by 
manganese (VII) in acidic medium 

Activation functions Found 

The energy of activation (Ea) in kJ·mol-1 22.74 

Frequency factor (A) in s-1 26.88x105 

Variation of the free energy(G) in kJ·mol-1 
throughout a temperature range  

303 K 308 K 313 K 318 K 323 K 

65.98 67.110 68.24 69.37 70.51 
Temperature dependence of the entropy 
change (S) in JK-1 

303 K 308 K 313 K 318 K 323 K 
-217.68 -217.82 -217.95 -218.08 -218.21 

Mechanism and rate law of the reaction 

We propose the following simplified mechanism to explain the pathway of oxidation of 
arabinose by manganese (VII) in acidic medium: 

where k1 and k2 are the forward and reverse rate constants, and k3 is the product 
formation rate constant. The rate of complex creation may be expressed as follows: 

ௗ[஼௢௠௣௟௘௫]

ௗ௧
= 𝑘ଵ[𝑎𝑟𝑎𝑏𝑖𝑛𝑜𝑠𝑒][𝑚𝑎𝑛𝑔𝑎𝑛𝑒𝑠𝑒(𝑉𝐼𝐼)] − [𝑘ଵ − 𝑘ଷ][𝐶𝑜𝑚𝑝𝑙𝑒𝑥]               (1) 

At a steady state, 
ௗ[஼௢௠௣௟௘௫]

ௗ௧
= 0  (2) 

Complex concentration is calculated as follows from equations (1) and (2): 

[𝐶𝑜𝑚𝑝𝑙𝑒𝑥] =
௞భ[௔௥௔௕௜௡௢௦௘][௠௔௡௚௔௡௘௦ (௏ூூ)]

௞మା௞య
  (3) 

The rate at which manganese (VII) may deplete in a steady-state environment is: 
ିௗ[௠௔௡௚௔௡௘௦௘(௏ூூ)]

ௗ௧
= 𝑘ଷ[𝐶𝑜𝑚𝑝𝑙𝑒𝑥]  (4) 

ିௗ[௠௔௡௚௔௡௘௦௘(௏ூூ)]

ௗ௧
=

௞య௞భ[௔௥௔௕௜௡௢௦௘][௠௔௡௚௔௡௘௦௘(௏ூூ)]

௞మା௞య
  (5) 

Now we may look at the [manganese (VII)] as a whole, which is: 

[𝑚𝑎𝑛𝑔𝑎𝑛𝑒𝑠𝑒(𝑉𝐼𝐼)]் = [𝑚𝑎𝑛𝑔𝑎𝑛𝑒𝑠𝑒(𝑉𝐼𝐼)] + [𝐶𝑜𝑚𝑝𝑙𝑒𝑥]  (6) 

Regarding the complex value:

[𝑚𝑎𝑛𝑔𝑎𝑛𝑒𝑠𝑒(𝑉𝐼𝐼)]் = [𝑚𝑎𝑛𝑔𝑎𝑛𝑒𝑠𝑒(𝑉𝐼𝐼)] +
௞భ[௔௥௔௕௜௡௢௦௘][௠௔௡௚௔௡௘௦௘(௏ூூ)]

௞మା௞య
 (7) 

Equation (7) yields the following result for [manganese (VII)]: 

[𝑚𝑎𝑛𝑔𝑎𝑛𝑒𝑠𝑒(𝑉𝐼𝐼)] =
(௞మା௞య)[௠௔௡௚௔௡௘௦௘(௏ூூ)]೅

(௞మା௞య)ା௞భ[௔௥௔௕௜௡௢௦௘]
  (8) 

arabinose + manganese (VII) + H+
k1

k2

[arabinose ....... manganese (VII)]

complex

slow k3

[Product]
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So, to sum up, the whole rate law from (5-8): 
ିௗ[௠௔௡௚௔௡௘௦௘(௏ூூ)]

ௗ௧
=

௞య௞భ[௔௥௔௕௜௡௢௦௘](௞మା௞య)[௠௔௡௚௔௡௘௦௘(௏ூூ)]೅

[(௞మା௞య)ା௞భ[௔௥௔௕௜௡௢௦௘](௞మା௞య)]
  (9) 

ିௗ[௠௔௡௚௔௡௘௦௘(௏ூூ)]

ௗ௧
=

௞య௞భ[௔௥௔௕௜௡௢௦௘][௠௔௡௚௔௡௘௦௘(௏ூூ)]೅

[(௞మା௞య)ା௞భ[௔௥௔௕௜௡௢௦௘]]
  (10) 

The present research work follows the condition: 
(𝑘ଶ + 𝑘ଷ) > 𝑘ଵ[𝑎𝑟𝑎𝑏𝑖𝑛𝑜𝑠𝑒] 

Hence above equations (9) and (10) reduce to, 
ିௗ[ெ௡ைర

ష]

ௗ௧
=

௞య௞భ[௔௥௔௕௜௡௢௦௘][௠௔௡௚௔௡௘௦௘(௏ூூ)]೅

(௞మା௞య)
= 𝑘ଵ[𝑎𝑟𝑎𝑏𝑖𝑛𝑜𝑠𝑒][𝑚𝑎𝑛𝑔𝑎𝑛𝑒𝑠𝑒(𝑉𝐼𝐼)]்  (11) 

where, 

𝑘 =
𝑘ଷ𝑘ଵ

(𝑘ଶ + 𝑘ଷ)

The given equation demonstrates first-order kinetics as a function of arabinose and 
manganese (VII) ion concentration.  

CONCLUSIONS 

Potassium permanganate is highly reactive under certain conditions. In potassium 
permanganate (Mn+7) is reduced to (MnO2) (Mn+4). Under acidic conditions the 
following reaction was observed: 

When combined with the hydrogen ion (H+), stoichiometric studies show that MnO4
- is 

the active, reactive oxidizing specie in an acidic media. 

This permanganic acid is a highly oxidative unstable inorganic acid that, with catalyst or 
alone, oxidizes the sugar arabinose by forming an unstable intermediate complex that 
ultimately yields aldehyde hydrate. This aldehyde hydrate is typically transformed into 
the corresponding carboxylic acid through reactions with MnO3

- species. The oxidative 
property of manganese (VII) ions with organic reducing arabinose sugar in acidic media 
are the basis for the present investigation. It has been determined that erythronic and 
formic acids and their corresponding acid of arabinose are two necessary by-products. 

Creating two manganese (VII) oxidative species in an acidic media may be responsible 
for the products. Reactive oxygen species are generated in the presence of an acid, 
which catalyzes erythronic and formic acids formation by breaking the C-C bond (VII). 
The proposed mechanism was used to confirm that the uncatalyzed reaction of 
manganese (VII) ions with arabinose sugar molecules in an acidic medium and at 
constant ionic strength exhibits first-order kinetics concerning arabinose and manganese 

MnO4
- + 4 H+ + 3 e- MnO+2 + H2O

MnO4
- + 8 H+ + 5 e- MnO+2 + 4 H2O

H+ + MnO4
- HMnO4

C5H10O5 + 2 MnO4
- + H C4H8O5 + HCOOH + 2 MnO3

-

Arabinose Erythronic acid Formic acid
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(VII) concentration and that the rate increases linearly with increasing acidity of the 
medium. 
The optimum reaction condition was 0.02 M of L(-)arabinose, 0.0003 M of manganese 
(VII), 0.5 M of H+, and 0.5 M of KNO3. 
The influence of temperature on the reaction is usually expressed mathematically by 
introducing two parameters, one representing the intercept which is the frequency factor 
(A) found equal 26.88x105 s-1 and the other is the slope of the straight line which is the 
activation energy Ea, found equal 22.74 kJ·mol-1 . Furthermore, the activation functions, 
entropy change (ΔS#), and free energy change (ΔG#) were also calculated at different 
temperatures. The solvated intermediate state, indicated by a negative value of ΔS#, 
lends credence to the idea that the solute and solvent have an electrostatic solid 
connection. In addition to slow kinetics, a negative activation entropy value shows the 
existence of substantially solvated transition intermediate states.  
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