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Abstract:  A parameter denoted “Critical Position Offset Angle” – CPOA is proposed in 
this paper, developed as a new approach for assessing the accuracy of multiaxial HCF 
models based on the angle difference between the predicted critical plane and the plane 
where the equivalent stress reaches its peak value. A number of 11 models are compared 
using this parameter, by applying them to simulated multiaxial tension-torsion loadings 
with different grades of nonproportionality. A wider scatter in CPOA values is identified in 
cases of loading with dominant shear stress. Overall, the equivalent stress models give the 
best results. 
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1. INTRODUCTION 
 
Correct assessment of multiaxial fatigue damage constitutes an unresolved problem for the engineering 
community ever since the first fatigue studies had been published. Engineering calculations involve many times 
the reduction of a complex multiaxial state of stress into an equivalent uniaxial one, without verifying the 
validity of the reduction criteria for the given load case, material and piece geometry. 
 
Fatigue calculation has become an important part of machine design. However, multiaxial fatigue remains a 
domain approached by a limited number of specialists. Although in recent years Low Cycle Fatigue (LCF) has 
gained the most attention, studies are still made in the field of High Cycle Fatigue (HCF) too. New research is 
needed in the field of HCF since many components from industries with strategic importance (such as nuclear 
[1]) are operating in the HCF domain and early or unexpected failures can have catastrophic consequences 
claiming human lives. 
 
Several review papers have been published concerning the applicability of multiaxial fatigue models, based on 
different considerations. Some authors present the models in a critical manner [2, 3, 4], while others confront 
them with experimental data and assess their accuracy [1, 5, 6]. 
 
This paper aims to put into a new light eleven of the most often used multiaxial HCF models, by applying them 
to mathematically simulated proportional and nonproportional tension-torsion loading cases and assessing them 
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based on the influence of two parameters: the predicted equivalent stress and the “critical position offset angle” 
(CPOA) between the predicted critical plane and the plane where the equivalent stress reaches its peak value, 
both as functions of the phase shift angle and stress cycle amplitudes.  
 
 
2. REVIEW OF SELECTED HCF MODELS 
 
The study presented in this paper is concerned in analyzing multiaxial HCF models widely used in machine 
design for their relative simplicity and acceptable accuracy in predicting fatigue life. The following list is not 
comprehensive, since many other types of HCF models exist, but lack practical utility because they require high 
level mathematical knowledge to apply [4]. The selected models for this study are the following [3]: 

• Equivalent stress models: von Mises [7], “signed von Mises” [8], Tresca [9], Sines [10]; 
• Critical plane models: Yokobori [11], Findley [12], Matake [13], McDiarmid [14]; 
• Models based on stress invariants: Crossland [15], Sines (II) [16], Kakuno-Kawada [17]. 

 
The mentioned models differ significantly in terms of interpretation of the three-dimensional stress state, but 
they are all applicable for multiaxial loadings and are used in engineering calculations. They are briefly 
summarized in Table 1. 
 

Table 1. Main parameters of selected HCF damage models. 
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where: σx, σy, σz, τxy, τyz, τzx – components of the stress tensor; 
 σ1, σ3 – principal normal stresses; 
 τoct – octahedral shear stress; 
 σn – normal stress acting on plane n; 
 J2a – amplitude of the second invariant of the deviatoric stress tensor; 
 σh – hydrostatic stress; 
 σUTS – ultimate tensile stress; 
 σ-1 – fatigue limit under fully reversed tension-compression (R = -1); 
 σ0 – fatigue limit under repeated tension (R = 0); 
 τ-1 – fatigue limit under fully reversed torsion (R = -1); 
 Other: m – mean; a – amplitude; ∆ – range. 
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The equivalent stress models start from the six-component stress tensor and generate one equivalent component, 
thus transforming general multiaxial stress state into an equivalent uniaxial one. This comes as a disadvantage, 
since the effect of loading direction is eliminated. However, these models are the most widely applied due to 
their simplicity and generally conservative predictions. These models also have limitations, such as in the case of 
the von Mises theory [7], which always produces a positive tension load cycle, eliminating the compressive 
components. The “signed von Mises” model [8] corrects this, but it requires the determination of the principal 
stresses, which complicates the calculations. The application of the Tresca model [9] can also come with some 
difficulty, due to the necessity of solving a cubic equation in order to find the three principal stresses. As for the 
Sines criterion [10], which can also be considered a critical plane model, is defined only for proportional 
loading, Sines did not give any solutions for nonproportionality. 
 
The critical plane models are based on a different idea, stating that fatigue damage accumulates on a specific 
plane in the material, denoted the “critical plane”. The damage parameter is a linear combination of shear stress 
and normal stress, acting on the critical plane. If applied correctly, these models are usually less conservative 
than the equivalent stress models. However, the determination of the critical plane often poses difficulties for the 
specialists. While Yokobori [11] considers the critical plane to be one along which the shear stress reaches an 
extreme value, Findley [12] proposes that the linear combination of shear stress amplitude and normal stress 
define the critical plane. Matake [13] and McDiarmid [14] consider that the maximum shear stress amplitude 
defines the plane where fatigue damage first appears. Given the differences in defining the governing 
parameters, much attention is needed in applying critical plane models. 
 
The models based on stress invariants correlate fatigue life with the second invariant (J2) of the deviatoric stress 
tensor. Since J2 is related to the octahedral shear stress, according to the stress invariant models fatigue damage 
will occur on the octahedral plane, i.e. on the plane where the octahedral shear stress reaches its peak value. 
Thus, all three selected models consider a damage parameter defined as a linear combination of the square root 
of J2 amplitude and the hydrostatic stress. The Crossland [15], Sines (II) [16] and Kakuno-Kawada [17] models 
differ from each other in defining the hydrostatic part of the equivalent stress. These models are generally in 
good correlation with experimental data, however the calculation of J2 can prove to be extremely laborious and 
inconsistent in case of nonproportional loading. 
 
 
3. DETERMINATION METHOD FOR CPOA 
 
The used calculation methods will be presented in this paragraph, structured as follows: definition of the original 
load spectrum, transformation of the original load spectrum into a state of plane stress, finding of the critical 
time moment on the load cycle, definition of the analyzed load cases with different grades of nonproportionality, 
calculation of representative stresses followed by calculation of equivalent stresses according to the presented 
models. The mathematical part was realized with a program especially written for this purpose, in MathCad 
environment. 
 
3.1. Definition of CPOA 
As stated before, the Critical Position Offset Angle – CPOA represents the mathematical difference between the 
position angle of the plane where the considered equivalent stress reaches its peak value – θσeq and the position 
angle of the critical plane – θcp, both angles as predicted by the corresponding HCF model. The mathematical 
expression of CPOA is the following: 
 

cpeq
CPOA θθσ −=                                                                         (1) 

 
The idea behind CPOA is that the plane where the equivalent stress is maximum should coincide with the plane 
predicted as critical by the corresponding HCF model. As a result of this, according to an assessment based on 
CPOA, a given model is the better defined the lower the value of CPOA is. As an example, if CPOA is zero, the 
model is considered to be well defined, and as CPOA increases, the model loses in accuracy. 
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3.2. Transformation of general stress state into plane stress and finding the representative time moment 
on the load cycle 
The starting point of the present study is a general six-component stress history, based on the loading studied in 
another work [18]. However, this time constant amplitude stress histories are used, as presented in Figure 1, 
where a sequence of 5 full cycles are plotted. The general equation for each of the six stress components is the 
following: 
 

)tsin()t( am Φωσσσ +⋅+=                                                          (2) 

 
where Φ is the phase shift angle, the parameter which defines the grade of nonproportionality in the present 
study. 

 
Fig. 1. Original three-dimensional proportional (Φ = 0) stress history and component means and amplitudes. 

 
In order to simplify the calculations and to ease visualization, the complex stress history presented in Figure 1 
was decomposed into three cases of plane stress. The decomposed load histories, plotted in σ-τ coordinates, are 
given in Figure 2 a, b and c. 
 

 
Fig. 2. Decomposed stress history in 3 states of plane stress. 

 
A very important phase in the processing of the load spectrum is the determination of the most representative 
time moment on the cycle. The criterion of the worst possible case is applied, meaning the time moment 
exhibiting the highest stress values is chosen for further analysis. In order to account for the possibility of 
nonproportional loading, the critical time moment is defined as the moment at which the corresponding point on 
the σ-τ graph in Figure 2 is at the highest distance from the origin of the coordinate system.  
 
It can be clearly seen that the highest distance from the 3 graphs in Figure 2a, b and c is reached in Figure 2a. 
The highest distance and the time moment at which it is reached on the 100 s long cycle are automatically 
determined by an algorithm especially written for this purpose in MathCad environment (Figure 3). 
 



 
Journal of Engineering Studies and Research – Volume 18 (2012) No. 3                                       79 
 
 

 
Fig. 3. Calculation of the highest distance (dist) on the loading path from the origin and the corresponding time 

moment (tr). 
 
3.3. Loading cases considered for the analysis 
The original load spectrum and thus the loading case presented in Figure 3 are proportional. Since one objective 
of this study is to analyze the influence of nonproportionality on the applicability of different HCF models, the 
loading case in Figure 3 has been altered in terms of phase shift angle and stress amplitudes. As a result of this, a 
number of 14 different loading cases are subjected to analysis in this paper, as presented in Table 2. 
 

Table 2. Analyzed loading cases. 
Cycle definition parameters  

No 
σσσσa [MPa] σσσσm [MPa] ττττa [MPa] ττττm [MPa] ΦΦΦΦ [deg] 

dist 
[MPa] 

tr [s] Loading path 

A1 37.5 -37.5 210 30 0 240 25 proportional 
A2 37.5 -37.5 210 30 15 240 21 nonproportional 
A3 37.5 -37.5 210 30 30 240 17 nonproportional 
A4 37.5 -37.5 210 30 45 240 12 nonproportional 
A5 37.5 -37.5 210 30 60 241 8 nonproportional 
A6 37.5 -37.5 210 30 75 242 4 nonproportional 
A7 37.5 -37.5 210 30 90 243 0 nonproportional 
B1 210 30 37.5 -37.5 0 240 25 proportional 
B2 210 30 37.5 -37.5 15 240 25 nonproportional 
B3 210 30 37.5 -37.5 30 240 25 nonproportional 
B4 210 30 37.5 -37.5 45 240 25 nonproportional 
B5 210 30 37.5 -37.5 60 241 25 nonproportional 
B6 210 30 37.5 -37.5 75 242 25 nonproportional 
B7 210 30 37.5 -37.5 90 243 25 nonproportional 

 

 
Fig. 4. Analyzed loading cases plotted in σ-τ coordinates. 

 
3.4. Calculation of representative stress histories as functions of plane angle 
In order to be able to apply the HCF models presented in Table 1, the magnitudes and directions of several 
quantities of interest need to be known: 

• position of the planes along which the stresses σ, τ and τoct reach their maximum in tr and their values; 
• position of the planes along which the principal stresses σ1, σ2, τ12 reach their maximum in tr and their 

values; 
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• position of the planes along which the stress ranges ∆τ, ∆τoct reach their maximum in tr and their values. 
 
The stresses σ and τ are firstly calculated as functions of the plane angle θ: 
 

)sin()cos()( xy
xx θτθσσθσ 22

22
++=                                                  (3) 

)cos()sin()( xy
x θτθσθτ 22

2
+−=                                                      (4) 

 
The principal normal stresses σ1 and σ2 are the solutions of the cubic equation, where I1(θ), I2(θ) and I3(θ) are 
the three invariants of the stress tensor (equation (5)). The principal shear stress in the present case of plane 
stress will be computed according to equation (6). 
 

032
2
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21

12
)()(

)(
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θτ
−
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The octahedral shear stress is determined with the following relation: 
 

)()()(oct θτθσθτ 22 3
3

2 +=                                                              (7) 

 
The stress ranges of interest, i.e. ∆τ and ∆τoct, are determined using an algorithm written for this purpose, as the 
example shows in Figure 5 a for ∆τmax. The positions of the planes on which the above mentioned stresses and 
stress ranges reach their peak values (θσ,max, θτ,max, θσ1,max, θσ2,max, θτ12,max, θτoct,max, θ∆τ,max, θ∆τoct,max) are all 
determined by algorithms written in MathCad, similar with the example given for θ∆τ,max in Figure 5 b. 
 

 
Fig. 5. Shear stress range calculation on plane θ (a) and plane position where the shear stress range is max (b). 

 
3.5. Material characteristics used with the analyzed HCF models 
 
The material properties which are used in the calculations are given in Table 3. 
 

Table 3. Material properties. 
Material σσσσUTS [MPa] σσσσyield [MPa] σσσσ-1 [MPa] σσσσ0 [MPa] ττττ-1 [MPa] 

41Cr4 870 761 350 220 250 
 
 
4. RESULTS AND DISCUSSION 
 
The 11 HCF models reviewed in Chapter 2 were subjected to the CPOA assessment, each of them being applied 
for 14 load cases with different grades of nonproportionality. The obtained values for the stresses of interest and 
the angles of the planes where they are acting, are given in Table 4, for all the 11 models in 14 load cases. 
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Table 4. Obtained stress values, corresponding plane positions and CPOA for each model. 
Loading case 

Parameter 
A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 

θσ,max [°] 44 135 133 135 135 135 135 0 0 0 -2 172 171 -10 
σmax [MPa] 240 -241 -242 -246 -250 -254 -259 240 240 240 -1 241 243 246 

θτ,max [°] 0 0 0 0 0 0 1 42 42 41 42 37 36 35 
τmax [MPa] 240 240 240 240 240 240 241 -120 -120 -120 -121 -121 -123 -126 

θσ1,max [°] 15 17 17 16 17 16 18 0 0 0 0 0 0 0 
σ1,max [MPa] 277 277 276 273 271 268 266 240 240 240 241 241 243 246 

θσ2,max [°] 105 108 107 107 108 108 109 52 52 51 52 47 45 45 
σ2,max [MPa] -277 -278 -279 -281 -284 -287 -291 -80 -80 -80 -81 -81 -83 -86 

θτ12,max [°] 0 0 0 0 0 1 0 34 34 33 29 29 25 26 
τ12,max [MPa] 240 240 240 240 240 241 241 139 139 139 139 140 141 144 

θτoct,max [°] 0 0 0 0 0 0 0 26 25 24 21 21 19 19 
τoct,max [MPa] 196 196 196 196 196 196 197 120 120 120 120 121 122 124 

θ∆τ,max [°] 87 88 87 88 0 0 0 53 53 52 51 50 46 44 
∆τmax [MPa] 422 422 421 421 420 420 420 223 222 220 217 214 211 210 

θ∆τoct,max [°] 85 87 1 2 1 89 6 38 36 30 29 24 22 16 
∆τoct,max [MPa] 194 195 185 188 190 195 192 99 103 107 112 116 120 122 

θσvM,max [°] 0 0 0 0 0 0 1 29 29 27 23 25 21 21 
σvM,max [MPa] 416 416 416 416 416 417 418 255 255 255 255 257 259 263 

σvM(θτoct,max) [MPa] 416 416 416 416 416 417 417 254 254 254 253 256 258 262 
CPOA(vM) [°] 0 0 0 0 0 0 1 3 3 3 2 3 2 2 

θσvMs,max [°] 0 0 0 0 0 0 1 29 29 27 23 25 21 21 
σvMs,max [MPa] -416 -416 -416 -416 -416 -417 418 255 255 255 255 257 259 263 

σvMs(θτoct,max) [MPa] -416 -416 -416 -416 -416 -417 417 254 254 254 253 256 258 262 
CPOA(vMs) [°] 0 0 0 0 0 0 1 3 3 3 2 3 2 2 

θσTr,max [°] 0 0 0 0 0 0 1 33 33 31 30 30 28 25 
σTr,max [MPa] 480 480 480 480 480 481 482 277 277 277 278 280 283 287 

σTr(θτoct,max) [MPa] 480 480 480 480 480 481 481 271 270 270 269 273 275 282 
CPOA(Tr) [°] 0 0 0 0 0 0 1 7 7 7 9 9 9 6 

θσSin,max [°] 64 N/A N/A N/A N/A N/A N/A 174 N/A N/A N/A N/A N/A N/A 
σSin,max [MPa] 123 N/A N/A N/A N/A N/A N/A 104 N/A N/A N/A N/A N/A N/A 

σSin(θτoct,max) [MPa] 88 N/A N/A N/A N/A N/A N/A 98 N/A N/A N/A N/A N/A N/A 
CPOA(Sin) [°] 64 N/A N/A N/A N/A N/A N/A 148 N/A N/A N/A N/A N/A N/A 

θσYok,max [°] 24 115 115 115 115 115 117 158 157 158 155 155 151 149 
σYok,max [MPa] 375 -376 -378 -382 -387 -392 -399 331 331 332 332 334 336 340 

σYok(θτ,max) [MPa] 240 239 234 226 217 206 207 38 36 37 23 40 37 26 
CPOA(Yok) [°] 24 115 115 115 115 115 116 115 115 117 113 117 116 114 

θσFin,max [°] 79 79 81 81 82 81 81 59 57 56 56 56 52 49 
σFin,max [MPa] 220 220 220 219 218 216 215 123 125 124 121 116 118 118 

σFin(θσFin,max) [MPa] 220 220 220 219 218 216 215 123 125 124 121 116 118 118 
CPOA(Fin) [°] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

θσMat,max [°] 79 79 81 81 82 81 81 149 147 148 148 143 142 138 
σMat,max [MPa] 220 220 220 219 218 216 215 146 145 145 144 142 141 140 

σMat(θ∆τ,max) [MPa] 216 215 216 214 210 210 210 128 128 127 126 124 124 124 
CPOA(Mat) [°] 8 9 6 7 82 81 81 96 94 96 97 93 95 95 

θσMcD,max [°] 84 84 83 84 84 87 85 146 144 143 142 142 138 137 
σMcD,max [MPa] 214 214 213 213 212 212 211 126 125 124 123 122 120 120 

σMcD(θ∆τ,max) [MPa] 213 212 213 212 210 210 210 119 118 117 116 114 113 113 
CPOA(McD) [°] 3 3 3 3 84 87 85 92 91 91 91 92 91 93 

θσSinII,max [°] 0 0 175 0 0 175 0 57 38 36 33 32 28 28 
σSinII,max [MPa] 120 123 126 128 129 130 131 69 69 71 73 75 76 77 

σSinII(θ∆τoct,max) [MPa] 117 118 125 127 129 119 128 66 68 68 71 72 73 72 
CPOA(SinII) [°] 85 87 174 2 1 87 6 19 2 6 4 8 6 11 

θσCro,max [°] 85 82 82 92 90 98 96 28 24 147 19 13 14 3 
σCro,max [MPa] 122 121 121 121 120 122 122 71 74 78 81 84 87 88 

σCro(θ∆τoct,max) [MPa] 122 121 113 116 117 120 119 70 73 77 80 84 86 88 
CPOA(Cro) [°] 0 5 81 90 89 9 90 10 12 117 10 11 8 13 

θσKK,max [°] 90 90 90 90 90 90 90 74 123 121 120 122 115 113 
σKK,max [MPa] 118 119 120 118 119 119 118 43 45 46 47 49 49 50 

σKK(θ∆τovt,max) [MPa] 106 111 97 96 101 117 97 5 6 4 8 8 12 11 
CPOA(KK) [°] 5 3 89 88 89 1 84 36 87 91 91 98 93 97 
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where: 
σXX(θσYY,max) – the equivalent stress corresponding to model XX, 
on the plane θ considered to be critical where the stress σYY 
reaches a maximum value; 
 
CPOA(XX) – the CPOA of the model XX 
 
vM  – von Mises; 
vMs  – Signed von Mises; 

Tr  – Tresca; 
Sin  – Sines; 
Yok  – Yokobori; 
Fin  – Findley; 
Mat  – Matake; 
McD  – McDiarmid; 
SinII  – Sines (II); 
Cro  – Crossland; 
KK  – Kakuno-Kawada; 

 
The following figures (Figure 6 - 16) present the evolution of the selected 11 HCF models in 6 of the 14 loading 
cases, by plotting on an angular hodograph two stress quantities in tr as functions of the plane angle θ: the 
equivalent stress and the stress defining the critical plane (see Table 1). The variation of CPOA for the different 
phase shift angles in case of each model is also presented in the figures. 
 
 

 
Fig. 6. CPOA for the von Mises model. 

 
 

 
Fig. 7. CPOA for the Signed von Mises model. 

 
 

 

 
Fig. 8. CPOA for the Tresca model. 

 
 

 
Fig. 9. CPOA for the Sines model. 
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Fig. 10. CPOA for the Yokobori model. 

 
 

 
Fig. 11. CPOA for the Findley model. 

 
 

 
Fig. 12. CPOA for the Matake model. 

 
 

 
Fig. 13. CPOA for the McDiarmid model. 

 
 

 
Fig. 14. CPOA for the Sines (II) model. 
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Fig. 15. CPOA for the Crossland model. 

 
 

 
Fig. 16. CPOA for the Kakuno-Kawada model. 

 
As Figures 6-16 show, the CPOA has various graphs depending on the model. The equivalent stress models (i.e. 
von Mises (Figure 6), Signed von Mises (Figure 7) and Tresca (Figure 8)) give a rather weak influence of the phase 
shift on the CPOA. In all the 3 cases, the CPOA value remains in the range between -2° and 10°. In case of the von 
Mises and Signed von Mises model, a slightly descending tendency of CPOA can be observed with the increasing 
phase shift. However, the Tresca model’s CPOA shows an ascending tendency with the increasing phase shift and a 
larger scatter. It is also important to mention that all three models generate CPOA values close to zero when applied 
to Series A from the analyzed loading cases, while in case of Series B, the CPOA values are above-zero. 
 
The Sines model (Figure 9) was applied only for the two proportional loading cases, and even so it generated high 
values for CPOA, meaning large position difference between the plane of maximum stress and the critical plane. 
 
As expected, the critical plane models (Figures 10-13) have proven to be less predictable then the equivalent 
stress models. The values of CPOA generally jump between 0° and 90°. While the Yokobori model (Figure 10) 
generates almost constant CPOA values at 90°, the Findley model (Figure 11) by definition gives the best result: 
CPOA = 0°, since the critical plane and the plane of maximum stress are defined to be identical. As for the 
Matake (Figure 12) and McDiarmid (Figure 13) models, both give similar results. In Series A, both models give 
CPOA values which jump between approx. 0° and 90°, the shift apparently happening at 60°. In case of Series B, 
both models give stable, around 90° for CPOA. The Matake model gives slightly higher CPOA values then the 
McDiarmid model, due to the difference in material constants used. 
 
According to this study, the models based on stress invariants (Figures 14-16) give the worst results in terms of 
CPOA from the analyzed 11 models. It can be seen once again that the scatter is much higher for Series A than 
for Series B. In case of the Sines (II) model (Figure 14) it is of 180°, which can be due to inconsistencies in 
defining the amplitude of the second invariant of the stress deviator, analyzed in another work [19]. However, 
for Series B the Sines (II) model gives an almost constant CPOA of around 6° for all the analyzed grades of 
nonproportionality. The finding is similar in case of the Crossland (Figure 15) and Kakuno-Kawada (Figure 16) 
models too. However, it can be observed that for Series B the Kakuno-Kawada model predicts CPOA to be 
around 90°, while the Sines (II) and Crossland models floor it to 0°. 
 
It can be observed that the majority of the models are more stable in terms of CPOA in case of the loadings from 
Series B, where the dominant stress is the normal stress. In case of Series A, where the dominant stress is the 
shear stress, the scatter among CPOA values is much wider. The exceptions from this tendency are the von 
Mises, Signed von Mises, Tresca, Sines and Findley models. The latter gives absolute 0 values for CPOA, while 
the Sines model is not defined for nonproportional multiaxial loadings. 
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4. CONCLUSIONS 
 
A number of 11 multiaxial HCF models are reviewed and analyzed in this paper, based on a parameter defined 
as the difference angle between the positions of the critical plane and the plane where the equivalent stress 
reaches its maximum. This parameter, denoted as the Critical Position Offset Angle – CPOA, can be considered 
as a measure for the accuracy of the model. Thus, the less CPOA is, the better defined the model. The models are 
applied for 14 simulated loadings with different grades of nonproportionality, given by various phase shift angles 
between the normal and shear stress cycle. 
 
It is found that the models generate higher CPOA values with wider scatter in case of loadings with dominant shear 
stress. Furthermore, the models based on the second invariant of the stress deviator (Sines (II), Crossland, Kakuno-
Kawada) give higher CPOA values than the equivalent stress models (von Mises, Signed von Mises, Tresca). This 
may be explained by inconsistent definition of the mentioned invariant in case of nonproportional loading. The 
CPOA assessment applied for the Findley model always produces zero values, given by the model’s definition. 
As a result of this, the CPOA assessment is not a valid measure of the Findley model’s accuracy. Furthermore, 
the Sines model is not defined for nonproportional loadings, thus plotting the variation of CPOA with the phase 
shift angle is not applicable. 
 
Given the above and taking into account the mentioned exceptions, the CPOA assessment is aimed to be an 
additional tool in selecting the HCF models for a durability evaluation, by predicting the difference between the 
plane of maximum equivalent stress and the critical plane. This can be useful in applying the appropriate HCF 
model for the given case of loading. 
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