
P R O C E E D I N G S  O F  P L U M E E  2 0 1 5  

 

117 

 

 

 

 

 

 

THE PROBLEM OF ELECTROCONVECTION AND HEAT EXCHANGE 

IN DISPERSED GAS-LIQUID SYSTEMS 
 

 

SAJIN TUDOR
1 

 
1
 “Vasile Alecsandri”University of Bacău, Calea Mărăşeşti 156, Bacău, 600115, Romania 

 

 

Abstract: The problem of momentum, energy, and electrical charge transport is formulated 

for gas-liquid dispersed systems. 

 

 

Key words: gas-liquid system, electroconvection, electric field, momentum,energy and 

electrical charge transport  

 

 

 

1. INTRODUCTION 
 

In a number of branches of industry, such as thermal energy production and chemical and food technology 

processes in which a gas interacts with a liquid are often used, and they are often carried out under bubbler 

conditions to intensify them. The main questions involved in study of such processes are the hydrodynamics of 

the gas-liquid layer, removal of the liquid phase, heat-mass transport and organization of various processes both 

in the bubble layer and the vapor-gas space. 

 

The action of electric fields can significantly intensify heat exchange in gas-liquid media. To a certain extent 

such questions have been investigated in bubble boiling [1]. It follows from data available in the literature on the 

problem of heat exchange in bubble-layer processes that in the dependence of the bubbler plate heat liberation 

coefficient on gas velocity one can distinguish at least three regions, with the dependence being selfsimilar in 

two of these [2]. There are studies which indicate that under certain conditions an electric field can intensify 

interphase heat exchange. 

 

The mechanism of electric-field action in bubbling processes is related to the effect of electroconvection on the 

hydromechanical state of the phases: the change in the phase thermodynamic properties in an electric field is 

negligibly small compared to electroconvective phenomena [3]. 

 

The absence of a unified viewpoint on this problem and the extreme lack of data, especially experimental, on the 

effect of an electric field stimulated our study of the question. 

 

 
 

2. MOMENTUM, ENERGY, AND ELECTRICAL CHARGE TRANSPORT IN GAS-LIQUID 

DISPERSED SYSTEMS 

 

One method of describing the interrelated processes which occur in such systems is based on the concepts of the 

mechanics of a continuous medium, although in formulating problems consideration of electrical fields is either 

a special case [3-5] or absent [6]. 
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We will consider the system formed upon escape of a gaseous phase into a liquid medium and divided by the 

free liquid surface into the bubble region Ω' and the vapor-gas volume Ω", in which the liquid phase is dispersed 

and carried off. Before the process commences the region Ω' is filled with liquid, while Ω" is filled by gas, and 

the regions are in a state of thermodynamic equilibrium which, in particular, assumes absence of macroscopic 

motion of the phases ( 1v ')0  = ( 1v ")0 = 0 and uniform temperature distribution over volume ( 1T ')0 = ( 1T ")0  = 

0T . 

 

At the beginning of the process ( 0t ) a vapor-gas flow with parameters ( 2G ')0, ( 2T ')0, ( v2 ')0, and ( in2 ')0 

bubbles through the liquid (region Ω') in the form of bubbles with a mean breakaway radius ( a ')0. On the 

surface s bubbles are generated in the form of the dispersed system medium Ω", while liquid is dispersed into 

droplets with characteristics ( 22a ")S, ( 2G ")S, and ( n ")S. 

 

At the initial time ( 0t ) in region Ω" an ionized vapor-gas flow appears with parameters ( 1G ")0, ( 1T ")0, 

( v1 ")0, and ( In1 ")0. From the region Ω" a flow of liquid electroaerosol is extracted with phase transitions 

occurring on the phase boundaries. 

 

We consider the assumptions of [5, 6] and neglect collisions between unipolarly charged droplets and bubbles. 

 

We then require the time and space distribution of iv , rav , a , n , i , 12j , 21j , iT , T , i , iP , P , E ,  , 

1e , and ej  in the regions Ω' and Ω". 

 

We calculate the distributions of these parameters for the region Ω' until the process reaches a steady state, 

where 
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and for the region Ω", in addition, until thermodynamic equilibrium is reached between the phases 

 

2 ' = E2   or  VEV   .                                                               (2) 

 

Within the concepts of [3, 4, 6-8] we represent the problem by the system of equations: 
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Equation (3) reflects conservation of mass for each phase and conservation of the volume concentration of 

bubbles and droplets in the dispersed phase, where 1, 21
0   iii , and 34 3

2 na  . Here and 

below, the upper sign (+ or -) is taken for the phase 1i , and the lower for the phase 2i , unless otherwise 

noted. Mass exchange intensity in the region Ω' is defined by the diffusion equation within the dispersed particle 
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which can be solved jointly with the first expressions of Eqs. (14) and (15). In the region Ω" the mass exchange 

intensity is determined by the criterial equation of mass liberation from the phase boundary into the carrier phase 

[7]: 
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which is solved jointly with the second equations of Eqs. (14) and (15). 

 

Equation (4) describes radial motion of the phase boundary of a dispersed particle, pulsations of which are 

defined by the generalized Rayleigh-Lamb equation (5). 

 

The hydrodynamic state of each phase is defined by Navier-Stokes equation (6), where 
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Equation (18) is a reduced viscous stress tensor, where the external deformation rate tensor is described by Eq. 

(19). Equations (20)-(22) describe generalized interphase pressure and force, as well as electrical force density 

within the phases. Equations for the forces written in Eq. (21) were given in [6]; their relative values can be 

estimated from the criterion 
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For L << 1 (Re << 1), mF << BF << F and we may limit ourselves to the viscous friction force, while for L>> 1 

(Re << 1), mF >> BF >> F  and we consider only "combined mass" force. 

 

The volume charge density Pel appearing in Eq. (22) has a Boltzmann distribution, distorted by the presence of 

excess charge of one sign 
in  from ionized gas flows 
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where in the region Ω',    
0101 'II nn 

, and in the region Ω",    
0101 "II nn 

. Here  
01In  defines charge 

diffusion from the dispersed phase volume into the carrier phase volume. If 0
In , the kinetics of dispersed 

phase particle charging are defined by the expression 
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process. For low conductivities 1e  and 2e  and 0
In , the dispersed phase charging kinetics are defined by 

[6] 
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For 0rot E , the relationship between electric field intensity and potential is determined by Eq. (7), while they 

themselves are found with Poisson equation (8). 

 

The transport current density in Eq. (9) is composed of the mixture conductivity current Ee , the convection 

current 


2

1i
ei iv , and the displacement current   t E0 . In the nonsteady case the equation of continuity of 

the total current has the form of Eq. (10). 

 

The energy equations for the system include Eq. (11) for the kinetic energy 1vk  of fine-scale motion produced by 

noncoincidence in phase velocities, while Eqs. (12) and (13) are written for each phase, including the σ-phase, 

where the additional term is 
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The coefficients Sti can be calculated from the criterial equation of dispersed particle heat liberation into the 

surrounding medium [7] and energy [Eq. (15)]: 

 

 
ar

t

p

t
r

T

TT

c
vv

a

a 


























































 2

2

2
2

33.0

1

1155.0
21

1

0
11

1 ;
2

46.02
2 











  .                      (28) 

 

The sign before the term 24* ar   in Eq. (13) is positive for the region Ω" and negative for Ω'. The intensity of 

mass and heat exchange is determined by Eqs. (14)-(17). 

 

System (3)-(15) is completed by dependences of the physical properties of the phases on their state parameters. It 

should be noted that for greater precision it is necessary to consider the distribution of particles over size, 

although this complicates description of this class of phenomena even more. 

 

The conditions required for uniqueness may vary depending on the concrete problem considered. For example, 

as initial conditions we specify thermodynamic and hydrostatic equilibrium of the media in the absence of a 

dispersed phase and electric field. The boundary conditions include those at the electrodes - the attachment 

condition, wall temperature, and electrical potential (in addition, on the lower electrode we specify specific flow 

rate, temperature, pressure, concentrations of the vapor-gas flow ions and bubbling liquid, and the diameter of 

the perforations through which the flow is supplied); on the free liquid surface we have conditions for the change 

in aggregate state of the phases, including the function   for the dispersed phase in the last expression of Eq. 

(3), discontinuities in phase velocity and volume content, as well as refraction conditions for the electric field 

intensity and thermodynamic parameters; on the phase boundaries we have boundary conditions of the fourth 

sort, attachment conditions, and values of excess charge surface density; on the remaining boundaries we have 

attachment conditions and boundary conditions of the first sort. 

 

 

 

3. CONCLUSION 

 

The high efficiency of electric field action on gas-liquid systems has stimulated everincreasing interest of 

researchers and practicians in the problem of heat mass transport under electrical convection conditions; no less 
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important are the advantages of the latter over natural and, often, other forms of forced convection, its 

applicability under conditions of weightlessness, the low energy and metal mass requirements of the 

technologies, and its ecological nature. 

 

NOTATION 

 

v  (or v ), rav , and G  - linear, radial, and reduced velocity, [m/s]; T  - temperature, [K];   - density, [kg/m
3
] or 

relative  mass  concentration; In  and n  - volume density of ions and numerical particle concentration, [m
-3

]; 

e  - space charge density, [C/m
3
]; a  - particle radius, [m]; i  - volume content of phase i; 12j  and 21j  - phase 

transition intensity, [kg/(m
2.
s)]; P  - pressure, [Pa]; E (or E ) and  , electric field intensity, [V/m] and 

potential, [V]; ej  (or ej ) - transport current density, [A/m
2
];   - function which considers processes of 

breakup, agglomeration, efflux and influx of particles, [(m
3.
s)

-1
]; t  - time, [s]; D  - diffusion coefficient, [m

2
/s]; 

  - liquid   surface   tension,   [N/m];     - dynamic   viscosity   coefficient,  [Pa.s];  kl  - Kronecker  delta; 

*x  - generalized coordinate, [m] or [rad]; BΔPωmμ F,F,F,F,F  - interphase viscous friction force, 

"combined mass" force, force produced by velocity gradient in carrier phase, excess pressure head force for 

accelerated motion of carrier force, and Basset force, [N];   and  , thermal coefficients of pressure and 

volume expansion, [K
-1

];   and t  - thermal conductivity, [W/(m
.
K)], and heat liberation, [W/(m

2.
K)], 

coefficients; pc  - isobaric specific heat, [J/(kg
.
K)]; f  and k  - energy dissipation coefficients for translational 

fine-scale motion in boundary layer and Stokes quasistationary flow over particle; 
*r  - heat of phase transition, 

[J/kg]; r  - spherical coordinate, [m]; g  - acceleration of gravity, [m/s
2
]; St  and Re  - Struchal and Reynolds 

numbers;   - relative dielectric permittivity; 0  - electrical constant, [F/m]; Iq  excess charge, [C]; Ib  - ion 

mobility, [m
2
/(V

.
s)]; k  - Boltzmann's constant, [J/K]; *t ,   and 0t  - characteristic time for change in velocity 

of sphere motion, electrical relaxation time, and characteristic time for change in field induction, [s]; Nu, Ar, K, 

lPr  similarity criteria used in [2] for processing of data on heat liberation under bubbling conditions; Are - 

analog  of  Archimedes  number  in  electrical  field.  Indices: ' and ",  parameters  in  regions  Ω'  and  Ω"; k and 

l  -tensor components; i 1, 2,   - parameters of carrier, dispersed, and "sigma" [4] phases; s , 0, v  and a, 

parameters  at  free  liquid  surface,  beginning  of  the  process,  vapor component, and particle surface; E  and 

ef  - equilibrium and effective values. 
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