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CHARACTERIZATIONS OF FUNCTIONS WITH
STRONGLY o-CLOSED GRAPHS

M. CALDAS, S. JAFARI, R. M. LATIF AND T. NOIRI

Abstract. In this paper, we study some properties of functions
with strongly a-closed graphs by utilizing a-open sets and the a-
closure operator.

1. INTRODUCTION AND PRELIMINARIES

The notion of a-open sets was introduced by O. Njastad [20] in
1965. Since then it has been widely investigated in the literature
(see, [1], 2, [3], 9], [10], [11], [12], [15], [16], [17], 18], [19], [21],
23], [24], [26], [27], [28]). Functions with strongly closed graphs were
introduced by Herrington and long [7] to characterize H-closed spaces.
Properties of such functions were further investigated by Long and
Herrington [14] and Noiri [23]. In this paper, we study some properties
of functions with strongly a-closed graphs by utilizing a-open sets and
the a-closure operator. Throughout this paper, by (X, 7) and (Y, 0)
(or X and Y') we always mean topological spaces. Let A be a subset
of X. We denote the interior, the closure and the complement of a set
A by Int(A), Cl(A) and X\A or A€ respectively. A subset A of a
topological space (X, 7) is called a-open [20] (resp. semi-open [13]) if
A C Int(Cl(Int(A))) (resp. A C Cl(Int(A))).
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The complement of an a-open (resp. semi-open) set is called
a-closed (resp. semi-closed [5]). By aO(X,7) (resp. SO(X,T7),
aC(X, 7)), we denote the family of all a-open (resp. semi-open, a-
closed) sets of X. We set aO(X,z) = {U | x € U € aO(X,7)},
OX,z)={U |zeUecr}and aC(X,z) ={U |z € U € aC(X,7)}.
The intersection of all a-closed (resp. semi-closed) sets containing
A is called the a-closure (resp. semi-closure [4]) of A, denoted by
aCl(A) (resp. sCI(A)). A set U in a topological space (X, 7) is an
a-neighborhood [16] of a point x if U contains an a-open set V' such
that z € V.

Lemma 1.1. The intersection of an arbitrary collection of a-closed
sets in (X, T) is a-closed

Corollary 1.2. [15]. Let A be a subset of X. Then, x € aCIl(A) if
and only if for any a-open set U in X containing x , A(\U # ¢.

Lemma 1.3. Let A and B be subsets of a space (X,T), then the
following properties hold:

(1) A C aCl(A).

(2) If A C B, then aCIl(A) C aCI(B).

(8) aCl(A) is a-closed.

(4) aCl(aCl(A)) = aCI(A).

(5) A is a-closed if and only A = aCl(A).

Corollary 1.4. Let A; (i € 1) be a subset of a space (X, T), then the
following properties hold:

(1) aCl(N{A; i e l}) Ccn{aCl(4;) i e I}.

(2) aCl(U{A; :iel})DU{aCl(A;): i€}

Definition 1. A topological space (X, T) is said to be:

(1) o-Ty [17], if for any pair of distinct points x and y in X, there
exist an a-open set U in X containing x but not y and an a-open set
V in X containing y but not x.

(2) a-Ty [15], if for any pair of distinct points x and y in X, there
exist U € aO(X,x) and V € aO(X,y) such that UNV = 0.

Lemma 1.5. A topological space (X, T) is a-Ty if and only if it is T5.

Proof. This is shown in [27] and a simple proof is given in [[24],
Corollary 4.7].

Definition 2. A function f: X — Y is said to be
(1) a-continuous [19] if f~(V) € aO(X) for each open set V of Y ;
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(2) weakly a-continuous [23]if for each x € X and each V €
O(Y, f(x)), there exists U € aO(X, z) such that f(U) C CI(V).

Lemma 1.6. Let (X, 1) be a topological space. Then aCl(V) = CI(V)
for each V€ SO(X).

Proof. For any V € SO(X), aCl(V) = V U Cl(Int(Cl(V))) =
VUCI(Int(V)) =V UCHV)=ClV).

Lemma 1.7. A function f : X — Y is weakly a-continuous if and
only if for each x € X and each V € aO(Y, f(x)), there exists U €
aO(X, z) such that f(U) C aCIl(V).

Proof. Necessity. Let z € X and V € aO(Y, f(z)). Then
flz) € V. C Int(Cl(Int(V))) and there exists U € aO(X, )
such that f(U) C Cl(Int(Cl(Int(V)))). By Lemma 1.6, we have
Cl(Int(Cl(Int(V)))) = Cl(Int(V)) = Cl(V) = aCIl(V'). Therefore,
f(U) C aCl(V).

Sufficiency. Let x € X and V € O(Y, f(z)). There exists
U € aO(X,z) such that f(U) C aCl(V). By Lemma 1.6, we ob-
tain f(U) C ClU(V).

2. STRONGLY «-CLOSED GRAPHS

If f: (X,7) — (Y,0) is any function, then the subset G(f) =
{(z, f(z)) : * € X} of the product space (X x Y 7 X o) is called
the graph of f [8].

Definition 3. A function f : X — Y has a strongly a-closed (resp.
strongly closed [7]) graph if for each (x,y) € (X xY)\ G(f), there
exist U € aO(X,z) (resp. U € O(X,x)) and V € O(Y,y) such that
(U x CUV))NG(f) = 0.

Lemma 2.1. For a function f: (X,7) — (Y,0), the following prop-
erties are equivalent:

(1) G(f) is strongly a-closed;

(2) For each (x,y) € (X xY)\ G(f), there exist U € aO(X,z) and
V e O(Y,y) such that f(U)NCUV) =0;

(8) For each (x,y) € (X x Y)\ G(f), there exist U € aO(X,z) and
V € aO(Y,y) such that (U x aCl(V))NG(f) = 0;

(4) For each (x,y) € (X xY)\ G(f), there exist U € aO(X,z) and
V € aO(Y,y) such that f(U)NaCl(V) = 0.
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Proof. 1t is obvious that (1) < (2) and (3) < (4).
(1) = (3): Since 7 C aO(X) C SO(X), by Lemma 1.6 the proof is
obvious.
(3) = (1): Let (z,y) € (X xY)\ G(f). There exist U € aO(X,x)
and V € aO(Y,y) such that (U x a«Cl(V)) N G(f) = 0. Put G =
Int(Cl(Int(V))). Theny € V. C G € o and CI(G) = Cl(V) =
aCl(V). Therefore, we obtain (U x CI(G))NG(f) = (U x a«Cl(V)) N
G(f) = (0. This shows that G(f) is strongly a-closed.

Theorem 2.2. If f: X — Y s a function with the strongly a-closed
graph, then for each v € X, f(z) = {aCIl(f(U)) : U € aO(X,x)}.

Proof. Suppose the theorem is false. Then there exists a y # f(x)
such that y € N{aCI(f(U)) : U € aO(X,x)}. This implies that y €
aCl(f(U)) for every U € aO(X,x). So VN f(U) # O for every
V € aO(Y,y). This, in its turn, indicates that aCI(V) N f(U) D
V' N f(U) # O which contradicts the hypothesis that f is a function
with strongly a-closed graph. Hence the theorem holds.

Theorem 2.3. If f : X — Y is a-continuous and Y is Ty, then G(f)
1s strongly a-closed.

Proof. Let (z,y) € (X x Y)\G(f). The Ty-ness of Y gives the
existence of a set V € O(Y,y) such that f(x) ¢ CI(V). Now
Y\CIU(V) € O(Y, f(z)). Therefore, by the a-continuity of f there
exists U € aO(X,z) such that f(U) C Y\CI(V). Consequently,
fFU)NCUV) = 0 and therefore G(f) is strongly a-closed.

It is shown in ([14], Theorem 3) and ([22], Theorem 2) that if f :
X — Y is surjective and G(f) is strongly closed, then Y is Hausdorff.
The following theorem is a slight improvement of this result.

Theorem 2.4. If f : X — Y is surjective and has a strongly a-closed
graph G(f), then Y is both Ty and o-T.

Proof. Let y1,y2 (11 # y2) € Y. The surjectivity of f givesax; € X
such that f(z;) = y1. Now (z1,72) € (X x Y)\G(f). The strongly
a-closedness of G(f) provides U € aO(X, 1), V € O(Y, y2) such that
F(U)NCUV) = 0, whence one infers that y; ¢ CI(V). This means
that there exists W € O(Y, ;) such that W NV = . So, Y is T» and
Th-ness always guarantees a-Ti-ness. Hence Y is a-T;.

Theorem 2.5. A space X is Ty if and only if the identity function
id : X — X has a strongly a-closed graph G(id).
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Proof. Necessity. Let X be T5. Since the identity function ¢d : X —
X is continuous, it follows from Theorem 2.4 that G(id) is strongly
a-closed.

Sufficiency. Let G(id) be a strongly a-closed graph. Then the sur-
jectivity of id and strong a-closedness of G(id) together imply, by
Theorem 2.4, that X is T5.

Theorem 2.6. If f : X — Y s an injection and G(f) is strongly
a-closed, then X is a-T7.

Proof. Since f is injective, for any pair of distinct points x1, 2o €
X, f( z1) # f(xa). Then (x1, f(x2)) € (X x Y)\G(f). Since G(f)
is strongly a-closed, there exist U € aO(X,x1), V € O(Y, f(z2))
such that f(U) N CIl(V) = 0. Therefore x5 ¢ U. Pursuing the same
reasoning as before we obtain a set W € aO(X, ) such that x; ¢ W.
Hence Y is o-T;.

Theorem 2.7. If f: X — Y is a bijection with the strongly a-closed
graph, then both X andY are a-T7.

Proof. The proof is an immediate consequence of Theorems 2.4 and
2.6.

Theorem 2.8. If a function f : X — Y s a weakly a-continuous
injection with the strongly a-closed graph G(f), then X is Ts.

Proof. Since f is injective, for any pair of distinct points xq, x5 € X,
f(z1) # f(x2). Therefore (z1, f(x2)) € (X x Y)\G(f). Since G(f) is
strongly a-closed, there exist U € aO(X,x;1), V € O(Y, f(z2)) such
that f(U) N CIl(V) = 0; hence U N f~YC1(V)) = (. Consequently,
F~HC1(V)) c X\U. Since f is weakly o continuous, there exists W €
aO(X, z9) such that f(W) C CI(V). From this and the foregoing it
follows that W C f~1(Cl(V)) € X\U; hence W NU = . Thus for
the pair of distinct points z7,2e € X, there exist U € aO(X,x1),
W € aO(X, x3) such that WNU = ). By Lemma 1.5, this guarantees
the T)-ness of X.

Corollary 2.9. If a function f : X — Y is an a-continuous injection
with the strongly a-closed graph, then X is T,.

Proof. The proof follows from Theorem 2.9 and the fact that every
a-continuous is weakly a-continuous.
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Remark 2.10. If f is not Ty in Corollary 2.9, then even a-continuity
need not imply a strongly a-closed graph. For example, let X be a
topological space containing more than one point with the indiscrete
topology and let id : X — X the identity function. Then id is cer-
tainly a-continuous, but the graph of id is not strongly a-closed because
X x X has the indiscrete topology and hence the graph of id being the
diagonal set, which is different from the whole space, is not strongly
a-closed.

Theorem 2.11. If f : X — Y is a weakly a-continuous bijection with
the strongly a-closed graph, then both X and Y are Ts.

Proof. The proof follows from Theorems 2.8 and 2.4.

Lemma 2.12. Every clopen subset of a quasi H-closed space X is
quasit H-closed relative to X .

Proof. Let B be any clopen subset of a quasi H-closed space X.
Let {O, : A € Q} be any cover of B by open sets in X. Then the
family F' = {O, : A € Q} U{X\B} is a cover of X by open sets in
X. Because of quasi H-closedness of X there exists a finite subfamily
F*={0,, : 1 <1 <n}U{X\B} of F whose closure covers X. So,
because of clopenness of B we now infer that the family {CI(O,,) :
1 <i < n} covers B. Therefore, B is quasi H-closed relative to X.

Theorem 2.13. If Y is a quasi H-closed extremally disconnected
space, then a function f : X — Y with the strongly a-closed graph
G(f) is weakly a-continuous.

Proof. Let x € X and V € O(Y, f(x)). Take any y € Y\CI(V).
Then (z,y) € (X x Y)\G(f). Now the strong a-closedness of G(f)
induces the existence of Uy(z) € aO(X,x), V, € O(Y,y) such that
F(U () N CUV,) = 0....(%).

Now extremal disconnectedness of Y induces the clopenness of C1(V)
and hence Y\CI(V) is also clopen. Now {V, : y € Y\CI(V)} is a
cover of Y\CI(V') by open sets in Y. By Lemma 2.12, there exists a

finite subfamily {V}, : 1 < i < n} such that Y\CIU(V) C | CU(V,,).
i=1

Let W = (N Uy (z), where Uy, (x) are a-open sets in X satisfying
=1

7

(). Also, W € aO(X, z). Now f(W) N (Y\CI(V)) C f[‘(Z]lUi(x)] "
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(U C1V,) € U(FIU @INCUV, ) = 0. by (). Therefore, f(1V)

Cl(V) and this indicates that f is weakly a-continuous.

Noiri [22] showed that if G(f) is strongly closed then f has the
following property:
(P) For every set B which is quasi H-closed relative to Y, f~'(B) is
a closed set of X.

Analogously, we have the following theorem.

Theorem 2.14. If a function f : X — Y has a strongly a-closed
graph G(f), then f enjoys the following property:

(P*) For every set F which is quasi H-closed relative to'Y, f~1(F)
s a-closed in X.

Pmof Let f~'(F) be not a-closed in X. Then there exists z €
aCl(f~HF)\f 1 (F).Lety € F. Then (z,y) € (X xY)\G(f). Strong
a-closedness of G(f) gives the existence of U,(z) € aO(X,z) and
V, € O(Y,y) such that f(U,(x)) NCI(V,) =0....(*).

Clearly {V, : y € F'} is a cover of F' by open sets in Y. Since F' is
quasi H-closed relative to Y, there exist a finite number of open sets
Vs Vigs sV, in Y such that F' C | CU(V,).

i=1

Let U = ﬁ Uy, (), where Uy, (z) are the a-open sets in X satisfying
i=1
(*). AlsoU € aO(X,z). Now f(U)NF C f[ Uy, (x)INn(U Cl(V,,)) C
i=1 i=1

U (f[U.(2)]NCI(V,,)) = 0. But since z € aCl(f(F)), UNf~\(F) £
=1
(; hence f(U)NF # (. This is a contradiction. Hence the result holds.

3. ADDITIONAL PROPERTIES

Lemma 3.1. For a topological space X, the following properties are
equivalent:

(1) X is Urysohn;

(2) For every pair of distinct points x,y € X, there exist U €
aO(X,z), V € aO(X,y) such that CL({U)NCUV) = 0;

(3) For every pair of distinct points x,y € X, there exist U €
aO(X, ), V € aO(X,y) such that aCl({U) N aCl(V) = 0.
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Proof. (1) = (2): This is obvious.
(2) = (3): Since aCl(U) = CI(U) for each U € a(X) by Lemma 1.6,
this is obvious.
(3) = (1): Suppose that (3) holds. For every pair of distinct
points x, y, there exist U € aO(X,z), V € aO(X,y) such that
aCl(U) N aCl(V) = 0. Now, put G = Int(Cl(Int(U))) and
H = Int(Cl(Int(V))), then G and H are open sets containing x and
y, respectively. Furthermore, CI(G) N CI(H) = CI({U)NClI(V) =
aCl(U) N aCl(V) = . Therefore, X is Urysohn.

Recall, that a function f : X — Y is said to be a-open [19] if
f(A) € aO(Y) for all open set A of Y.

Lemma 3.2. Let a bijection f : X — Y be a-open. Then for any
closed set B of X, f(B) € aC(Y).

Urysohn spaces remain invariant under certain bijective function as
is shown in the next theorem.

Theorem 3.3. If a bijection f : X — Y is a-open and X is Urysohn,
then Y is Urysohn.

Proof. Let y1,yo € Y and y; # yo. Since f is bijective, f~1(y1),
fHy2) € X and f~'(y1) # f'(y2). The Urysohn property of X gives
the existence of sets U € O(X, f~Y(y1)), V € O(X, f~'(y)) such that
ClU)NCUV) =0. As CI(U) is a closed set in X, then by the bijec-
tivity and a-openness of f together then indicate, by Lemma 3.2 that
f(CLU)) € aC(Y). Therefore by the injectivity of f, a«CI(f(U)) N
aCl(f(V)) C f(ClU)) N fF(CLV)) = f(CU)NCI(V)) = 0. Thus
a-openness of f gives the existence of two sets f(U) € aO(Y,y),
f(V) € aO(Y, yo), with aCI(f(U)) NaCl(f(V)) = 0. By Lemma 3.1,
Y is Urysohn.

Theorem 3.4. If f : X — Y s weakly a-continuous and Y is
Urysohn, then G(f) is strongly a-closed.

Proof. Let (z,y) € (X x Y)\G(f). Then y # f(x). Since Y is
Urysohn, there exist V € O(Y,y), W € O(Y, f(z)) such that CI(V) N
Cl(W) = 0. Since f is weakly a-continuous, there exists U € aO(X, z)
such that f(U) C Cl(W). This, therefore, implies that f(U)NCI(V) =
. So by Lemma 2.2, G(f) is strongly a-closed.

Theorem 3.5. Let X be a Urysohn space. Then any a-open bijection
f: X —Y has a strongly a-closed graph.
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Proof. Let (z,y) € (X XxY)\G(f). Then y # f(z) and y # f~(y),
where f~1(y) is a singleton. Since X is Urysohn, there exist open sets
U, and U, such that z € U,, f~!(y) € U, and Cl(U,) N CIL(U,) = 0.
Since f is a-open, f(U,) € aO(Y, f(z)), f(U,) € aO(Y,y) and f(U,)N
aCI(f(U,)) C aCl(F(U,)NaCI(f(U,) C F(CUU)NF(CIU,) = 0.
Therefore, by Lemma 2.2, G(f) is strongly a-closed.
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