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CHARACTERIZATIONS OF FUNCTIONS WITH
STRONGLY α-CLOSED GRAPHS

M. CALDAS, S. JAFARI, R. M. LATIF AND T. NOIRI

Abstract. In this paper, we study some properties of functions
with strongly α-closed graphs by utilizing α-open sets and the α-
closure operator.

1. Introduction and preliminaries

The notion of α-open sets was introduced by O. Nj̊astad [20] in
1965. Since then it has been widely investigated in the literature
(see, [1], [2], [3], [9], [10], [11], [12], [15], [16], [17], [18], [19], [21],
[23], [24], [26], [27], [28]). Functions with strongly closed graphs were
introduced by Herrington and long [7] to characterize H-closed spaces.
Properties of such functions were further investigated by Long and
Herrington [14] and Noiri [23]. In this paper, we study some properties
of functions with strongly α-closed graphs by utilizing α-open sets and
the α-closure operator. Throughout this paper, by (X, τ) and (Y, σ)
(or X and Y ) we always mean topological spaces. Let A be a subset
of X. We denote the interior, the closure and the complement of a set
A by Int(A), Cl(A) and X\A or Ac respectively. A subset A of a
topological space (X, τ) is called α-open [20] (resp. semi-open [13]) if
A ⊆ Int(Cl(Int(A))) (resp. A ⊆ Cl(Int(A))).
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The complement of an α-open (resp. semi-open) set is called
α-closed (resp. semi-closed [5]). By αO(X, τ) (resp. SO(X, τ),
αC(X, τ)), we denote the family of all α-open (resp. semi-open, α-
closed) sets of X. We set αO(X, x) = {U | x ∈ U ∈ αO(X, τ)},
O(X, x) = {U | x ∈ U ∈ τ} and αC(X, x) = {U | x ∈ U ∈ αC(X, τ)}.
The intersection of all α-closed (resp. semi-closed) sets containing
A is called the α-closure (resp. semi-closure [4]) of A, denoted by
αCl(A) (resp. sCl(A)). A set U in a topological space (X, τ) is an
α-neighborhood [16] of a point x if U contains an α-open set V such
that x ∈ V .

Lemma 1.1. The intersection of an arbitrary collection of α-closed
sets in (X, τ) is α-closed

Corollary 1.2. [15]. Let A be a subset of X. Then, x ∈ αCl(A) if
and only if for any α-open set U in X containing x , A

⋂
U 6= φ.

Lemma 1.3. Let A and B be subsets of a space (X, τ), then the
following properties hold:
(1) A ⊂ αCl(A).
(2) If A ⊂ B, then αCl(A) ⊂ αCl(B).
(3) αCl(A) is α-closed.
(4) αCl(αCl(A)) = αCl(A).
(5) A is α-closed if and only A = αCl(A).

Corollary 1.4. Let Ai (i ∈ I) be a subset of a space (X, τ), then the
following properties hold:
(1) αCl(∩{Ai : i ∈ I}) ⊂ ∩{αCl(Ai) : i ∈ I}.
(2) αCl(∪{Ai : i ∈ I}) ⊃ ∪{αCl(Ai) : i ∈ I}.
Definition 1. A topological space (X, τ) is said to be:
(1) α-T1 [17], if for any pair of distinct points x and y in X, there
exist an α-open set U in X containing x but not y and an α-open set
V in X containing y but not x.
(2) α-T2 [15], if for any pair of distinct points x and y in X, there
exist U ∈ αO(X, x) and V ∈ αO(X, y) such that U ∩ V = ∅.
Lemma 1.5. A topological space (X, τ) is α-T2 if and only if it is T2.

Proof. This is shown in [27] and a simple proof is given in [[24],
Corollary 4.7].

Definition 2. A function f : X → Y is said to be
(1) α-continuous [19] if f−1(V ) ∈ αO(X) for each open set V of Y ;



FUNCTIONS WITH STRONGLY α-CLOSED GRAPHS 51

(2) weakly α-continuous [23]if for each x ∈ X and each V ∈
O(Y, f(x)), there exists U ∈ αO(X, x) such that f(U) ⊂ Cl(V ).

Lemma 1.6. Let (X, τ) be a topological space. Then αCl(V ) = Cl(V )
for each V ∈ SO(X).

Proof. For any V ∈ SO(X), αCl(V ) = V ∪ Cl(Int(Cl(V ))) =
V ∪ Cl(Int(V )) = V ∪ Cl(V ) = Cl(V ).

Lemma 1.7. A function f : X → Y is weakly α-continuous if and
only if for each x ∈ X and each V ∈ αO(Y, f(x)), there exists U ∈
αO(X, x) such that f(U) ⊂ αCl(V ).

Proof. Necessity. Let x ∈ X and V ∈ αO(Y, f(x)). Then
f(x) ∈ V ⊂ Int(Cl(Int(V ))) and there exists U ∈ αO(X, x)
such that f(U) ⊂ Cl(Int(Cl(Int(V )))). By Lemma 1.6, we have
Cl(Int(Cl(Int(V )))) = Cl(Int(V )) = Cl(V ) = αCl(V ). Therefore,
f(U) ⊂ αCl(V ).

Sufficiency. Let x ∈ X and V ∈ O(Y, f(x)). There exists
U ∈ αO(X, x) such that f(U) ⊂ αCl(V ). By Lemma 1.6, we ob-
tain f(U) ⊂ Cl(V ).

2. Strongly α-closed graphs

If f : (X, τ) → (Y, σ) is any function, then the subset G(f) =
{(x, f(x)) : x ∈ X} of the product space (X × Y, τ × σ) is called
the graph of f [8].
Definition 3. A function f : X → Y has a strongly α-closed (resp.
strongly closed [7]) graph if for each (x, y) ∈ (X × Y ) \ G(f), there
exist U ∈ αO(X, x) (resp. U ∈ O(X, x)) and V ∈ O(Y, y) such that
(U × Cl(V )) ∩G(f) = ∅.
Lemma 2.1. For a function f : (X, τ) → (Y, σ), the following prop-
erties are equivalent:
(1) G(f) is strongly α-closed;
(2) For each (x, y) ∈ (X × Y ) \ G(f), there exist U ∈ αO(X, x) and
V ∈ O(Y, y) such that f(U) ∩ Cl(V ) = ∅;
(3) For each (x, y) ∈ (X × Y ) \ G(f), there exist U ∈ αO(X, x) and
V ∈ αO(Y, y) such that (U × αCl(V )) ∩G(f) = ∅;
(4) For each (x, y) ∈ (X × Y ) \ G(f), there exist U ∈ αO(X, x) and
V ∈ αO(Y, y) such that f(U) ∩ αCl(V ) = ∅.
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Proof. It is obvious that (1) ⇔ (2) and (3) ⇔ (4).
(1) ⇒ (3): Since τ ⊂ αO(X) ⊂ SO(X), by Lemma 1.6 the proof is
obvious.
(3) ⇒ (1): Let (x, y) ∈ (X × Y ) \ G(f). There exist U ∈ αO(X, x)
and V ∈ αO(Y, y) such that (U × αCl(V )) ∩ G(f) = ∅. Put G =
Int(Cl(Int(V ))). Then y ∈ V ⊂ G ∈ σ and Cl(G) = Cl(V ) =
αCl(V ). Therefore, we obtain (U ×Cl(G))∩G(f) = (U ×αCl(V ))∩
G(f) = ∅. This shows that G(f) is strongly α-closed.

Theorem 2.2. If f : X → Y is a function with the strongly α-closed
graph, then for each x ∈ X, f(x) = ∩{αCl(f(U)) : U ∈ αO(X, x)}.

Proof. Suppose the theorem is false. Then there exists a y 6= f(x)
such that y ∈ ∩{αCl(f(U)) : U ∈ αO(X, x)}. This implies that y ∈
αCl(f(U)) for every U ∈ αO(X, x). So V ∩ f(U) 6= ∅ for every
V ∈ αO(Y, y). This, in its turn, indicates that αCl(V ) ∩ f(U) ⊃
V ∩ f(U) 6= ∅ which contradicts the hypothesis that f is a function
with strongly α-closed graph. Hence the theorem holds.

Theorem 2.3. If f : X → Y is α-continuous and Y is T2, then G(f)
is strongly α-closed.

Proof. Let (x, y) ∈ (X × Y )\G(f). The T2-ness of Y gives the
existence of a set V ∈ O(Y, y) such that f(x) /∈ Cl(V ). Now
Y \Cl(V ) ∈ O(Y, f(x)). Therefore, by the α-continuity of f there
exists U ∈ αO(X, x) such that f(U) ⊂ Y \Cl(V ). Consequently,
f(U) ∩ Cl(V ) = ∅ and therefore G(f) is strongly α-closed.

It is shown in ([14], Theorem 3) and ([22], Theorem 2) that if f :
X → Y is surjective and G(f) is strongly closed, then Y is Hausdorff.
The following theorem is a slight improvement of this result.

Theorem 2.4. If f : X → Y is surjective and has a strongly α-closed
graph G(f), then Y is both T2 and α-T1.

Proof. Let y1, y2 (y1 6= y2) ∈ Y . The surjectivity of f gives a x1 ∈ X
such that f(x1) = y1. Now (x1, y2) ∈ (X × Y )\G(f). The strongly
α-closedness of G(f) provides U ∈ αO(X, x1), V ∈ O(Y, y2) such that
f(U) ∩ Cl(V ) = ∅, whence one infers that y1 /∈ Cl(V ). This means
that there exists W ∈ O(Y, y1) such that W ∩ V = ∅. So, Y is T2 and
T2-ness always guarantees α-T1-ness. Hence Y is α-T1.

Theorem 2.5. A space X is T2 if and only if the identity function
id : X → X has a strongly α-closed graph G(id).
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Proof. Necessity. Let X be T2. Since the identity function id : X →
X is continuous, it follows from Theorem 2.4 that G(id) is strongly
α-closed.
Sufficiency. Let G(id) be a strongly α-closed graph. Then the sur-
jectivity of id and strong α-closedness of G(id) together imply, by
Theorem 2.4, that X is T2.

Theorem 2.6. If f : X → Y is an injection and G(f) is strongly
α-closed, then X is α-T1.

Proof. Since f is injective, for any pair of distinct points x1, x2 ∈
X, f( x1) 6= f(x2). Then (x1, f(x2)) ∈ (X × Y )\G(f). Since G(f)
is strongly α-closed, there exist U ∈ αO(X, x1), V ∈ O(Y, f(x2))
such that f(U) ∩ Cl(V ) = ∅. Therefore x2 /∈ U . Pursuing the same
reasoning as before we obtain a set W ∈ αO(X, x2) such that x1 /∈ W .
Hence Y is α-T1.

Theorem 2.7. If f : X → Y is a bijection with the strongly α-closed
graph, then both X and Y are α-T1.

Proof. The proof is an immediate consequence of Theorems 2.4 and
2.6.

Theorem 2.8. If a function f : X → Y is a weakly α-continuous
injection with the strongly α-closed graph G(f), then X is T2.

Proof. Since f is injective, for any pair of distinct points x1, x2 ∈ X,
f(x1) 6= f(x2). Therefore (x1, f(x2)) ∈ (X × Y )\G(f). Since G(f) is
strongly α-closed, there exist U ∈ αO(X, x1), V ∈ O(Y, f(x2)) such
that f(U) ∩ Cl(V ) = ∅; hence U ∩ f−1(Cl(V )) = ∅. Consequently,
f−1(Cl(V )) ⊂ X\U. Since f is weakly α continuous, there exists W ∈
αO(X, x2) such that f(W ) ⊂ Cl(V ). From this and the foregoing it
follows that W ⊂ f−1(Cl(V )) ⊂ X\U ; hence W ∩ U = ∅. Thus for
the pair of distinct points x1, x2 ∈ X, there exist U ∈ αO(X, x1),
W ∈ αO(X, x2) such that W ∩U = ∅. By Lemma 1.5, this guarantees
the T2-ness of X.

Corollary 2.9. If a function f : X → Y is an α-continuous injection
with the strongly α-closed graph, then X is T2.

Proof. The proof follows from Theorem 2.9 and the fact that every
α-continuous is weakly α-continuous.
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Remark 2.10. If f is not T2 in Corollary 2.9, then even α-continuity
need not imply a strongly α-closed graph. For example, let X be a
topological space containing more than one point with the indiscrete
topology and let id : X → X the identity function. Then id is cer-
tainly α-continuous, but the graph of id is not strongly α-closed because
X ×X has the indiscrete topology and hence the graph of id being the
diagonal set, which is different from the whole space, is not strongly
α-closed.

Theorem 2.11. If f : X → Y is a weakly α-continuous bijection with
the strongly α-closed graph, then both X and Y are T2.

Proof. The proof follows from Theorems 2.8 and 2.4.

Lemma 2.12. Every clopen subset of a quasi H-closed space X is
quasi H-closed relative to X.

Proof. Let B be any clopen subset of a quasi H-closed space X.
Let {Oλ : λ ∈ Ω} be any cover of B by open sets in X. Then the
family F = {Oλ : λ ∈ Ω} ∪ {X\B} is a cover of X by open sets in
X. Because of quasi H-closedness of X there exists a finite subfamily
F ∗ = {Oλi

: 1 ≤ i ≤ n} ∪ {X\B} of F whose closure covers X. So,
because of clopenness of B we now infer that the family {Cl(Oλi

) :
1 ≤ i ≤ n} covers B. Therefore, B is quasi H-closed relative to X.

Theorem 2.13. If Y is a quasi H-closed extremally disconnected
space, then a function f : X → Y with the strongly α-closed graph
G(f) is weakly α-continuous.

Proof. Let x ∈ X and V ∈ O(Y, f(x)). Take any y ∈ Y \Cl(V ).
Then (x, y) ∈ (X × Y )\G(f). Now the strong α-closedness of G(f)
induces the existence of Uy(x) ∈ αO(X, x), Vy ∈ O(Y, y) such that
f(Uy(x)) ∩ Cl(Vy) = ∅....(*).
Now extremal disconnectedness of Y induces the clopenness of Cl(V )
and hence Y \Cl(V ) is also clopen. Now {Vy : y ∈ Y \Cl(V )} is a
cover of Y \Cl(V ) by open sets in Y . By Lemma 2.12, there exists a

finite subfamily {Vyi
: 1 ≤ i ≤ n} such that Y \Cl(V ) ⊂

n⋃
i=1

Cl(Vyi
).

Let W =
n⋂

i=1

Uyi
(x), where Uyi

(x) are α-open sets in X satisfying

(*). Also, W ∈ αO(X, x). Now f(W ) ∩ (Y \Cl(V )) ⊂ f [
n⋂

i=1

Uyi
(x)] ∩
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(
n⋃

i=1

Cl(Vyi
)) ⊂

n⋃
i=1

(f [Uyi
(x)]∩Cl(Vyi

)) = ∅, by (*). Therefore, f(W ) ⊂
Cl(V ) and this indicates that f is weakly α-continuous.

Noiri [22] showed that if G(f) is strongly closed then f has the
following property:
(P ) For every set B which is quasi H–closed relative to Y , f−1(B) is
a closed set of X.

Analogously, we have the following theorem.

Theorem 2.14. If a function f : X → Y has a strongly α-closed
graph G(f), then f enjoys the following property:

(P ∗) For every set F which is quasi H-closed relative to Y , f−1(F )
is α-closed in X.

Proof. Let f−1(F ) be not α-closed in X. Then there exists x ∈
αCl(f−1(F ))\f−1(F ). Let y ∈ F. Then (x, y) ∈ (X×Y )\G(f). Strong
α-closedness of G(f) gives the existence of Uy(x) ∈ αO(X, x) and
Vy ∈ O(Y, y) such that f(Uy(x)) ∩ Cl(Vy) = ∅....(*).
Clearly {Vy : y ∈ F} is a cover of F by open sets in Y . Since F is
quasi H-closed relative to Y , there exist a finite number of open sets

Vy1 , Vy2 , ..., Vyn in Y such that F ⊂
n⋃

i=1

Cl(Vyi
).

Let U =
n⋂

i=1

Uyi
(x), where Uyi

(x) are the α-open sets in X satisfying

(*). Also U ∈ αO(X, x). Now f(U)∩F ⊂ f [
n⋂

i=1

Uyi
(x)]∩(

n⋃
i=1

Cl(Vyi
)) ⊂

n⋃
i=1

(f [Uyi
(x)]∩Cl(Vyi

)) = ∅. But since x ∈ αCl(f−1(F )), U∩f−1(F ) 6=
∅; hence f(U)∩F 6= ∅. This is a contradiction. Hence the result holds.

3. Additional properties

Lemma 3.1. For a topological space X, the following properties are
equivalent:
(1) X is Urysohn;
(2) For every pair of distinct points x, y ∈ X, there exist U ∈
αO(X, x), V ∈ αO(X, y) such that Cl(U) ∩ Cl(V ) = ∅;
(3) For every pair of distinct points x, y ∈ X, there exist U ∈
αO(X, x), V ∈ αO(X, y) such that αCl(U) ∩ αCl(V ) = ∅.
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Proof. (1) ⇒ (2): This is obvious.
(2) ⇒ (3): Since αCl(U) = Cl(U) for each U ∈ α(X) by Lemma 1.6,
this is obvious.
(3) ⇒ (1): Suppose that (3) holds. For every pair of distinct
points x, y, there exist U ∈ αO(X, x), V ∈ αO(X, y) such that
αCl(U) ∩ αCl(V ) = ∅. Now, put G = Int(Cl(Int(U))) and
H = Int(Cl(Int(V ))), then G and H are open sets containing x and
y, respectively. Furthermore, Cl(G) ∩ Cl(H) = Cl(U) ∩ Cl(V ) =
αCl(U) ∩ αCl(V ) = ∅. Therefore, X is Urysohn.

Recall, that a function f : X → Y is said to be α-open [19] if
f(A) ∈ αO(Y ) for all open set A of Y.

Lemma 3.2. Let a bijection f : X → Y be α-open. Then for any
closed set B of X, f(B) ∈ αC(Y ).

Urysohn spaces remain invariant under certain bijective function as
is shown in the next theorem.

Theorem 3.3. If a bijection f : X → Y is α-open and X is Urysohn,
then Y is Urysohn.

Proof. Let y1, y2 ∈ Y and y1 6= y2. Since f is bijective, f−1(y1),
f−1(y2) ∈ X and f−1(y1) 6= f−1(y2). The Urysohn property of X gives
the existence of sets U ∈ O(X, f−1(y1)), V ∈ O(X, f−1(y2)) such that
Cl(U) ∩ Cl(V ) = ∅. As Cl(U) is a closed set in X, then by the bijec-
tivity and α-openness of f together then indicate, by Lemma 3.2 that
f(Cl(U)) ∈ αC(Y ). Therefore by the injectivity of f , αCl(f(U)) ∩
αCl(f(V )) ⊂ f(Cl(U)) ∩ f(Cl(V )) = f(Cl(U) ∩ Cl(V )) = ∅. Thus
α-openness of f gives the existence of two sets f(U) ∈ αO(Y, y1),
f(V ) ∈ αO(Y, y2), with αCl(f(U)) ∩ αCl(f(V )) = ∅. By Lemma 3.1,
Y is Urysohn.

Theorem 3.4. If f : X → Y is weakly α-continuous and Y is
Urysohn, then G(f) is strongly α-closed.

Proof. Let (x, y) ∈ (X × Y )\G(f). Then y 6= f(x). Since Y is
Urysohn, there exist V ∈ O(Y, y), W ∈ O(Y, f(x)) such that Cl(V ) ∩
Cl(W ) = ∅. Since f is weakly α-continuous, there exists U ∈ αO(X, x)
such that f(U) ⊂ Cl(W ). This, therefore, implies that f(U)∩Cl(V ) =
∅. So by Lemma 2.2, G(f) is strongly α-closed.

Theorem 3.5. Let X be a Urysohn space. Then any α-open bijection
f : X → Y has a strongly α-closed graph.
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Proof. Let (x, y) ∈ (X×Y )\G(f). Then y 6= f(x) and y 6= f−1(y),
where f−1(y) is a singleton. Since X is Urysohn, there exist open sets
Ux and Uy such that x ∈ Ux, f−1(y) ∈ Uy and Cl(Ux) ∩ Cl(Uy) = ∅.
Since f is α-open, f(Ux) ∈ αO(Y, f(x)), f(Uy) ∈ αO(Y, y) and f(Ux)∩
αCl(f(Uy)) ⊂ αCl(f(Ux))∩αCl(f(Uy)) ⊂ f(Cl(Ux))∩f(Cl(Uy)) = ∅.
Therefore, by Lemma 2.2, G(f) is strongly α-closed.
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