"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 19 (2009), No. 1, 93-96

COMMON FIXED POINTS IN CONVEX 2-METRIC SPACES

SANJAY KUMAR

Abstract

In this paper, we introduce the concept of convex 2-metric spaces and present a generalization of Banach contraction principle in this newly defined space. Our result is a generalization of some well known results of 2metric spaces. In 1970 Takahashi [4] introduced the notion of convex metric spaces and studied some fixed point theorems for non-expansive mappings in this space. Gahler [1] introduced the concept of 2-metric space alike to metric space. The purpose of this paper is to introduce the concept of convex 2-metric space analogue to convex metric space and obtain a generalization of

 Banach contract principle in this space.Let X be a 2-metric space and $I=[0,1]$. A mapping $\mathrm{W}: \mathrm{X} \times \mathrm{X} \times \mathrm{I} \rightarrow \mathrm{X}$ is called convex structure on X if for each $(x, y, \lambda) \in X \times X \times I$ and $a, u \in X$

$$
d(u, a, W(x, y, \lambda)) \leq \lambda d(u, x, a)+(1-\lambda) d(u, y, a)
$$

A 2-metric space X together with a convex structure W is called a convex 2-metric space.

Definition 1.1. A non-empty subset K of X is said to be convex if

$$
W(x, y, \lambda) \in K \text { for all }(x, y, \lambda) \in K \times K \times I .
$$

A 2-Banach space or any convex subset of a 2-Banach space is a convex 2-metric space. Since by Gahler [1]

$$
\mathrm{d}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\|\mathrm{b}-\mathrm{a}, \mathrm{c}-\mathrm{a}\|
$$

now

$$
\begin{aligned}
d(u, a, \lambda x+(1-\lambda) y) & =\|a-u,(\lambda x+(1-\lambda) y)-a\| \\
& =\|a-u, \lambda x-\lambda a+\lambda a-\lambda y+y-u\| \\
& =\|a-u, \lambda(x-u)+\lambda(u-y)+(y-u)\| \\
& \leq \lambda\|a-u, x-u\|+(1-\lambda)\|y-u, a-u\| \\
& =\lambda d(u, x, a)+(1-\lambda) d(u, y, a)
\end{aligned}
$$

Keywords and phrases: concept of convex 2-metric space, W-affine mapping, common fixed point
(2000) Mathematics Subject Classification: 54H25

Definition 1.2. Let (X, d) be a convex 2-metric space and let K be a convex subset of X . A mapping $\mathrm{I}: \mathrm{K} \rightarrow \mathrm{K}$ is said to be W -affine if

$$
\operatorname{IW}(x, y, \lambda)=W(\mathrm{Ix}, \mathrm{Iy}, \lambda) \text { for all }(\mathrm{x}, \mathrm{y}, \lambda) \in \mathrm{K} \times \mathrm{K} \times \mathrm{I} .
$$

Definition 1.3. Let (X, d) be a 2-metric space and let $\mathrm{S}, \mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be two mappings. S and T are said to be compatible if, whenever $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is sequence in X such that $S x_{n}, T x_{n} \rightarrow t \in X$, then
$\mathrm{d}\left(\mathrm{STx}_{\mathrm{n}}, \mathrm{TSx}_{\mathrm{n}}, \mathrm{a}\right) \rightarrow 0$ for all a $\varepsilon \mathrm{X}$.
Throughout this paper, we assume that X is complete convex 2-metric space with a convex structure W and K is a non-empty closed convex subset of X.

Theorem. Let I and T be compatible mappings of K into itself satisfying the following condition:
$d(T x, T y, a) \leq a d(I x, I y, a)$ for all x, y and a in K, where $0<a<1 / 4$.
If I is W-affine and continuous in K and $T(K) \subset I(K)$, then T and I have a unique common fixed point z in K and T is continuous at z.

Proof. Let $x=x_{0}$ be an arbitrary point in K. Then, by (1), since $\mathrm{T}(\mathrm{K}) \subset \mathrm{I}(\mathrm{K})$, for an arbitrary point $\mathrm{x}_{0} \in \mathrm{~K}$, there exists a point $\mathrm{x} \in \mathrm{K}$ such that $\mathrm{Ix}_{1}=\mathrm{Tx}$. For $\mathrm{x}_{1} \in \mathrm{~K}$ there exists a point $\mathrm{x}_{2} \in \mathrm{~K}$ such that $\mathrm{Tx}_{1}=\mathrm{Ix}_{2}$. Similarly for x_{3} we have $\mathrm{Ix}_{3}=\mathrm{Tx}_{2}$. For $\mathrm{r}=1,2,3, \ldots$, (1) leads to

$$
\begin{align*}
\mathrm{d}\left(\mathrm{Tx}_{\mathrm{r}}, \mathrm{Ix}_{\mathrm{r}}, \mathrm{a}\right) & =\mathrm{d}\left(\mathrm{Tx}_{\mathrm{r}}, \mathrm{Tx}_{\mathrm{r}-1}, \mathrm{a}\right) \\
& \leq \mathrm{ad}\left(\mathrm{Ix}_{\mathrm{r}}, \mathrm{Ix}_{\mathrm{r}-1}, \mathrm{a}\right) \\
& =\operatorname{ad}\left(\mathrm{Tx}_{\mathrm{r}-1}, \mathrm{Ix}_{\mathrm{r}-1}, \mathrm{a}\right)<\mathrm{d}\left(\mathrm{Tx}_{\mathrm{r}-1}, \mathrm{Ix}_{\mathrm{r}-1}, \mathrm{a}\right) \tag{2}
\end{align*}
$$

From (1), (2), and
$\mathrm{d}\left(\mathrm{Tx}_{2}, \mathrm{Ix}_{1}, \mathrm{a}\right)=\mathrm{d}\left(\mathrm{Tx}_{2}, \mathrm{Tx}, \mathrm{a}\right)$
$\leq \mathrm{ad}\left(\mathrm{Ix}_{2}, \mathrm{Ix}, \mathrm{a}\right)$
$\leq \mathrm{a}\left[\mathrm{d}\left(\mathrm{Ix}_{2}, \mathrm{Ix}_{1}, \mathrm{a}\right)+\mathrm{d}\left(\mathrm{Ix}_{1}, \mathrm{Ix}, \mathrm{a}\right)+\mathrm{d}\left(\mathrm{Ix}_{2}, \mathrm{Ix}_{1}, \mathrm{Ix}\right)\right]$
$=\mathrm{a}\left[\mathrm{d}\left(\mathrm{Tx}_{1}, \mathrm{Ix}_{1}, \mathrm{a}\right)+\mathrm{d}\left(\mathrm{Ix}_{1}, \mathrm{Ix}, \mathrm{a}\right)+0\right]$
$\leq \mathrm{a}[\mathrm{d}(\mathrm{Tx}, \mathrm{Ix}, \mathrm{a})+\mathrm{d}(\mathrm{Tx}, \mathrm{Ix}, \mathrm{a})]$
$=2$ a d(Tx, Ix, a), we have
$\mathrm{d}\left(\mathrm{Ix}_{2}, \mathrm{Ix}_{1}, \mathrm{Ix}\right)=\mathrm{d}\left(\mathrm{Tx}_{1}, \mathrm{Ix}_{1}, \mathrm{Ix}\right) \leq \mathrm{d}(\mathrm{Tx}, \mathrm{Ix}, \mathrm{Ix})=0$
Letting $\mathrm{z}=\mathrm{W}\left(\mathrm{x}_{2}, \mathrm{x}_{3}, 1 / 2\right)$, then $\mathrm{z} \in \mathrm{K}$

$$
\mathrm{Iz}=\mathrm{W}\left(\mathrm{Ix}_{2}, \mathrm{Ix}_{3}, 1 / 2\right)=\mathrm{W}\left(\mathrm{Tx}_{1}, \mathrm{Tx}_{2}, 1 / 2\right),
$$

From (2), (3) and (4)

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{Iz}, \mathrm{Ix}_{1}, \mathrm{a}\right)=\mathrm{d}\left(\mathrm{Ix}_{1}, \mathrm{Iz}, \mathrm{a}\right) \\
&=\mathrm{d}\left(\mathrm{Ix}_{1}, \mathrm{~W}\left(\mathrm{Tx}_{1}, \mathrm{Tx}_{2}, 1 / 2\right), \mathrm{a}\right) \\
& \leq 1 / 2 \mathrm{~d}\left(\mathrm{Ix}_{1}, \mathrm{Tx}_{1}, a\right)+1 / 2 \mathrm{~d}\left(\mathrm{Ix}_{1}, \mathrm{Tx}_{2}, \mathrm{a}\right) \\
& \leq 1 / 2[\mathrm{~d}(\mathrm{Ix}, \mathrm{Tx}, \mathrm{a})+2 \mathrm{ad}(\mathrm{Tx}, \mathrm{Ix}, \mathrm{a})] \\
&=1 / 2[(2 \mathrm{a}+1)] \mathrm{d}(\mathrm{Tx}, \mathrm{Ix}, \mathrm{a}) \\
& \text { and } \mathrm{d}\left(\mathrm{Iz}_{2}, \mathrm{Ix}_{2}, \mathrm{a}\right)=\mathrm{d}\left(\mathrm{Ix}_{2}, \mathrm{~W}\left(\mathrm{Tx}_{1}, \mathrm{Tx}_{2}, 1 / 2\right), \mathrm{a}\right)
\end{aligned}
$$

$$
\begin{align*}
& \leq 1 / 2 \mathrm{~d}\left(\mathrm{Ix}_{2}, \mathrm{Tx}_{1}, \mathrm{a}\right)+1 / 2 \mathrm{~d}\left(\mathrm{Ix}_{2}, \mathrm{Tx}_{2}, \mathrm{a}\right) \\
& =1 / 2 \mathrm{~d}\left(\mathrm{Ix}_{2}, \mathrm{Tx}_{2}, \mathrm{a}\right) \leq 1 / 2 \mathrm{~d}(\mathrm{Ix}, \mathrm{Tx}, \mathrm{a}) \tag{6}
\end{align*}
$$

From (1), (2), (3) and (6), we have
$\mathrm{d}(\mathrm{Tz}, \mathrm{Iz}, \mathrm{a})=\mathrm{d}\left(\mathrm{Tz}, \mathrm{W}\left(\mathrm{Tx}_{1}, \mathrm{Tx}_{2}, 1 / 2\right), \mathrm{a}\right)$

$$
\begin{aligned}
& \leq 1 / 2 \mathrm{~d}\left(\mathrm{Tz}, \mathrm{Tx}_{1}, \mathrm{a}\right)+1 / 2 \mathrm{~d}\left(\mathrm{Tz}, \mathrm{Tx}_{2}, \mathrm{a}\right) \\
& =1 / 2 \mathrm{~d}\left(\mathrm{Tz}, \mathrm{Ix}_{2}, \mathrm{a}\right)+1 / 2 \mathrm{~d}\left(\mathrm{Tz}_{\mathrm{I}}, \mathrm{Ix}_{1}, \mathrm{a}\right) \\
& \leq 1 / 2[1 / 2 \mathrm{~d}(\mathrm{Ix}, \mathrm{Tx}, \mathrm{a})]+1 / 2(2 \mathrm{a}+1) \mathrm{d}(\mathrm{Ix}, \mathrm{Tx}, \mathrm{a})] \\
& =[1 / 4+1 / 2(2 a+1)] d(I x, T x, a) \text {. }
\end{aligned}
$$

Therefore $\mathrm{d}(\mathrm{Tz}, \mathrm{Iz}, \mathrm{a}) \leq \lambda \mathrm{d}(\mathrm{Ix}, \mathrm{Tx}, \mathrm{a})$, where

$$
\begin{equation*}
\lambda=[1 / 4+1 / 2(2 a+1)] \tag{7}
\end{equation*}
$$

Since x is an arbitrary point in K, from (7), it follows that there exists a sequence $\left\{z_{n}\right\}$ in K such that
$\mathrm{d}\left(\mathrm{Tz}_{0}, \mathrm{Iz}_{0}, \mathrm{a}\right) \leq \lambda \mathrm{d}\left(\mathrm{Tx}_{0}, \mathrm{Ix}_{0}, \mathrm{a}\right)$,
$\mathrm{d}\left(\mathrm{Tz}_{1}, \mathrm{Iz}_{1}, \mathrm{a}\right) \leq \lambda \mathrm{d}\left(\mathrm{Tz}_{0}, \mathrm{Iz}_{0}, \mathrm{a}\right)$,
$\mathrm{d}\left(\mathrm{Tz}_{\mathrm{n}}, \mathrm{Iz}_{\mathrm{n}}, \mathrm{a}\right) \leq \lambda \mathrm{d}\left(\mathrm{Tz}_{\mathrm{n}-1}, \mathrm{Iz}_{\mathrm{n}-1}, a\right)$, which yields that
$\mathrm{d}\left(\mathrm{Tz}_{\mathrm{n}}, \mathrm{Iz}_{\mathrm{n}}, \mathrm{a}\right) \leq \lambda^{\mathrm{n}+1} \mathrm{~d}\left(\mathrm{Tx}_{0}, \mathrm{Ix}_{0}\right.$, a) and so we have
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{d}\left(\mathrm{Tz}_{\mathrm{n}}, \mathrm{Iz}_{\mathrm{n}}, \mathrm{a}\right)=0$
Setting $K_{n}=\{x \in K: d(T x, I x, a) \leq 1 / n\} \quad$ for $n=1,2, \ldots$, then (8) shows that $\mathrm{Kn} \neq \phi$ for $\mathrm{n}=1,2, \ldots$, and $\mathrm{K}_{1} \supset \mathrm{~K}_{2} \supset \mathrm{k}_{3} \ldots$... Obviously, we have $\overline{\mathrm{T}} \mathrm{k}_{\mathrm{n}} \neq \phi$ and $\overline{\mathrm{T}} \mathrm{k}_{\mathrm{n}} \supset \overline{\mathrm{T}} \mathrm{k}_{\mathrm{n}+1}$ for $\mathrm{n}=1,2, \ldots$. From (1), we have $d(T x, T y, a) \leq a d(I x, I y, a)$

$$
\begin{align*}
& \leq \mathrm{ad}(\mathrm{Ix}, \mathrm{Tx}, \mathrm{a})+\mathrm{d}(\mathrm{Tx}, \mathrm{Iy}, \mathrm{a})+\mathrm{d}(\mathrm{Ix}, \mathrm{Iy}, \mathrm{Tx})] \\
& \leq \mathrm{a}[\mathrm{~d}(\mathrm{Ix}, \mathrm{Tx}, \mathrm{a})+\mathrm{d}(\mathrm{Ix}, \mathrm{Tx}, \mathrm{Iy})+\mathrm{d}(\mathrm{Tx}, \mathrm{Ty}, \mathrm{a}) \\
& +d(T x, I y, T y)+d(T y, I y, a)] \tag{9}
\end{align*}
$$

$d(T x, T y, a) \leq 4 / n \quad(a /(1-a))$.
Therefore, we have
$\lim _{n \rightarrow \infty} \operatorname{diam}\left(\overline{\mathrm{~T}} \mathrm{~K}_{\mathrm{n}}\right)=\lim _{\mathrm{n} \rightarrow \infty} \operatorname{diam}\left(\mathrm{TK}_{\mathrm{n}}\right)=0$.
By Cantor's intersection theorem, there exists a point u in K such that

$$
\bigcap_{n=1}^{\infty} \bar{T} K_{n}=u .
$$

Since $u \in K$, for each $n=1,2, \ldots$, there exists a point y_{n} in $T K_{n}$ such that $\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{u}, \mathrm{a}\right)<1 / \mathrm{n}$. Then there exists a point x_{n} in K_{n} such that

$$
\mathrm{d}\left(\mathrm{u}, \mathrm{Tx}_{\mathrm{n}}, \mathrm{a}\right)<1 / \mathrm{n} \text { and so } \mathrm{Tx}_{\mathrm{n}} \rightarrow \mathrm{u} \text { as } \mathrm{n} \rightarrow \infty .
$$

Since $x_{n} \in K_{n}$, we have also

$$
\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{Ix}_{\mathrm{n}}, \mathrm{a}\right)<1 / \mathrm{n} \text { and so } \mathrm{Ix}_{\mathrm{n}} \rightarrow \mathrm{u} \text { as } \mathrm{n} \rightarrow \infty .
$$

Since I is continuous, $\mathrm{ITx}_{\mathrm{n}} \rightarrow \mathrm{Iu}$ and $\mathrm{IIx}_{\mathrm{n}} \rightarrow \mathrm{Iu}$ as $\mathrm{n} \rightarrow \infty$. Moreover, $\mathrm{d}\left(\mathrm{TIx}_{\mathrm{n}}, \mathrm{ITx}_{\mathrm{n}}, \mathrm{a}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. Since I and T are compatible and $\mathrm{Tx}_{\mathrm{n}}, \mathrm{Ix}_{\mathrm{n}} \rightarrow \mathrm{u}$ as $\mathrm{n} \rightarrow \infty$. Thus we have $\mathrm{TIx}_{\mathrm{n}} \rightarrow \mathrm{Iu}$. Now
$\mathrm{d}(\mathrm{Tu}, \mathrm{Iu}, \mathrm{a}) \leq \mathrm{d}\left(\mathrm{Tu}, \mathrm{TIx}_{\mathrm{n}}, \mathrm{a}\right)+\mathrm{d}\left(\mathrm{TIx}_{\mathrm{n}}, \mathrm{Iu}, \mathrm{a}\right)+\mathrm{d}\left(\mathrm{TIx}_{\mathrm{n}}, \mathrm{Iu}, \mathrm{Tu}\right)$
From (9)
$d(T u, I u, a) \leq 4 / n(a /(1-a))+d\left(T_{1}, I u, a\right)+d\left(\operatorname{TIx}_{n}, I u, T u\right)$
Letting as $\mathrm{n} \rightarrow \infty$, we have $\mathrm{Tu}=\mathrm{Iu}$.
Thus $\mathrm{TIu}=\mathrm{ITu}$ and $\mathrm{TTu}=\mathrm{TIu}=\mathrm{ITu}$ since I and T are compatible.
Furthermore, we have
$\mathrm{d}(\mathrm{TTu}, \mathrm{TTu}, \mathrm{a}) \leq \mathrm{ad}(\mathrm{ITu}, \mathrm{Iu}, \mathrm{a})$

$$
=\text { a d(TTu, Tu, a), a contradiction, since a }<1 / 4 \text {. }
$$

Therefore, $\mathrm{TTu}=\mathrm{Tu}$. Let $\mathrm{z}=\mathrm{Tu}=\mathrm{Iu}$. Then $\mathrm{Tz}=\mathrm{z}$ and $\mathrm{Iz}=\mathrm{ITz}=$ $\mathrm{TIz}=\mathrm{Tz}=\mathrm{z}$. Obviously, z is a unique common fixed point of T and I .

Now to prove T is continuous at z . Let $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ be a sequence in K such that $\quad \mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{z}$.

Since I is continuous, $\mathrm{Iy}_{\mathrm{n}} \rightarrow \mathrm{Iz}$. By (9)

$$
d\left(T y_{n}, T z, a\right) \leq 4 / n \quad a /(1-a) .
$$

Letting $\mathrm{n} \rightarrow \infty$, we have $\mathrm{Ty}_{\mathrm{n}}=\mathrm{Tz}$ and so T is continuous at z . This completes the proof of the theorem.

References

[1] S. Gahler, Über 2-Banach-Räume, Math. Nachr., 42(1969), 335-347
[2] N. J. Huang and Y. J. Cho, Common fixed point theorem of gregus type in convex metric spaces, Math. Japonica, 48(3) (1998), 83-89.
[3] S. A. Naimpally, K. L. Singh and J.H.M. Whitfield, Fixed points in convex metric spaces, Math. Japonica, 29(4) (1984), 587-597.
[4] T. Shimizu and W. Takahashi, Fixed point theorems in certain convex metric spaces, Math. Japonica, 37(5) (1992), 855-859.

CIET, NCERT, NEW DELHI-110016-INDIA
sanjaymudgal2004@yahoo.com

