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KERNEL ON L SPACES WITH VARIABLE
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LANZHE LIU

Abstract: In this paper, the boundedness for some multilinear op-
erators related to some singular integral operator with non-smooth
kernel on LP spaces with variable exponent is obtained by using a
sharp estimate of the multilinear operators.

1. INTRODUCTION

Due to the development of the singular integral operators and their
commutators, multilinear singular integral operators have been well
studied(see [1-5][17-19]). In the last years, a theory of LP spaces with
variable exponent has been developed because of its connections with
some questions in fluid dynamics, calculus of variations, differential
equations and elasticity(see [6][8-9][13-14][16] and their references).

Karlovich and Lerner study the boundedness of the commutators
of singular integral operators on LP spaces with variable exponent(see
[13]). The main purpose of this paper is to introduce some multilinear
operator related to some singular integral operator with non-smooth
kernel and prove the boundedness for the multilinear operator on
LP spaces with variable exponent by using a sharp estimate of the
multilinear operator.

Keywords and phrases: Multilinear operator; Singular integral
operators with non-smooth kernel; Variable L? space; BMO.
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2. PRELIMINARIES AND RESULTS

In this paper, we study some multilinear singular integral operators
with non-smooth kernels as follows.

Definition 1. A family of operators D;,t > 0 is said to be an ”ap-
proximation to the identity” if, for every ¢ > 0, D; can be represented
by the kernel a;(z,y) in the following sense:

D@ = [ )W)y

for every f € LP(R") with p > 1, and a;(x,y) satisfies:
(@, )| < hi(w,y) = Ot 2s(la —y[* /1),
where s is a positive, bounded and decreasing function satisfying

lim 7""¢s(r*) = 0
for some € > 0.
Definition 2. A linear operator T is called a singular integral oper-
ator with non-smooth kernel if T" is bounded on L?( R™) and associated
with a kernel K (z,y) such that

T(f)(=)= | K(z,y)f(y)dy
RTL
for every continuous function f with compact support, and for almost
all x not in the support of f. In addition, we assume that
(1) There exists an ”approximation to the identity” {By, ¢t > 0} such

that T'B; has associated kernel k;(z,y) and there exist ¢;,co > 0 so
that

/ / |K(x,y) — ki(z,y)|de < cg forall y e R"
|x—y|>cqtt/2

(2) There exists an ”approximation to the identity” {A;, ¢ > 0} such
that A;T has associated kernel K;(x,y) which satisfies
K (2, )| < eat™? if |z —y| < est/?,
and
|K(z,y) — Ki(w,y)| < cat”|e —y|7" 70 i |z —y| > est'?,

for some c3,¢cq4 > 0,0 > 0.
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Let m; be the positive integers(j = 1,---,1), my +---+m; = m and
b; be the functions on R™ (j =1, --,1). Set, for 1 < j <m,

Rya(bys,9) = bi(0) = 30 —D°0i(u) (e )"

loe|<m;

The multilinear operator associated to T' is defined by

[Tjms Ry (b5 2,9)
b _ J J
i@ = | =g

Note that when m = 0, T? is just the multilinear commutator gen-
erated by T and b (see [18][19]), while when m > 0, T? is a non-trivial
generalization of the commutator. It is well known that multilinear op-
erators are of great interest in harmonic analysis and have been widely
studied by many authors(see [1-4]). In [12], Hu and Yang proved a
variant sharp estimate for the multilinear singular integral operators.
In [19], Pérez and Trujillo-Gonzalez prove a sharp estimate for the
multilinear commutator. In [10][15], the boundedness of the singu-
lar integral operator with non-smooth kernel are obtained. In [7], the
boundedness of the commutator associated to the singular integral op-
erator with non-smooth kernel are obtained. Our works are motivated
by these papers. The main purpose of this paper has twofold, first, we
establish a sharp estimate for the multilinear integral operator 7, and
second, we prove the boundedness for the multilinear operator on L?
spaces with variable exponent by using the sharp estimate. In Section
4, we will give some applications of the theorems in this paper.

First, let us introduce some notations. Throughout this paper, )
will denote a cube of R™ with sides parallel to the axes. For any locally
integrable function f and § > 0, the sharp function of f is defined by

1/6
#(x) = su L — fol®
i (@) 4@@m>m@,

Q3>

where, and in what follows, fo = |Q|™" [, f(z)dz. It is well-known
that(see [11]]20])

1/5
mem%ﬁ@mwm@.

ng ceC

K(z,y)f(y)dy.

We write that 7 = f;éﬁ if § = 1. We say that f belongs to BMO(R")
if f# belongs to L>(R") and define ||f||gypo = ||f#||z~. Let M be
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the Hardy-Littlewood maximal operator defined by

M(f)(a) = sup Q] / F@)ldy:

For k € N, we denote by MP* the operator M iterated k times, i.e.,
M'(f)(x) = M(f)(x) and
M*(f)(z) = M(M*(f))(z) when k > 2.

The sharp maximal function M4 (f) associated with the ”approxima-
tion to the identity” {A;,t > 0} is defined by

M¥(f = sup — / fly)— A y)|dy,
() el | 1o ()]
where tg = [(Q)? and [(Q) denotes the side length of Q. For 0 < § <

oo, we denote Mj;(f) by
MES(f) = [ME (PP,

Let ® be a Young function and ® be the complementary function
associated to @, we denote that the ®-average by, for a function f,

g =i x> 0: iy [ (P2 )av <1}

and the maximal function associated to ® by

Ms(f)(z) = sup 1 fle.q-

The Young functions to be used in this paper are ®(t) = (1 + logt)"
and ®(t) = exp(t'/"), the corresponding average and maximal func-
tions denoted by || - [|Laogr)r,@s MiL(iogry and || - [|eaprirgr Megprise-
Following [21-22], we know the generalized Holder’s inequality:

|Q|/|f y)ldy < |l flle.cll9lls.q

and the following inequality, for r,r; > 1,57 = 1,-- -1 with 1/r =
1/ri+---+1/r;, and any x € R*, b € BMO(R"),

HfHL(logL)l/T,Q < ML(logL)l/T (f) < CML(logL)l(f> < CMZH(f);

16— bolleprr.q = Cllbllsro,
b1 — bag| < CK||bl|Baso-
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The non-increasing rearrangement of a measurable function f on R"

is defined by
fft)=inf{A>0:{z e R" : |f(x)] > A} <t} (0<t< ).

For A € (0,1) and a measurable function f on R", the local sharp
maximal function of f is defined by

M (f)(x) = sup inf ((f — ¢)xq@)"(AQ)).
Qox c€C

Let p : R" — [1,00) be a measurable function. Denote by Lp(')(R”) the
set of all Lebesgue measurable functions f on R"™ such that m(Af,p) <
oo for some A = A(f) > 0, where

mis.p) = [ 15@)Pds

The set LPO)(R™) becomes a Banach spaces with respect to the follow-
ing norm

| £l o) = Inf{A > 0:m(f/A\ p) <1}

Denote by M(R™) the sets of all measurable functions p : R" — [1, 00)
such that the Hardy-Littlewood maximal operator M is bounded on
LPO(R™) and the following holds

1 <p_=ess inf p(x), esssup p(z)=py < oo. (1)
TER™ xERM

In recent years, the boundedness of classical operators on spaces
LPO)(R™) have attracted a great attention (see [4-7],[10],[19] and their
references).

We shall prove the following theorems.

Theorem 1. Let 7" be a singular integral operator with non-smooth
kernel as in Definition 2 and D*b; € BMO(R") for all a with |a| = m;
and j = 1,---,[. Then there exists a constant C' > 0 such that for any
feLPR"),0<d<1and T € R",

MIT (M@ <CIT Do I1IDYbillsmo | MTHA)(@).

i=1 \Jagl=m;

Theorem 2. Let T' be a singular integral operator with non-smooth
kernel as in Definition 2, p(-) € M(R") and D*b; € BMO(R") for all
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o with |a| = m; and j = 1,---,I. Then T? is bounded on LP")(R™),
that is

l
1T (Nl <CTT L D2 1D%0sllac0 | 11f1]100-
=1

|ovj|=m;

3. PrROOFS OF THEOREMS

To prove the theorems, we need the following lemmas.
Lemma 1.([3]) Let b be a function on R" and D*b € L4(R"™) for
all o with |a| = m and some ¢ > n. Then

Rt < Cle—y 3 (o [ papraz)
) Yy

|lal=m

where () is the cube centered at z and having side length 5v/n|z — y|.
Lemma 2.([11, p.485]) Let 0 < p < ¢ < co. We define for any
function f >0 and 1/r =1/p—1/q,

| fllwee = fiugﬂ{l’ € R": f(x) > MY, Npy(f) = sup I xeller /lxell o
>

where the sup is taken for all measurable sets E with 0 < |E| < oo.
Then

fllwes < Npo(f) < (a/(a = p)"?I fllwie.

Lemma 3.[19] Let r; > 1 for j = 1,---,{, we denote 1/r =1/r +
-+ 1/r;. Then

1
@A|f1(x)..-fl(z)g($)|dx < flleaprrs, -1 lezprr 01191 ogy /.0

Lemma 4.([14]) Let p : R" — [1,00) be a measurable function
satisfying (1). Then LP(R") is dense in LPU)(R™).

Lemma 5.([14]) Let f € L}, .(R™) and g be a measurable function
satisfying

Hz € R" :|g(z)| > a}| <oo forall a>0.
Then
/n [f(@)g(@)lde < C, | M (f)(2)M(g)(x)da.

R™
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Lemma 6.([14][15]) Let {A;,t > O} be an ”approximation to the
identity”, § > 0,0 < A < 1and f € L _(R"). Then

M (f)(@) < (1/N)° M7 (f)(@).

Lemma 7.([13]) Let p : R" — [1,00) be a measurable function
satisfying (1). If f € LPO(R") and g € LPO(R") with p/(z) =
p(x)/(p(z) —1). Then fg is integrable on R"™ and

[ 1#@g(@)ds < Cllfllolallor

Lemma 8.([13]) Let p : R* — [1,00) be a measurable function
satisfying (1). Set

1l =sup{ [ 1 @tollde: 7 € DR, g € 2700 |

Then || f||zp¢) < ||f||le(-> < C| ]l e -

Lemma 9.([10][15]) Let T be a singular integral operator with non-
smooth kernel as in Definition 2. Then 7T is bounded on LP(R™) for
every 1 < p < oo and bounded from L'(R™) to WL'(R").

Lemma 10. Let {A;,t > 0} be an "approximation to the identity”
and b € BMO(R"). Then, for every f € LP(R"),p > 1 and & € R",

sup 1o / A (b — bo) f)(@)]dz < C|PbllsaroM2(f)(E).

where tg = 1(Q)? and [(Q) denotes the side length of Q.
Proof. We write, for any cube Q with z € @,

|@| / A1 (b = bo) f) () dx

] /Q /n hig (2, y)|(b(y) — bo) f (y)|dydz

ﬁ// hig (2, 9)1(b(y) — bo) f (y)|dydzx

' Z ‘Q’ / /2k+1Q\2kQ y)|(b(y) - bQ)f(y”dydx

= [1 +[2

IN

IN



104 LANZHE LIU

We have, by the generalized Holder’s inequality,

o= \Q|!2Q|//| 1 (®)ldyde

CHb bQ||ea:pL72Q||f||L(logL )52
C||bll aro M (f)(Z).
For I, notice for x € @ and y € 2"1Q\2*Q, then |z — y| > 2F 1t

<
<

s(22(k—1))
and hy,(z,y) < C (gk o then
I < cz (226D |Q|2//2H1Q y) — bo)f (y)|dydz

1
‘2k+1Q‘ 2k+1Q

< C Z 2k g (22(h=1)) [(b(y) — bg) f(y)|dy

C Z 2kn8(22(k_1)) | |b - bQ | |each,2k+1Q| |f| |L(logL),2k+1Q
k=1

< czzw 072260 1] a0 M2 (1) @)

IN

< C!IbIIBMoMQ(f)(i),
where the last inequality follows from
EZOZI 2(k—1)n (22 (k—1) ) < Czk 2—(k—1)a < 00
for some € > 0. This completes the proof.

Proof of Theorem 1. It suffices to prove for f € C§°(R™) and
some constant Cj, the following inequality holds:

1/6
(,%‘/Q ITP(f)(@)]° = A, TO(£) ()] dx)

< CH Z |ID%bj| | pao | MTH(F)(E).

7=1 \loyl=m,

Without loss of generality, we may assume | = 2. Fix a cube
Q = Q(zo,d) and & € Q. Let Q = 5/nQ andb():bj(gc)—
> i(Do‘bj)on‘, then R, (bj;z,y) = Rm,(bj;z,y) and D%; =

loo|=m;
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Db; — (D%bj)g for |a| = m;. We write, for f = fxg + fXgng =
Ji+f2

T(f)(x)
HQ': Rmy([;a%y)
= ST K (e y) fi(y)dy
Rn |z — g
1 R, (ba; 2, y)(z — y)* D1y (y
- L[ Bl )y D) ) 1 )y
|t |=m1 1 JRe |x - y|
L[ Ry, (bi;2,)(x — y)*2 D*?by(y
- > = i 2. 0@ = 9" DP0Y) e 4 £, )y
|aa|=m2 @2° J e |'T - y|
1 / (v — )™ 72 Dby (y) D*ba(y)
i K (2, ) f1 (y)dy
Oéllzm;aﬂ:mz Oél!OéQ! " |‘/L‘ - y|m !
[T—1 Bon, 1 (bj3 2 9)
+ = 228 K (2, y) foly)dy

Rn |z —y|™

L

:T(HMRW@WJﬁ>

1 Ry (bos 2, ) (2 — )1 D21y
Z N fi

Oél! |;[;_|m

=T

_T Z 1 le(glﬂ x, )(.CU - ')a2Da262

a! | — |m f1
|042\:m2 Q2 xr
1 ($ — .)a1+a2Dalnga2l~)2

+T .

|041m;12|m2 aqlas! |$ _ |m

H2'—1 Rm'+1 (Bj; z, )

T J= j

" |l’ — |m f2
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A, T'(f) (=)

H?:l ij (Z;j; T, y)

R’)’L

1
2 o

ot [=mq

1
2 o

lovz|=ma

2.

|z —y|™

Ki(z,y) fi(y)dy
Ry, (b 2, y)(x — y)* Dby (y)

R» |x—y

le (517 'Ta y) ('I

| m

— )2 Dby (y)

Rn |37—3/

| m

041!042!

lar|=m1, |az|=ms2

Hizl ij+1 (i)ju Z, y)

R”

|z —y|™

— A, T

— Ay, T

+4;,T

+4;,T

)(z

|z —y|™

Ki(z,y) f2(y)dy

_ .)041D041(~)1

Z 1 Ry, (bos -
aq! |z — ™

Yo — =D,

1 Ry, (by;z,
Z _| |z — -|m

(1’ — ,)041+062D041 BlDazgz

1 / (z — y)rte2 Dby (y) D2by(y)

]
|

Ki(z,y) f1(y)dy

K(z,y) fi(y)dy

Ki(z,y) f1(y)dy

1
Z Oq!CYQ!

lai|=m1, |az|=m2

I1;-1 Ry (bj; 2, )

o=

)

o=

]
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Then

IN

fi dx

é

Q |z — ™

S dx

(iL‘ _ .)a1+a2Dall~)lDazl~72

~1/8

1/6

)
fl) dx

1/6



108 LANZHE LIU

1/6

C / H271 Rm-(gj; z, )
+ — A, T J d 1 dx

Ql Jo | ( =

- s /6

1 m b sy - alDalg

n 2/ A, T 1 Ry (b2, ) — ) La || de

Q1 Jq Pty ! z — ™

- 5 :1/5

1 By (b ) (@ — )2 Do

4 2/ AtQT _le( 1,2, )(:L‘ ) Qfl do

Q[ Jg onl ! |z — ™

ag|=ma

: T e

C / 1 (LL’ - .>a1+a2Da161Do¢262
+ — A, T dx

Q] Jo | e |al|:m;a2:m2 aylas! |z — ™ S

| [ Runbie) [ ]

C / i1 4t 4100552,
+ — T—- AT J 4 f: dx

Q1 Jo |~ e )< T )

= L+ I+ I3+ 1y+ 15+ I + 17 + Ig + Iy,

Now, let us estimate I1, Iy, I3, 14, I5, Is, I7, Is and Iy, respectively.
First, for x € @ and y € ), by Lemma 1, we get

Ry (bji,y) < Clz —y|™ Y [IDby]|saro.

lovj[=m
By Lemma 2 and the weak type (1,1) of T (Lemma 9), we obtain

2

s CII| X 1ol (i an<f1><x>|5dx)l/6

7=\l l=m;

o T )xells
< CII{ D2 Ip“bilizmo | 1@ 1%

J=1 \laj|=m;
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2

< CTI[ 3 10bllsao | 1QIH T s

J=1 \laj|=m;
2

< CH Z 1D b saro | 1Q Y| f1l] e

7=1 \Jay|=m;

< I 3 Dbl | M(H@)

J=1 \laj|=m;

For I, we get, by Lemma 2 and the generalized Holder’s inequality,

3 1/6
|T(Da1b1f1)(:c)]5dx>

Ig S C Z HDQQbQHBMO Z (ﬁ/

lova|=m2 o1 |=ma

n

O Y Dl Y o Tl

- Qe
|aa|=mo |at |=ma
< C Y ID®bllswo Y, QINTDM b1 fi)|lwe
o2 |=ma ot |=ma
< C > D%bllsmo Y 1QITH D™ by fill
lora|=ma o1 |=ma
< C Y ID®bllsno Y (1D = (D006l leapr. ol F I togry &
oz |=ma o1 |=ma
2
< CII[ Do Ip¥billsmo | M*(f)(E).

=1 \layl=m;

For I3, similar to the proof of I, we get

<l 32 IDbllswo | M2(f)@)

3= \lal=m;
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Similarly, for Iy, taking 7,79 > 1 such that 1/§ = 1/r + 1/ry, we
obtain, by Lemma 3 and the generalized Holder’s inequality,

1 3 3 1/6
L <c ) <@/nyT(Dalleazbzfl)(x)de)

la|=m1,|az|=m2

T(D* by D*2b
c Z |Q|_1|| (D*1b1 Dby f1) Xl | 16

<
= 1/6-1
loct [=ma,|az|=m2 @]
< C Z QI IT(D™ by D*?by f1) ||
l1|=m1,|az|=m2
< C Z QI 1D by Db fi |
|t |[=m1,|az|=ms2
2
<c > TRt =00l o 1 oy
|or |=ma,|az]|=mq j=1
2
< CII{ D2 1pobllsmo | MP(£)(@).

J=1 \la|=m;
For I5, I, I7 and Ig, by Lemma 10, we get

Is+1Is + I7 + I3

2
o 1
< oII| 3 107bliowo | 7 [ 1A TR @)
7=1 \laj|=m; @
1 N
+ C Z || Dby || rso Z @/Q\AtQT(Dmblfl)(:c)]dx
o2 |=mna oy |[=ma

+ C Z | Dby || rio Z r612|/Q|AtQT(Da262f1)(x>|dx

|at|=ma |aa|=ma

1 ~ ~
+ C > @/Q‘AtQT(Dalle”%ﬁ)(?@)|d33

|ar|=m1,|az|=m2

CIL| 3 1D billsno | M(1)().

J=1 \lal=m;

IN
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For Iy, we write

(T - A,,T) (Hj:l 1053, ')f2>

o[

= i B O ) e ) )y

R |.T - y|m
2.7 Rm B], s
_ HJ*I _J( mx v (K (z,y) — Ki(z,9)) f2(y)dy
o v~y

_ Z L /n Dy (y) (@ = y)* Bomy (ba; 7, y) (K(z,y) — Ki(2,y)) f2(y)dy

oy 061! |.T - y|m
ai|=m
1 [ D*by(y)(w = y)** R, (br; 2, )
_ = K(z,y) — Ki(z,y)) f2(y)dy
oc2|z—:m2 ! Rn |$ - y|m ( ( ) t( )) 2( )
D S
Oéﬂ@g! n |.I - y|m

lat|=m1, |az|=m2

X (K(z,y) — Ki(z,y)) f2y)dy
= 10+ 1 + 17 + 1Y,

By Lemma 1 and the following inequality (see [20])
b, — ba.| < C'log(|Qal/|1Q1]I[bl|5ro for @1 C Qo

we know that, for z € Q and y € 2871Q \ 2*Q),

[Ra(bizy)l < Cle—y™ Y (IID*lparo + (D) gy — (D*D)g))

laf=m

< Cklz—y|™ ) [ID*b|suo-

laf=m
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Note that |z —y| > d = t/2 and |z — y| ~ |z — y| for z € Q and
y € R™\ @, by the conditions on K and K}, we obtain

b H2~:1 |Rm(57x7y)|
Y] = Z/2k+1@\2k@ ] I:c—Jy|fn K (2, y) — Ki(2,y)|f(y)|dy
k=0

2 ') d(;
S Do | S / 2 )y

2k+1Q\2+ ) |£130 — y[”*

IA
Q
—

J=1 \|a|=m; k=0
> 1

D%b; A L — / d

> IDbllawo | D K27 |17l

J=1 \|a|=m; k=1

IA
Q
—

< CII[ 3 1Dbllswo | M(H)@)

J=1 \lel=m;
For IéQ), we get, by the generalized Holder’s inequality,

7 < o S 1Dbllsaro

|z |=m2

o0 kd5 .
x D | DD d
Z/2k+lé\2ké |20 — y|n+6| 1) f(y)ldy

|t |=m1 k=0

< C Z || D*?bs] | Brio
|oz|=m2
X Z Z k2_6k||Da1b1 - (Dalbl)Q||e:ch,2kQ||f||L(logL)72kC~2
lat|=mq k=1
2
< CIT | DO 1ID%billsmo | MP(£)(E).
J=1 \Jal=m;
Similarly,

I < T S 1IDbillsmo | M2(£)(3).

2
j=

L\ Jal=m;
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For 154), taking r,r1,7o > 1 such that 1/r = 1/r; + 1/ry, then, by
Lemma 3 and the generalized Holder’s inequality,

4
15|

(o) d5 . B ) .
<03 ) / o Ty P BBl W)y
|a1|=m1,|az|=ma k=0

co 2
C Z Z H HDajbj - (Dajbj)c@| ‘exerijQ HfHL(zogL)l/T,sz

|at|=m1,|az|=mg k=1 j=1

IN

< C’H Z ID“b; || a0 | MP(f)(2).

=1 \Jal=m,

Thus

2
LI<CTT | D. IDbllsumo | MP(f)(&).
J=1 \|al=m;
This completes the proof of Theorem 1.
Proof of Theorem 2. By Lemmas 4-7, we get, for f € LF(R")
and g € LPO)(R"),

| mhegelds < ¢ [ MEE @M @)@

IN

R
¢ [ MEr M) @)
¢ [ M) @) M (o))

ClUM oo 1M ()] v
Cll e llgll o

IA

IAINA

thus, by Lemma 8§,

T (Dllzeer < [ Fllzoeo-
This completes the proof of Theorem 2.

4. APPLICATIONS

In this section we shall apply Theorems 1 and 2 of this paper to the
holomorphic functional calculus of linear elliptic operators. First, we
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review some definitions regarding the holomorphic functional calculus
(see [10][15]). Given 0 < 6 < m. Define

Sp={z € C: |arg(2)| < 0} J{0}

and its interior by S9. Set Sy = Sy \ {0}. An closed operator L on
some Banach space F is said to be of type 0 if its spectrum o (L) C Sy
and for every v € (0, 7|, there exists a constant C,, such that

nll|(nI = L)Y < Coy n & Sp.
For v € (0, 7], let
Hyo(S)) ={f: Sy — C: [ is holomorphic and || f||~ < oo},
where || f|[z~ = sup{|f(z)| : z € S}}. Set

v(Sy) = {g € Hyo(S)) : 3s > 0,3¢ > 0 such that [g(z)| < ¢ _’|_z||z|28} .
If L is of type 6 and g € H(S)), we define g(L) € L(E) by

(L) = ~(2xi) ™ [t = 1) gln)an
r

where T is the contour {£ = re*® : r > 0} parameterized clockwise

around Sy with 8 < ¢ < pu. If, in addition, L is one-one and has dense

range, then, for f € Hy(S)),

FL) = (ML) (fR)(L),
where h(z) = z(1 + 2)72 L is said to have a bounded holomorphic
functional calculus on the sector S, if

(L[] < Nllgl[z

for some N > 0 and for all g € Huo(S)).

Now, let L be a linear operator on L?*(R™) with § < 7/2 so that
(—L) generates a holomorphic semigroup e **, 0 < | arg(z)| < 7/2—0.
Applying Theorem 6 of [8], we get

Theorem 3. Assume the following conditions are satisfied:

(i) The holomorphic semigroup e L, 0 < |arg(z)| < 7/2 — 0 is
represented by the kernels a.(x,y) which satisfy, for all v > 6, an
upper bound

la.(z,y)| < cohp(z,y)
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for z,y € R", and 0 < J|arg(z)] < 7/2 — 6, where h(z,y) =
Ct="2s(|x — y|?/t) and s is a positive, bounded and decreasing func-
tion satisfying

lim 7"¢s(r?) = 0.

(ii) The operator L has a bounded holomorphic functional calculus
in L*(R"), that is, for all v > 0 and g € Hy(S}), the operator g(L)
satisfies

Hg(L) (P> < eullgllzol f]L2-
Then, for p(-) € M(R"), D*b; € BMO(R") for all a with |a| = m;
and j =1,---,[, the multlhnear operator g(L)? associated to g(L) and
b; satlsﬁes g(L)" is bounded on LP()(R™), that is
!
19(L)"(Nlze() < H > ID%bllsmo | 1 fllee)-

Lo\ ajl=m;
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