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ON THE MINIMAL WEAK UPPER GRADIENT OF A
BANACH-SOBOLEV FUNCTION

ON A METRIC SPACE

MARCELINA MOCANU

Abstract. We prove that every function belonging to a Sobolev-
type space N1,B(X) on a metric measure space X has a B−weak
upper gradient in B that is pointwise minimal µ−almost everywhere,
provided that the Banach function space B has a strictly convex and
strictly monotone norm. This result generalizes corresponding known
results involving Lebesgue spaces B = Lp (X), p > 1 [16] or, more
general, Orlicz spaces B = LΨ (X) [17] with a strictly convex Young
function Ψ satisfying a ∆2−condition.

1. Introduction and preliminaries

In what follows, (X, d, µ) is a metric measure space, where the
outer measure µ is Borel regular, positive and finite on balls. In the
extensions of first-order calculus to metric measure space there is a
substitute for the length of the gradient, namely the upper gradient.
A Borel measurable function g : X → [0, +∞] is said to be an upper
gradient of a function u : X → R if for every compact, rectifiable
path γ : [0, 1] → X

————————————–
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(1.1) |u(γ(1))− u(γ(0))| ≤
∫

γ

gds.

In the Euclidean setting, the length of the gradient of a function of
class C1 on a domain of Rn is an upper gradient of that function.

Since upper gradients are not stable neither under changes on a set
of zero measure, nor under limits, a more flexible tool generalizing the
notion of upper gradient was needed in the development of analysis on
metric measure spaces. A weak form of the notion of upper gradient,
the concept of p-weak upper gradient was first defined by Koskela and
MacManus in [9], by using the p−modulus of curve families. The no-
tion of p−weak upper gradient turned out to be a flexible tool, which is
essential in defining and studying the Sobolev-type spaces on metric
measure spaces introduced by Shanmugalingam [14], [15], known as
the Newtonian spaces N1,p (X), p ≥ 1. In [17] Tuominen introduced
and studied an important generalization of N1,p (X), the notion of
Orlicz-Sobolev space N1,Ψ (X), where the Lebesgue space Lp (X) in-
volved in the definitions of p−modulus, p−weak upper gradient and
N1,p(X) is replaced by an Orlicz space LΨ (X).

We generalized Orlicz-Sobolev spaces on metric measure spaces in
[12], by introducing a Sobolev-type space based on weak upper gra-
dients, where the role of the Orlicz spaces is played by an abstract
Banach function space (B, ‖·‖B). For the definition and properties of
Banach function spaces, see [1]. The norm ‖·‖B of the Banach func-
tion space B is monotone by definition, i.e. 0 ≤ g ≤ f µ−a.e. in X
implies ‖g‖B ≤ ‖f‖B for every f, g ∈ B. We will say that the norm
‖·‖B is strictly monotone if for every f, g ∈ B with 0 ≤ g ≤ f µ−a.e.
in X, ‖g‖B = ‖f‖B implies g = f µ−a.e.

The notion of B−modulus introduced in [12] is a generalization of
Ψ−modulus from [17], that in turn generalizes the well-known concept
of p−modulus in metric measure spaces [5]. Let Γrec be the family of
all rectifiable curves in X. The B−modulus of a family Γ of curves in
X is defined by MB(Γ) = inf ‖ρ‖B ,where the infimum is taken over

all Borel functions ρ : X → [0, +∞] with

∫

γ

ρ ds ≥ 1 for all rectifiable

curves γ in X. Even for a general Banach function space B, the
B−modulus share many properties of the p−modulus, in particular
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MB is an outer measure on the family of all curves in X, as it is proved
in [12]. A B−weak upper gradient of a function u : X → R is a Borel
measurable function g : X → [0, +∞] such that (1.1) holds for all
compact, rectifiable paths γ : [0, 1] → X except for a curve family
with zero B−modulus. For every function u : X → R we will denote
by Gu the family of all B−weak upper gradients g ∈ B of u in X.

The set Ñ1,B(X) formed from the functions u ∈ B for which Gu is
non-empty is a linear subspace in the space of real functions defined on
X. The functional ‖u‖1,B := ‖u‖B+inf {‖g‖B : g ∈ Gu} is a seminorm

on Ñ1,B(X). The Sobolev-type space N1,B(X) is the quotient normed

space of Ñ1,B(X) with respect to the equivalence relation defined by:
u ∼ v if ‖u− v‖1,B = 0.

It is natural to look for assumptions on the Banach function space
B implying that the infimum inf {‖g‖B : g ∈ Gu} is attained for some
g = gu whenever every u ∈ N1,B(X), which simplifies the definition of
the norm ‖·‖1,B to ‖u‖1,B := ‖u‖B + ‖gu‖B.

The following result is a substitute for Mazur’s lemma in Sobolev-
type spaces on metric measure spaces and generalizes [17, Theorem
4.17], that in turn is a generalization of [15, Lemma 4.11].

Lemma 1. [12, Theorem 1] Let (uj)j≥1 be a sequence of functions
in B and (gj)j≥1 be a sequence in B of corresponding B−weak upper
gradients. Assume that uj → u and gj → g weakly in B, for some
u, g ∈ B. Then there are sequences (ũj)j≥1 and (g̃j)j≥1 of convex
combinations

ũj =

nj∑

k=j

λkjuk, g̃j =

nj∑

k=j

λkjgk,

where λkj ≥ 0,

nj∑

k=j

λkj = 1, such that ũj → u and g̃j → g in B. In

addition, g is a B−weak upper gradient of u.

For B = Lp (X) with 1 < p < ∞, it was shown by Shanmugalingam
in [16, Corollary 3.7] that every function u ∈ N1,p(X) has is a p−weak
upper gradient gu ∈ Lp (X) such that gu(x) ≤ g(x) for µ−almost every
x ∈ X, whenever g is a p−weak upper gradient of u. Any such p−weak
upper gradient gu is called a minimal p−weak upper gradient of u, and

obviously satisfies ‖gu‖Lp(X) = inf
{
‖g‖Lp(X) : g ∈ Gu

}
. Note that
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the existence of another type of minimal upper gradient has been
previously proved by Cheeger in [3]. In the classical case u ∈ W 1,p (Ω),
where Ω ⊂ Rn is a domain, it is known that gu = ‖∇u‖ µ−a.e., where
∇u is the distributional gradient of u. This property extends from the
Euclidean setting to the setting of Riemannian manifolds.

Minimal p−weak upper gradients play an essential role in nonlin-
ear potential theory on metric measure spaces [7], [16], [8]. In non-
linear potential theory a central problem is the minimization, under
various conditions, of the p−Dirichlet energy integral of a function
u ∈ N1,p

loc (Ω) on Ω′ ⊂⊂ Ω, which is defined by
∫

Ω′

gp
udµ.

In the case when B = LΨ(X) Tuominen has proved in [17, Theo-
rem 6.6, Theorem 6.7, Lemma 6.8] several results on the existence of
Ψ−weak upper gradients minimizing the Ψ−integral or the LΨ−norm.
We recall that a Young function Ψ : [0,∞) → [0,∞) is said to satisfy
the ∆2−condition if there is a constant C2 > 0 such that

(1.2) Ψ(2t) ≤ C2Ψ(t)

for every t ∈ [0,∞). A Young function satisfying the ∆2−condition is
also said to be doubling.

We consider below an arbitrary function u ∈ N1,Ψ(X). Let us

denote by G̃u the set of all Ψ−weak upper gradients g of u such that∫

X

Ψ (g) dµ < +∞. In general G̃u ⊂ Gu and G̃u = Gu if the Young

function Ψ is doubling. Assuming that Ψ is doubling, it is shown

that the infimum I(u) := inf





∫

X

Ψ (g) dµ : g ∈ G̃u



 is attained for

every u ∈ N1,Ψ (X). Assuming that Ψ is strictly increasing, it is

proved that I(u) =

∫

X

Ψ (gu) dµ with gu ∈ G̃u implies ‖gu‖LΨ(X) =

inf
{
‖g‖LΨ(X) : g ∈ G̃u

}
and gu ≤ g µ−almost everywhere in X for

all g ∈ G̃u. Moreover, in the case when Ψ is doubling it is proved

that ‖gu‖LΨ(X) = inf
{
‖g‖LΨ(X) : g ∈ Gu

}
implies gu ≤ g µ−almost
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everywhere in X for all g ∈ Gu [17, Theorem 6.11]. Here ‖·‖LΨ(X) is

the Luxemburg norm on LΨ (X).
The purpose of this paper is to provide some assumptions on the

Banach function space B which are sufficient to imply, for every
u ∈ N1,Ψ (X), that the infimum inf {‖g‖B : g ∈ Gu} is attained, re-
spectively that there is gu ∈ Gu such gu ≤ g µ−almost everywhere
in X for all g ∈ Gu. Our assumptions have to be general enough to
hold for B = Lp (X) whenever 1 < p < ∞, as well as for B = LΨ (X)
whenever the Young function Ψ is doubling and strictly increasing.

We need some basic notions describing geometric properties of Ba-
nach spaces (see [2]).

A Banach space (V, ‖·‖) is said to be strictly convex (or rotund)
if x 6= y and ‖x‖ = ‖y‖ = 1, where x, y ∈ V together imply that
‖x + y‖ < 2. The Banach space (V, ‖·‖) is strictly convex if and only
if x 6= 0 and y 6= 0 and ‖x + y‖ = ‖x‖ + ‖y‖ together imply that
x = cy for some constant c > 0. Recall that a Banach space (V, ‖·‖) is
said to be uniformly convex (or uniformly rotund) if for every ε > 0
there is δ > 0 such that for any x, y ∈ V with ‖x‖ < 1, ‖y‖ < 1
and ‖x + y‖ > 2 − δ we have ‖x− y‖ < ε. An alternative way to
speak about a of strictly (or uniformly) convex Banach space (V, ‖·‖)
is to say that V has a strictly convex (respectively, uniformly convex)
norm. Every uniformly convex Banach space is strictly convex. The
converse holds in finite-dimensional Banach spaces, but not in gen-
eral. By the Milman–Pettis theorem, every uniformly convex space is
reflexive. In general, there is no implication between strictly convex-
ity and reflexivity. We will use a well-known result from functional
analysis, stating that every convex and closed non-empty subset of a
strictly convex Banach space has an element of smallest norm

We prove that every u ∈ N1,B(X) has a B−weak upper gradient
gu ∈ B minimizing the B−norm, provided that the Banach function
space B is strictly convex. If in addition the norm of is strictly mono-
tone, it follows that there exists a B−weak upper gradient gu ∈ B of
u in X such that gu ≤ g µ−a.e. in X, whenever g ∈ B is a B−weak
upper gradient of u in X. Our results on the existence of a minimal
B− weak upper gradient generalize the known results from [16] and
[17].
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2. Main results

The following characterization of a B−weak upper gradient is well-
known for B = Lp (X), p ≥ 1 (see [10, Lemmas 3.1 and 3.3]).

Lemma 2. Let u : X → R and let g ∈ B be a Borel measurable non-
negative function. For each compact rectifiable curve γ parameterized
by arc length define h (s) = u (γ (s)), s ∈ [0, l (γ)].

a) Assume that for B−almost every curve γ ∈ Γrec the function h
is absolutely continuous on [0, l (γ)] and

(2.1) |h′ (s)| ≤ g(γ(s)) for almost every s ∈ [0, l (γ)] .

Then g is a B−weak upper gradient of u.
b) Conversely, if g is a B−weak upper gradient of u, then (2.1)

holds for B−almost every curve γ ∈ Γrec

Proof. a) For fixed γ ∈ Γrec denote l := l (γ) and let x = γ (0) and
y = γ (l) be the endpoints of γ. We have

|u (x)− u (y)| = |h (0)− h (1)| ≤
l∫

0

|h′ (s)| ds ≤
l∫

0

g(γ(s))ds =

∫

γ

g ds.

Hence |u (x)− u (y)| ≤
∫

γ

g ds for B−almost every curve γ ∈ Γrec

with endpoints x, y, therefore g is a B−weak upper gradient of u.
b) Assume that g is a B−weak upper gradient of u. Since g ∈ B, it

follows that u ∈ ACCB (X), by [12, Proposition 3 (a)]. Moreover, for
B−almost every curve γ ∈ Γrec the function h is absolutely continuous

on [0, l],

∫

γ

g ds < ∞ and the following inequality holds for every

s1 ≤ s2 in [0, l]:

|u (γ (s1))− u (γ (s2))| ≤
∫

γ|[s1,s2]

g ds.

Being absolutely continuous on [0, l], the function h is differentiable
L1−almost everywhere on [0, l]. By Lebesgue differentiation theorem,
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for L1−almost every s0 ∈ [0, l] we have

(2.2) lim
s→s0

1

|s− s0|

∣∣∣∣∣∣

s∫

s0

g(γ(t)) dt

∣∣∣∣∣∣
= g (γ (s0)) .

Suppose that h is differentiable at s0 and (2.2) holds. Since

|h (s0)− h (s)| = |u (γ (s0))− u (γ (s))| ≤
∣∣∣∣∣∣

s∫

s0

g(γ(t)) dt

∣∣∣∣∣∣
, it follows

that

|h′ (s0)| ≤ g (γ (s0)) .

The following property, showing that we can paste two B−weak
upper gradients of a function, is a generalization of [17, Lemma 4.10]
(a result stated without proof).

Lemma 3. Assume that g1, g2 ∈ B are two B−weak upper gradients
of a function u : X → R and that F ⊂ X is a Borel set. Then the
function ρ = g1χX\F + g2χF is also a B−weak upper gradient of u in
X.

Proof. Since F is a Borel set and g1, g2 are Borel measurable functions,
it follows that the function ρ is also Borel measurable. By Lemma 2
(b) and by the subadditivity of B−modulus, there exists a family of
curves Γ0 ⊂ Γrec with MB (Γ0) = 0 such that for every γ ∈ Γrec \ Γ0

∣∣(u ◦ γ)′
∣∣ ≤ gk ◦ γ , k = 1, 2.

L1−almost everywhere on [0, l (γ)]. Note that∣∣(u ◦ γ)′ (s)
∣∣ ≤ g1(γ(s))χX\F (γ(s)) + g2(γ(s))χF (γ(s)) for L1−almost

every s ∈ [0, l (γ)]. Then ρ is a B−weak upper gradient of u in X, by
Lemma 2 (a).

For every function u : X → R we denote by Gu the family of all
B−weak upper gradients g ∈ B of u in X.

Lemma 4. For every function u ∈ N1,B (X) the set Gu ⊂ B is convex
and closed.
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Proof. If Gu is empty, there is nothing to prove. Assume that Gu is

non-empty. The set Gu is convex, since |u(x))− u(y)| ≤
∫

γ

gkds for

k = 1, 2 implies

|u(x))− u(y)| ≤
∫

γ

(λ1g1 + λ2g2) ds

for every λ1, λ2 ≥ 0 with λ1 + λ2 = 1, by the subadditivity of the
B−modulus.

Assume that gj ∈ Gu for j ≥ 1 and gj → g in B. Next we apply to
the sequences uj = u, j ≥ 1 and gj, j ≥ 1 the substitute of Mazur’s
lemma in N1,B(X), Lemma 1. It follows that g ∈ B is a B−weak
upper gradient of u in X. This proves that Gu is closed in the normed
space B.

Lemma 5. If the Banach function space B is strictly convex, then
every u ∈ N1,B(X) has a B−weak upper gradient gu ∈ B minimizing
the B−norm, that is satisfying ‖gu‖B = inf {‖g‖B : g ∈ Gu}.
Proof. Let u ∈ N1,B(X). By Lemma 4, the non-empty set Gu is
convex and closed. Since B is a strictly convex Banach space, every
convex and closed non-empty subset of B has an element of smallest
norm.

Theorem 1. Assume that the Banach function space B has a strictly
convex and strictly monotone norm. Then for every u ∈ N1,B(X)
there exists a B−weak upper gradient gu ∈ B of u in X such that
gu ≤ g µ−a.e. in X, whenever g ∈ B is a B−weak upper gradient of
u in X.

Proof. Let u ∈ N1,B(X). By Lemma 5 there exists gu ∈ Gu such that
‖gu‖B = inf {‖g‖B : g ∈ Gu}.

Fix arbitrarily g ∈ Gu. We will prove that gu ≤ g µ−a.e. in X,
i.e. the set F := {x ∈ X : gu(x) > g(x)} has measure zero. Note that
F is a Borel set, since gu and g are Borel measurable functions. By
Lemma 3, the function ρ = guχX\F + gχF belongs to Gu.

Since gu is an element of smallest norm in Gu, we have ‖gu‖B ≤
‖ρ‖B. On the other hand, ρ (x) ≤ gu(x) for every x ∈ X, hence by the
monotonicity of the norm in a Banach function space, ‖ρ‖B ≤ ‖gu‖B.
It follows that ‖ρ‖B = ‖gu‖B.



ON THE MINIMAL WEAK UPPER GRADIENT 127

Since the norm ‖·‖B is strictly monotone, from ρ ≤ gu µ−a.e. in
X and ‖ρ‖B = ‖gu‖B it follows that ρ = gu µ−a.e. in X. Then
(g − gu) χF = 0 µ−a.e. in X, but g − gu < 0 on F , hence µ (F ) = 0,
q.e.d.

Corollary 1. Let Ψ be a Young function that is doubling and strictly
convex. For every u ∈ N1,Ψ(X) there exists a Ψ−weak upper gradient
gu ∈ LΨ (X) of u in X such that gu ≤ g µ−a.e. in X, whenever
g ∈ LΨ (X) is a Ψ−weak upper gradient of u in X.

Proof. Assume that (X,A, µ) is a of a measure space, where the mea-
sure µ is atomless. It was proved in [6] that if the Young function Ψ is
doubling and strictly convex, then the Orlicz space LΨ (X) is strictly
convex. (The converse holds if µ (X) = +∞. For µ (X) < +∞, the
Orlicz space LΨ (X) is strictly convex if and only if Ψ strictly convex,
vanishing only at the origin and (1.2) is satisfied for large t).

A Young function Ψ is convex and increasing, therefore Ψ is strictly
increasing if Ψ is strictly convex.

If the Young function Ψ is strictly increasing and doubling, then the
Luxemburg norm on LΨ (X) is strictly monotone. Let f, g ∈ LΨ (X) ,
such that 0 ≤ g ≤ f µ−a.e. in X and ‖f‖LΨ(X) = ‖g‖LΨ(X) =: N .

If N = 0, then f = g = 0 µ−a.e. in X. If N > 0, then by [13,

Proposition 1.2.11], we have

∫

X

Ψ
(

f
N

)
dµ =

∫

X

Ψ
(

g
N

)
dµ = 1. The

function ϕ := Ψ
(

f
N

) − Ψ
(

g
N

)
is nonnegative, by the monotonicity of

Ψ and

∫

X

ϕ dµ = 0, therefore ϕ = 0 µ−a.e. in X. It follows that

f = g µ−a.e. in X, since Ψ is injective. In our case the measure µ
is atomless and the Young function Ψ is doubling and strictly convex.
Then LΨ (X) has a strictly convex and strictly monotone norm. By
Theorem 1 the claim follows, taking into account that for B = LΨ (X)
the notion B−weak upper gradient is called Ψ−weak upper gradient.

Remark 1. Corollary 1 is a consequence of [17, Theorem 6.6, Theo-
rem 6.7, Lemma 6.8, Theorem 6.11]

Corollary 2. [16, Corollary 3.7] Let 1 < p < ∞. Then every function
u ∈ N1,p(X) has is a p−weak upper gradient gu ∈ Lp (X) such that
gu(x) ≤ g(x) for µ−almost every x ∈ X, whenever g is a p−weak
upper gradient of u.
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Proof. For Ψ(t) = tp

p
, t ∈ [0,∞), the corresponding Orlicz space is a

Lebesgue space: LΨ (X) = Lp (X). The Young function Ψ is doubling.
Since p > 1, Ψ is strictly convex. The claim follows by Corollary 1.
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Spiru Haret 8, Bacău 600114, Romania

E-mail address: mmocanu@ub.ro


