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ON THE MINIMAL WEAK UPPER GRADIENT OF A
BANACH-SOBOLEV FUNCTION
ON A METRIC SPACE

MARCELINA MOCANU

Abstract. We prove that every function belonging to a Sobolev-
type space NYP(X) on a metric measure space X has a B—weak
upper gradient in B that is pointwise minimal y—almost everywhere,
provided that the Banach function space B has a strictly convex and
strictly monotone norm. This result generalizes corresponding known
results involving Lebesgue spaces B = LP (X), p > 1 [16] or, more
general, Orlicz spaces B = LY (X)) [17] with a strictly convex Young
function ¥ satisfying a As—condition.

1. INTRODUCTION AND PRELIMINARIES

In what follows, (X,d,n) is a metric measure space, where the
outer measure u is Borel regular, positive and finite on balls. In the
extensions of first-order calculus to metric measure space there is a
substitute for the length of the gradient, namely the upper gradient.
A Borel measurable function g : X — [0, +o0] is said to be an upper
gradient of a function u : X — R if for every compact, rectifiable
path v :[0,1] - X
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(1.1) [u(7(1)) = u(1(0))] < / gds.

In the Euclidean setting, the length of the gradient of a function of
class C* on a domain of R" is an upper gradient of that function.

Since upper gradients are not stable neither under changes on a set
of zero measure, nor under limits, a more flexible tool generalizing the
notion of upper gradient was needed in the development of analysis on
metric measure spaces. A weak form of the notion of upper gradient,
the concept of p-weak upper gradient was first defined by Koskela and
MacManus in [9], by using the p—modulus of curve families. The no-
tion of p—weak upper gradient turned out to be a flexible tool, which is
essential in defining and studying the Sobolev-type spaces on metric
measure spaces introduced by Shanmugalingam [14], [15], known as
the Newtonian spaces N'? (X), p > 1. In [17] Tuominen introduced
and studied an important generalization of N'? (X), the notion of
Orlicz-Sobolev space N¥ (X), where the Lebesgue space L? (X) in-
volved in the definitions of p—modulus, p—weak upper gradient and
N1P(X) is replaced by an Orlicz space LY (X).

We generalized Orlicz-Sobolev spaces on metric measure spaces in
[12], by introducing a Sobolev-type space based on weak upper gra-
dients, where the role of the Orlicz spaces is played by an abstract
Banach function space (B, ||-|| 3). For the definition and properties of
Banach function spaces, see [1]. The norm ||-|| 5 of the Banach func-
tion space B is monotone by definition, i.e. 0 < g < f p—a.e. in X
implies [|g]| 53 < ||f|lg for every f,g € B. We will say that the norm
|-l 5 is strictly monotone if for every f,g € B with 0 < g < f p—a.e.
in X, [lgllz = [|f||p implies g = f p—a.e.

The notion of B—modulus introduced in [12] is a generalization of
U —modulus from [17], that in turn generalizes the well-known concept
of p—modulus in metric measure spaces [5]. Let I';... be the family of
all rectifiable curves in X. The B—modulus of a family T" of curves in
X is defined by Mp(I") = inf ||p|| 5 ,where the infimum is taken over

all Borel functions p : X — [0, +o00] with / p ds > 1 for all rectifiable

g
curves v in X. Even for a general Banach function space B, the
B—modulus share many properties of the p—modulus, in particular
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Mp is an outer measure on the family of all curves in X, as it is proved
n [12]. A B—weak upper gradient of a function u : X — R is a Borel
measurable function g : X — [0,4o00] such that (1.1) holds for all
compact, rectifiable paths v : [0,1] — X except for a curve family
with zero B—modulus. For every function v : X — R we will denote
by G, the family of all B—weak upper gradients g € B of u in X.
The set NVB(X) formed from the functions u € B for which G, is
non-empty is a linear subspace in the space of real functions defined on
X. The functional ||lul|, 5 := [lul| z+inf {[|g][5 : g € G.} is a seminorm

on NB(X). The Sobolev-type space NB(X) is the quotient normed

space of N LB(X) with respect to the equivalence relation defined by:
u~vif |lu—v|, 5 =0.

It is natural to look for assumptions on the Banach function space
B implying that the infimum inf {||g|| 5 : ¢ € G, } is attained for some
g = g, whenever every u € NVB(X), which simplifies the definition of
the norm ||, o [Jul, 5 = [l 5 + 19l

The following result is a substitute for Mazur’s lemma in Sobolev-
type spaces on metric measure spaces and generalizes [17, Theorem
4.17], that in turn is a generalization of [15, Lemma 4.11].

Lemma 1. [12, Theorem 1] Let (u;);>1 be a sequence of functions
in B and (g;)j>1 be a sequence in B of corresponding B—weak upper
gradients. Assume that u; — u and g; — g weakly in B, for some
u,g € B. Then there are sequences (uj)j>1 and (g;);>1 of convex

combinations
n n
U= e, G5 =D Mej
k=j k=j
n
where A\i; > 0, Z)\kj =1, such that u; — v and g; — g in B. In
k=j

addition, g is a B—weak upper gradient of .

For B = [P (X) with 1 < p < oo, it was shown by Shanmugalingam
in [16, Corollary 3.7] that every function v € N'(X) has is a p—weak
upper gradient g, € L? (X)) such that g,(z) < g(z) for p—almost every
x € X, whenever g is a p—weak upper gradient of u. Any such p—weak
upper gradient g, is called a minimal p—weak upper gradient of u, and

obviously satisfies | gull»x) = inf{||g||Lp(X) 19 € Gu}. Note that
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the existence of another type of minimal upper gradient has been
previously proved by Cheeger in [3]. In the classical case u € WP (Q),
where 0 C R" is a domain, it is known that g, = ||Vul|| p—a.e., where
Vu is the distributional gradient of u. This property extends from the
Euclidean setting to the setting of Riemannian manifolds.

Minimal p—weak upper gradients play an essential role in nonlin-
ear potential theory on metric measure spaces [7], [16], [8]. In non-
linear potential theory a central problem is the minimization, under
various conditions, of the p—Dirichlet energy integral of a function
u € N2P(Q) on Q' CC Q, which is defined by

/ Gudp.

o
In the case when B = L¥(X) Tuominen has proved in [17, Theo-

rem 6.6, Theorem 6.7, Lemma 6.8] several results on the existence of

U —weak upper gradients minimizing the ¥ —integral or the LY —norm.

We recall that a Young function VU : [0, c0) — [0, 00) is said to satisfy

the Ay—condition if there is a constant Cy > 0 such that

(1.2) U(2t) < CyW(t)

for every t € [0,00). A Young function satisfying the Ay—condition is
also said to be doubling.
We consider below an arbitrary function u € NYY(X). Let us

denote by CNJU the set of all W—weak upper gradients g of u such that

/\If (9)du < +o00. In general G, C G, and G, = G, if the Young

X
function W is doubling. Assuming that W is doubling, it is shown

that the infimum 7(u) := inf /\IJ (9)dp: g€ G, y is attained for

p's
every v € NY¥ (X). Assuming that U is strictly increasing, it is

proved that I(u / (gu) dp with g, € G, implies 19ullpox) =
X

inf {HQH Lrx) -9 € G } and g, < g pu—almost everywhere in X for

all g € G Moreover in the case when WU is doubling it is proved
that [|gull v x)y = mf{HgHLq, 19 Gy } implies ¢, < ¢g p—almost
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everywhere in X for all g € G, [17, Theorem 6.11]. Here ||-|| vy is

the Luxemburg norm on LY (X).

The purpose of this paper is to provide some assumptions on the
Banach function space B which are sufficient to imply, for every
u € NV (X), that the infimum inf {||g|| 5 : ¢ € G.} is attained, re-
spectively that there is g, € G, such g, < g p—almost everywhere
in X for all ¢ € G,. Our assumptions have to be general enough to
hold for B = L? (X) whenever 1 < p < 0o, as well as for B = LY (X)
whenever the Young function ¥ is doubling and strictly increasing.

We need some basic notions describing geometric properties of Ba-
nach spaces (see [2]).

A Banach space (V,||-||) is said to be strictly conver (or rotund)

if v # y and ||z|| = |ly]| = 1, where z,y € V together imply that
|lx + y|| < 2. The Banach space (V/ ||-||) is strictly convex if and only
if  # 0and y # 0 and [z +y| = |z]| + [ly[| together imply that

x = ¢y for some constant ¢ > 0. Recall that a Banach space (V, ||-]|) is
said to be uniformly convexr (or uniformly rotund) if for every e > 0
there is 0 > 0 such that for any x,y € V with ||z|| < 1, [|y|| < 1
and ||z +y|| > 2 —J we have ||z —y|| < . An alternative way to
speak about a of strictly (or uniformly) convex Banach space (V ||-||)
is to say that V has a strictly convex (respectively, uniformly convex)
norm. Every uniformly convex Banach space is strictly convex. The
converse holds in finite-dimensional Banach spaces, but not in gen-
eral. By the Milman—Pettis theorem, every uniformly convex space is
reflexive. In general, there is no implication between strictly convex-
ity and reflexivity. We will use a well-known result from functional
analysis, stating that every convex and closed non-empty subset of a
strictly convex Banach space has an element of smallest norm

We prove that every u € NMP(X) has a B—weak upper gradient
gy € B minimizing the B—norm, provided that the Banach function
space B is strictly convex. If in addition the norm of is strictly mono-
tone, it follows that there exists a B—weak upper gradient g, € B of
u in X such that g, < g p—a.e. in X, whenever g € B is a B—weak
upper gradient of v in X. Our results on the existence of a minimal
B— weak upper gradient generalize the known results from [16] and
[17].
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2. MAIN RESULTS

The following characterization of a B—weak upper gradient is well-
known for B = LP (X), p > 1 (see [10, Lemmas 3.1 and 3.3]).

Lemma 2. Let u: X — R and let g € B be a Borel measurable non-
negative function. For each compact rectifiable curve v parameterized

by arc length define h(s) =u (v (s)), s € [0,1(7)].

a) Assume that for B—almost every curve vy € I'ye. the function h
is absolutely continuous on [0,1 ()] and

(2.1) |W (s)| < g(~(s)) for almost every s € [0,1(7)].

Then g is a B—weak upper gradient of wu.
b) Conversely, if g is a B—weak upper gradient of w, then (2.1)
holds for B—almost every curve v € ['yee

Proof. a) For fixed v € T, denote [ := [ () and let z = ~v(0) and
y = 7 (1) be the endpoints of 7. We have

l !
u(a) = u (@) = b0~ bV < [N )lds < [gtr(s)ds = [ gds
0

0 v
Hence |u(z) —u(y)| < /g ds for B—almost every curve v € T,

v
with endpoints x, y, therefore g is a B—weak upper gradient of u.
b) Assume that g is a B—weak upper gradient of u. Since g € B, it

follows that u € ACCp (X), by [12, Proposition 3 (a)]. Moreover, for
B—almost every curve v € I',... the function A is absolutely continuous

on [0,1], / g ds < oo and the following inequality holds for every

.
s1 < $9in [0,1]:

u (y (51)) — (7 (52))] < / g ds.

7'[31752]

Being absolutely continuous on [0,[], the function A is differentiable
L' —almost everywhere on [0,1]. By Lebesgue differentiation theorem,
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for £!'—almost every s € [0,(] we have

S

/ 9(+(1)) dt| = g (3 (s0))

S0

Suppose that h is differentiable at s, and (2.2) holds.  Since

s

h(so) = h ()] = lu(y(s0) — u(y(s))] < / g(4(1)) dt|, it follows

S0

7" (50) < g(7(50)) -

2.2 li
(22) b |s — so|

that

The following property, showing that we can paste two B—weak
upper gradients of a function, is a generalization of [17, Lemma 4.10]
(a result stated without proof).

Lemma 3. Assume that g1,g92 € B are two B—weak upper gradients
of a function u : X — R and that F C X 1is a Borel set. Then the
Junction p = gixx\p + 92X 15 also a B—weak upper gradient of u in
X.

Proof. Since F'is a Borel set and g7, g are Borel measurable functions,
it follows that the function p is also Borel measurable. By Lemma 2
(b) and by the subadditivity of B—modulus, there exists a family of
curves I'g C 'y with Mp (I'g) = 0 such that for every v € Iy \ T'o

[(uon) | <grovy,k=1,2.

L' —almost everywhere on [0, (v)]. Note that

[(wo) (s)] < g1(v())xx\r(7(5)) +92(7(5))xF (7(s)) for L' —almost
every s € [0,1()]. Then p is a B—weak upper gradient of u in X, by
Lemma 2 (a). B

For every function u : X — R we denote by G, the family of all
B—weak upper gradients g € B of v in X.

Lemma 4. For every function u € NYB (X) the set G,, C B is convex
and closed.
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Proof. If G, is empty, there is nothing to prove. Assume that G, is
non-empty. The set G, is convex, since |u(z)) — u(y)| < /gkds for

v
k = 1,2 implies

) = u@)] < [ Ougn + Aage) ds
gl
for every A, Ay > 0 with Ay + Ay = 1, by the subadditivity of the
B—modulus.

Assume that g; € G, for j > 1 and g; — g in B. Next we apply to
the sequences u; = u, j > 1 and g;, j > 1 the substitute of Mazur’s
lemma in NYB(X), Lemma 1. It follows that ¢ € B is a B—weak
upper gradient of u in X. This proves that GG, is closed in the normed
space B. 1

Lemma 5. If the Banach function space B is strictly convez, then
every u € NYP(X) has a B—weak upper gradient g, € B minimizing
the B—norm, that is satisfying ||gull 5 = inf {||g]l 53 : g € Gu}.

Proof. Let u € NY%P(X). By Lemma 4, the non-empty set G, is
convex and closed. Since B is a strictly convex Banach space, every
convex and closed non-empty subset of B has an element of smallest
norm. §

Theorem 1. Assume that the Banach function space B has a strictly
convex and strictly monotone norm. Then for every u € NP (X)
there exists a B—weak upper gradient g, € B of u in X such that
gu < g p—a.e. in X, whenever g € B is a B—weak upper gradient of
win X.

Proof. Let v € N*B(X). By Lemma 5 there exists g, € G, such that
gl = it {llgll s : 9 € G-

Fix arbitrarily ¢ € G,,. We will prove that g, < g p—a.e. in X,
i.e. the set F':= {x € X : g,(z) > g(x)} has measure zero. Note that
F' is a Borel set, since g, and g are Borel measurable functions. By
Lemma 3, the function p = guxx\p + gxr belongs to G,.

Since g, is an element of smallest norm in G, we have ||g,||z <
llpll g- On the other hand, p () < g,(z) for every z € X, hence by the
monotonicity of the norm in a Banach function space, ||p|z < |lgul| 5-
It follows that ||p]| 5 = ||g9ull 5
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Since the norm ||-||z is strictly monotone, from p < g, p—a.e. in
X and |pllz = llgullg it follows that p = g, p—a.e. in X. Then
(9 — gu) Xp =0 p—a.e. in X, but g — g, < 0 on F, hence p (F) =0,
qg.e.d. n

Corollary 1. Let ¥ be a Young function that is doubling and strictly
convex. For every u € NV (X)) there exists a V—weak upper gradient
gu € LY (X) of u in X such that g, < g p—a.e. in X, whenever
g € LY (X) is a V—weak upper gradient of u in X.

Proof. Assume that (X, A, u) is a of a measure space, where the mea-
sure p is atomless. It was proved in [6] that if the Young function V¥ is
doubling and strictly convex, then the Orlicz space LY (X) is strictly
convex. (The converse holds if p (X) = +oo. For p(X) < +oo, the
Orlicz space LY (X) is strictly convex if and only if ¥ strictly convex,
vanishing only at the origin and (1.2) is satisfied for large t).

A Young function V¥ is convex and increasing, therefore W is strictly
increasing if ¥ is strictly convex.

If the Young function V¥ is strictly increasing and doubling, then the
Luxemburg norm on LY (X) is strictly monotone. Let f,g € LY (X),
such that 0 < ¢ < f p—ae. in X and |[f[|vx) = 9l pvx) =t N
If N =0, then f =g =0 p—ae in X. If N > 0, then by [13,

Proposition 1.2.11], we have /\I/ (%) du = /\I/ (%) dp = 1. The

X X

function ¢ := V¥ (%) - (%) is nonnegative, by the monotonicity of

U and /go dp = 0, therefore ¢ = 0 p—a.e. in X. It follows that
X

f =g p—a.e. in X, since ¥ is injective. In our case the measure u

is atomless and the Young function ¥ is doubling and strictly convex.

Then LY (X) has a strictly convex and strictly monotone norm. By

Theorem 1 the claim follows, taking into account that for B = LY (X)

the notion B—weak upper gradient is called W —weak upper gradient. g

Remark 1. Corollary 1 is a consequence of [17, Theorem 6.6, Theo-
rem 6.7, Lemma 6.8, Theorem 6.11]

Corollary 2. [16, Corollary 3.7] Let 1 < p < oco. Then every function
u € NY(X) has is a p—weak upper gradient g, € LP (X) such that
gu(z) < g(z) for u—almost every x € X, whenever g is a p—weak
upper gradient of u.
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Proof. For W(t) = %, t € [0,00), the corresponding Orlicz space is a
Lebesgue space: LY (X) = L? (X). The Young function ¥ is doubling.
Since p > 1, VU is strictly convex. The claim follows by Corollary 1. g
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