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THE SPEED OF CONVERGENCE OF THE RIEMANN
SUMS WITH APPLICATIONS TO GAMMA

FUNCTION

CRISTINEL MORTICI

Abstract. The purpose of this paper is to establish some results
about the convergence speed of the Riemann sums and to use them
to give some properties related with Gamma function. A new proof
of the Stirling’s formula is given, then we pass to the continuous case,
using the Croft’s lemma.

1. Introduction

Let f : [0, 1] → R be a Riemann integrable function.
One of the most known formula for estimating the definite integral

of the function f uses the Riemann sums, since
∫ 1

0

f(x) d x = lim
n→∞

1

n

n∑

k=1

f

(
k

n

)
.

We study here the speed of convergence of this sequence of Riemann
sums, then we apply these results to establish some properties of the
Gamma function. The Stirling’s formula

n! ≈
(n

e

)n√
2πn

————————————–
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is an approximation for the factorial function, which provides good
results for large values of n. It was first discovered by Abraham de
Moivre in the form
n! ≈ [constant] · nn+ 1

2 · e−n

(with missing constant), while Stirling’s contribution consisted of
showing that the constant is

√
2π.

We establish the Stirling’s formula in continuous form, by rewriting
the multiplication formula of Gauss as a Riemann sum.

2. An estimate of speed of convergence of Riemann sums

We give the following
Theorem 2.1. Let f : [0, 1] → R be a three times continuously

differentiable function with f ′′′ bounded. Then:

(2.1) lim
n→∞

n

(
1

n

n∑

k=1

f

(
k

n

)
−

∫ 1

0

f(x) d x

)
=

f(1)− f(0)

2

and
(2.2)

lim
n→∞

n

[
n

(
1

n

n∑

k=1

f

(
k

n

)
−

∫ 1

0

f(x) d x

)
− f(1)− f(0)

2

]
=

f ′(1)− f ′(0)

12
.

Proof. By Taylor’s formula, for every x ∈
[
k − 1

n
,
k

n

]
, 1 ≤ k ≤ n,

there exists a ∈
(

x,
k

n

)
such that

f

(
k

n

)
−f(x) = f ′

(
k

n

)(
k

n
− x

)
−1

2
f ′′

(
k

n

)(
k

n
− x

)2

+
1

6
f ′′′ (a)

(
k

n
− x

)3

.

If we assume that m ≤ f ′′′ ≤ M, for some real numbers m < M, we
get

f

(
k

n

)
−f(x) ≤ f ′

(
k

n

)(
k

n
− x

)
−1

2
f ′′

(
k

n

)(
k

n
− x

)2

+
M

6

(
k

n
− x

)3

.

By integration on

[
k − 1

n
,
k

n

]
with respect to x, we deduce that

1

n
f

(
k

n

)
−

∫ k
n

k−1
n

f(x) d x ≤ f ′
(

k

n

) ∫ k
n

k−1
n

(
k

n
− x

)
d x−
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−1

2
f ′′

(
k

n

) ∫ k
n

k−1
n

(
k

n
− x

)2

d x +
M

6

∫ k
n

k−1
n

(
k

n
− x

)3

d x,

or

1

n
f

(
k

n

)
−

∫ k
n

k−1
n

f(x) d x ≤ 1

2n2
f ′

(
k

n

)
− 1

6n3
f ′′

(
k

n

)
+

M

24n4
.

By summation from k = 1 to k = n, we obtain

1

n

n∑

k=1

f

(
k

n

)
−

∫ 1

0

f(x) d x ≤ 1

2n2

n∑

k=1

f ′
(

k

n

)
− 1

6n3

n∑

k=1

f ′′
(

k

n

)
+

M

24n3
,

then, by multiplying with n, we deduce that
(2.3)

n

(
1

n

n∑

k=1

f

(
k

n

)
−

∫ 1

0

f(x) d x

)
≤ 1

2n

n∑

k=1

f ′
(

k

n

)
− 1

6n2

n∑

k=1

f ′′
(

k

n

)
+

M

24n2
.

Now, by similar computations, starting from the inequality

f

(
k

n

)
−f(x) ≥ f ′

(
k

n

)(
k

n
− x

)
−1

2
f ′′

(
k

n

)(
k

n
− x

)2

+
m

6

(
k

n
− x

)3

,

(because f ′′′ ≥ m), we obtain
(2.4)

n

(
1

n

n∑

k=1

f

(
k

n

)
−

∫ 1

0

f(x) d x

)
≥ 1

2n

n∑

k=1

f ′
(

k

n

)
− 1

6n2

n∑

k=1

f ′′
(

k

n

)
+

m

24n2
.

If we study carefully the relations (2.3)-(2.4) and take into account
that

lim
n→∞

1

n

n∑

k=1

f ′
(

k

n

)
=

∫ 1

0

f ′(x) d x = f(1)− f(0),

then (2.1) is proved.

Further, by subtracting
f(1)− f(0)

2
from (2.3), then multiplying

by n, we obtain

n

[
n

(
1

n

n∑

k=1

f

(
k

n

)
−

∫ 1

0

f(x) d x

)
− f(1)− f(0)

2

]
≤

≤ 1

2
· n

(
1

n

n∑

k=1

f ′
(

k

n

)
−

∫ 1

0

f ′(x) d x

)
− 1

6n

n∑

k=1

f ′′
(

k

n

)
+

M

24n
.
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From (2.4), we deduce in a similar way that

n

[
n

(
1

n

n∑

k=1

f

(
k

n

)
−

∫ 1

0

f(x) d x

)
− f(1)− f(0)

2

]
≥

≥ 1

2
· n

(
1

n

n∑

k=1

f ′
(

k

n

)
−

∫ 1

0

f ′(x) d x

)
− 1

6n

n∑

k=1

f ′′
(

k

n

)
+

m

24n
.

Now, using the limit (2.1), we obtain

lim
n→∞

n

(
1

n

n∑

k=1

f ′
(

k

n

)
−

∫ 1

0

f ′(x) d x

)
=

f ′(1)− f ′(0)

2

and the theorem is completely proved, taking into account that

lim
n→∞

1

n

n∑

k=1

f ′′
(

k

n

)
=

∫ 1

0

f ′′(x) d x = f ′(1)− f ′(0).¤

3. Applications to the Gamma function

We apply now the Theorem 2.1 to establish some new results re-
garding the famous Gamma function

Γ(x) =

∫ ∞

0

tx−1 e−t d t , x > 0.

Let us define the function f : [0, 1] → R, by the formula

f(x) = ln Γ(a + x),

where a > 0 is arbitrarily fixed. The idea is to use the folowing
multiplication Gauss formula (e.g., [1, 3, 5])

Γ

(
a +

1

n

)
Γ

(
a +

2

n

)
· ... · Γ

(
a +

n

n

)
= a (2π)

n−1
2 n

1
2
−naΓ (na)

as a Riemann sum associated to the function f.
Theorem 3.1. For every a > 0, we have

lim
n→∞

n
√

Γ (na)

na
=

1√
2π

exp

(∫ a+1

a

ln Γ (t) d t

)
.

Proof. By using a simple change of variable, we have
∫ a+1

a

ln Γ (t) d t =

∫ 1

0

ln Γ (a + x) d x =



CONVERGENCE OF RIEMANN SUMS AND GAMMA FUNCTION 135

= lim
n→∞

1

n

n∑

k=1

ln Γ

(
a +

k

n

)
= lim

n→∞
1

n
ln

(
n∏

k=1

Γ

(
a +

k

n

))
=

= lim
n→∞

1

n
ln

[
a (2π)

n−1
2 n

1
2
−naΓ (na)

]
= lim

n→∞
ln

[
n
√

a (2π)
n−1
2n n

1
2n
−a n

√
Γ(na)

]
=

= lim
n→∞

ln

[√
2π ·

n
√

Γ(na)

na

]

and the conclusion follows by consider the exponential. ¤
Further, by using the Raabe’s formula (e.g., [5, 6])

∫ a+1

a

ln Γ(t) d t = a ln a− a +
1

2
ln 2π,

we can obtain from the Theorem 3.1 the following
Corollary 3.1. For every a > 0, we have

lim
n→∞

n
√

Γ (na)

na
=

(a

e

)a

.

After a simple transformation, we obtain

(3.1) lim
n→∞

[Γ (na)]
1

na

na
=

1

e
.

If we denote by g : (0,∞) → R, the continuous function

g(x) =
[Γ(x)]

1
x

x
,

then from the limit (3.1) it results that for all a > 0, we have
lim

n→∞
g(na) = e−1.

We can apply now the Croft’s lemma (e.g., [4]) to deduce that the
function g has the same limit at infinity, that is

lim
x→∞

[Γ(x)]
1
x

x
=

1

e
.

We use now the limit (2.1) to prove the continuous form of the Stir-
ling’s formula.

Theorem 3.2. We have

(3.2) lim
x→∞

Γ(x + 1)(
x
e

)x√
2πx

= 1.
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Proof. The limit (2.1) from the Theorem 2.1 in the case of the smooth
function f(x) = ln Γ(a + x) becomes

lim
n→∞

n

[
1

n

n∑

k=1

ln Γ

(
a +

k

n

)
−

∫ 1

0

ln Γ(a + x) d x

]
=

ln Γ(a + 1)− ln Γ(a)

2
.

Using again the Raabe’s formula, we obtain

lim
n→∞

(
ln

[
a (2π)

n−1
2 n

1
2
−naΓ (na)

]
− na ln a + na− n

2
ln 2π

)
=

1

2
ln a,

or equivalently,

lim
n→∞

Γ(na) ena

(na)na− 1
2

=
√

2π.

Consider now the continuous function h : (0,∞) → R, given by

h(x) =
Γ(x) ex

xx− 1
2

.

For every a > 0, we have lim
n→∞

h(na) =
√

2π, so with Croft’s lemma,

it results that lim
x→∞

h(x) =
√

2π. This limit is in fact the conclusion,

where we have only to replace Γ(x) = Γ(x + 1)/x. ¤
Finally, by applying the limit (2.2), we can state the following
Theorem 3.3. We have

(3.3) lim
x→∞

(
Γ(x + 1)

(x
e
)x · √2πx

)x

= 12
√

e.

By consider the logarithm, we obtain

lim
x→∞

x

(
Γ(x + 1)

(x
e
)x · √2πx

− 1

)
=

1

12
,

from which we deduce the approximation formula

(3.4) Γ(x + 1) ≈
(

1 +
1

12x

)
·
(x

e

)x

·
√

2πx.

Thus for all positive integers n, we have the approximations

(3.5) n! ≈
(

1 +
1

12n

) (n

e

)n√
2πn,
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which is stronger than the Stirling’s formula, as it results also from
the following table:

n! Stirling Formula 3.5
n = 10 3628800 3.5987× 106 3.6287× 106

n = 15 1307674368000 1.3004× 1012 1.3077× 1012

n = 30 2652528598121910586363048× 107 2.6452× 1032 2.6525× 1032

Proof of the Theorem 3.3. By using the limit (2.2), we have

lim
n→∞

n

[
n∑

k=1

f

(
k

n

)
− n

∫ 1

0

f(x) d x− f(1)− f(0)

2

]
=

= lim
n→∞

n

[(
ln

[
a (2π)

n−1
2 n

1
2
−naΓ (na)

]
− na ln a + na− n

2
ln 2π

)
− 1

2
ln a

]
=

= lim
n→∞

n

[
ln a +

n− 1

2
ln(2π) +

(
1

2
− na

)
ln n+

+ ln Γ(na)− na ln a + na− n

2
ln 2π − 1

2
ln a

]
=

= lim
n→∞

n

[
ln Γ(na) + na +

(
1

2
− na

)
ln na− 1

2
ln 2π

]
=

= lim
n→∞

n · ln Γ(na) ena

nana− 1
2 · √2π

= lim
n→∞

ln

(
Γ(na + 1) ena

nana · √2πna

)n

.

As we proved, this limit is equal to

f ′(1)− f ′(0)

12
=

1

12

(
Γ′(a + 1)

Γ(a + 1)
− Γ′(a)

Γ(a)

)
=

1

12a
.

The last equality follows from the well known recurrence relation

ψ(x + 1) = ψ(x) +
1

x
, x > 0

where ψ(x) =
d

d x
ln Γ(x) =

Γ′(x)

Γ(x)
is the digamma function (e.g., [1],

[3], [5]).
If we multiply by a, then by taking the exponential, we obtain

(3.6) lim
n→∞

(
Γ(na + 1) ena

nana · √2πna

)na

= 12
√

e

and the conclusion follows by the Croft’s lemma. ¤
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4. Conclusions

The approximation formula (3.5), which is the first approximation
of the Stirling’s series (e.g., [2])
(4.1)

n! ≈
(n

e

)n√
2πn

(
1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+ ...

)
,

was obtained by using the first three derivatives of the function f in
the proof of the Theorem 2.1.

Now remark that, at least theoretically, if we consider in the proof
of the Theorem 2.1 additional terms in the Taylor’s formula, then we
can obtain more terms of the approximation (4.1).
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