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Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 19 (2009), No. 1, 155 - 164

SOME MINIMAL HELICOIDAL SURFACES IN
MINKOWSKI SPACE R3

1

ALINA-MIHAELA PATRICIU

Abstract. A helicoidal surface is a surface obtained by rotating a
curve around an axis and simultaneously translating the curve along
that axis. In this paper we identify some minimal surfaces inside of
three classes of helicoidal surfaces in the Minkowski space R3

1.

1. Preliminaries

Let R3 be a 3 - dimensional real vector space.

Definition 1.1. The 3 - dimensional Minkowski space is the pair
(R3, 〈·, ·〉1), denoted by R3

1, where the pseudo - inner product 〈·, ·〉1
is given by

(1.1) 〈x, y〉1 = −x1y1 + x2y2 + x3y3

for every x = (x1, x2, x3), y = (y1, y2, y3), or

(1.2) 〈x, y〉1 = xtηy

where η = diag (−1, 1, 1).

It is easy to verify that B = {ξ1 = (1, 0, 0), ξ2 = (0, 1, 0), ξ3 =
(0, 0, 1)} is an orthonormal base of R3

1.
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The rotations about spacelike and timelike axes form the so-called
Lorentz group SO(2,1). We quote from [1] the following part of

Proposition 1.1. The rotations around the timelike axis ξ1, the
spacelike axes ξ2, ξ3, are respectively determined by the following ro-
tational matrices:

i) R =

 1 0 0
0 cos v − sin v
0 sin v cos v

 if the axis is ξ1;

ii) R =

 cosh v 0 sinh v
0 1 0

sinh v 0 cosh v

 if the axis is ξ2;

iii) R =

 cosh v sinh v 0
sinh v cosh v 0

0 0 1

 if the axis is ξ3.

In each case, R is a Lorentz transformation that preserves the cor-
responding axis, i.e., R satisfies the following conditions:

(1.3)

 Rξk = ξk, for all ξk ∈ {ξ1, ξ2, ξ3, ξ1 ± ξ2, ξ1 ± ξ3}
RηRt = η
detR = 1

If we take, for example, the axis determined by the timelike vector
ξ1 = (1, 0, 0), then the curve α will be in the plane Oξ1ξ2 or Oξ1ξ3.

In the first case (α ⊂ (Oξ1ξ2)), α(u) = (f(u), g(u), 0). Taking
the parameter u on the rotational axis (ξ1), the curve has the form:
α(u) = (u, a(u), 0) and the equation of helicoidal surface is:

X(u, v) = (u+ b(v), a(u) cos v, a(u) sin v).

In generally, this is not a regular surface. The regularity condition
implies a′(u)a(u) 6= 0. This condition doesn’t take place if a(u) = 0,
which means that the rotational curve is intersecting the rotational
axis or if a′(u) = 0. In the following we will eliminate this situation, so
we will suppose that we rotate an arc of curve which doesn’t intersect
the rotational axis.

Definition 1.2. The regular surface of equation

(1.4) X(u, v) = (u+ b(v), a(u) cos v, a(u) sin v)

with a′(u) 6= 0 is called 1,2H1 - helicoidal surface.
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In the second case, let α(u) = (u, 0, a(u)) be a curve in the plane
Oξ1ξ3 and let β(v) = (b(v), 0, 0) an arbitrary vector. Rotating this
curve around axis ξ1 and translating in the same time with vector
β(v), taking into acount Proposition 1.1 we get:

Definition 1.3. The regular surface of equation

(1.5) X(u, v) = (u+ b(v),−a(u) sin v, a(u) cos v)

with a′(u) 6= 0 is called 1,3H1 - helicoidal surface.

The change of parameter v 7→ v +
π

2
in 1,2H1 - helicoidal surface,

equivalent with dephasing of rotational angle with
π

2
, lead to a 1,3H1 -

helicoidal surface (with another vector β, translated) and conversely,
starting from a 1,3H1 - helicoidal surface, making the change of variable

v 7→ v − π

2
, we obtain a 1,2H1 - helicoidal surface.

Similarly, if the rotational axis is the spacelike vector ξ2 = (0, 1, 0),
then we have the following surfaces.

Definition 1.4. The regular surface of equation

(1.6) X(u, v) = (a(u) cosh v, u+ b(v), a(u) sinh v)

with a′(u) 6= 0 is called 1,2H2 - helicoidal surface.

Definition 1.5. The regular surface of equation

(1.7) X(u, v) = (a(u) sinh v, u+ b(v), a(u) cosh v)

with a′(u) 6= 0 is called 2,3H2 - helicoidal surface.

For the axis determined by the spacelike vector ξ3 = (0, 0, 1), we
have:

Definition 1.6. The regular surface of equation

(1.8) X(u, v) = (a(u) cosh v, a(u) sinh v, u+ b(v))

with a′(u) 6= 0 is called 1,3H3 - helicoidal surface.

Definition 1.7. The regular surface of equation

(1.9) X(u, v) = (a(u) sinh v, a(u) cosh v, u+ b(v))

with a′(u) 6= 0 is called 2,3H3 - helicoidal surface.
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Since the coordinates ξ2 and ξ3 have a symmetric role, there is
no difference (just a symmetry) between 1,2H2 - helicoidal surfaces
and 1,3H3 - helicoidal surfaces, respectively between 2,3H2 - helicoidal
surfaces and 2,3H3 - helicoidal surfaces.

We recall

Theorem 1.1 ([1]). Let X(u, v) be a surface in R3
1. The mean cur-

vature H of this surface is given by:

(1.10) H =
1

2

GL+ EN − 2FM

EG− F 2

where E, F , G, the coefficients of the first fundamental form, are
given by

(1.11) E = 〈Xu, Xu〉1 , F = 〈Xu, Xv〉1 , G = 〈Xv, Xv〉1
and L, M , N , the coefficients of the second fundamental form, are
given by

(1.12)


L =

1√
EG− F 2

det(Xu, Xv, Xuu)

M =
1√

EG− F 2
det(Xu, Xv, Xuv)

N =
1√

EG− F 2
det(Xu, Xv, Xvv)

2. Main results

In the following we shall look for minimal surfaces (H = 0) in each
of these classes. Thus we have

Proposition 2.1. Let S be a 1,2H1 - helicoidal surface given by (1.4).
The mean curvature of surface S is:

H =
1

2

ω−η+a(u)− 2γ − σ−θ
(ω−a2(u)− γ)3/2

where

(2.1) ε =

{
1, if S is timelike
−1, if S is spacelike

(2.2)
ω− = a′2(u)− 1, σ− = a2(u)− b′2(v),

η+ = a(u) + a′(u)b′′(v), γ = a′2(u)b′2(v),
θ = a(u)a′′(u)
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Proof. Since for a 1,2H1 - helicoidal surface we have:

Xu = (1, a′(u) cos v, a′(u) sin v), Xv = (b′(v),−a(u) sin v, a(u) cos v),

it follows, successively, the coeficients of the first fundamental form:

E = 〈Xu, Xu〉1 = a′2(u)− 1,

F = 〈Xu, Xv〉1 = −b′(v),

G = 〈Xv, Xv〉1 = a2(u)− b′2(v),

from where

EG− F 2 = a2(u)(a′2(u)− 1)− a′2(u)b′2(v);

the coeficients of the second fundamental form are:

L = − a(u)a′′(u)√
a2(u)(a′2(u)− 1)− a′2(u)b′2(v)

,

M = − a′2(u)b′(v)√
a2(u)(a′2(u)− 1)− a′2(u)b′2(v)

,

N =
a2(u) + a(u)a′(u)b′′(v)√

a2(u)(a′2(u)− 1)− a′2(u)b′2(v)

and the mean curvature is:

H = 1
2
[(a′2(u)− 1)a(u)(a(u) + a′(u)b′′(v))− 2a′2(u)b′2(v)−

−(a2(u)− b′2(v))a(u)a′′(u)]/2[(a2(u)(a′2(u)− 1)− a′2(u)b′2(v))3/2].

For
ω− = a′2(u)− 1, σ− = a2(u)− b′2(v),

η+ = a(u) + a′(u)b′′(v),
γ = a′2(u)b′2(v), θ = a(u)a′′(u)

the mean curvature become:

H =
1

2

ω−η+a(u)− 2γ − σ−θ
(ω−a2(u)− γ)3/2

and so the proof is completed. �

Corollary 2.1. If for a 1,2H1 - helicoidal surface, a(u) and b(v), with
a′(u) 6= ±1, satisfy the relation

(2.3) b′′(v) = p(u)b′2(v) + q(u)
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where
(2.4)

p(u) =
2a′2(u)− a(u)a′′(u)

a(u)a′(u)(a′2(u)− 1)
, q(u) =

a3(u)a′′(u)− a2(u)(a′2(u)− 1)

a(u)a′(u)(a′2(u)− 1)

then the 1,2H1 - helicoidal surface is minimal.

Proof. From

b′′(v) = p(u)b′2(v) + q(u)

=
2a′2(u)− a(u)a′′(u)

a(u)a′(u)(a′2(u)− 1)
b′2(v) +

a3(u)a′′(u)− a2(u)(a′2(u)− 1)

a(u)a′(u)(a′2(u)− 1)

we get

a(u)a′(u)(a′2(u)− 1)b′′(v)− (2a′2(u)− a(u)a′′(u))b′2(v)−
−a3(u)a′′(u)− a2(u)(a′2(u)− 1) = 0

relation replaced in the mean curvature formula lead to H = 0. �

Remark 2.1. Simultaneously, p(u) = 0 and q(u) = 0 can’t take place;
indeed, from p(u) = 0 and q(u) = 0 it follows{

2a′2(u)− a(u)a′′(u) = 0
a3(u)a′′(u)− a2(u)(a′2(u)− 1) = 0

.

The second equation lead to:

a(u)a′′(u)− a′2(u) + 1 = 0

from where, using the first equation we get a′2(u) + 1 = 0, equation
with no solution.

Corollary 2.2. If for a 1,2H1 - helicoidal surface, we have between
a(u) = Au+B, A 6= ±1 and b(v) = Cv+D, B 6= 0 a relation of form

(A2 − 1)(Au+B)2 − 2A2C2 = 0

then the surface is minimal.

Proof. Replacing a′′(u) = 0 and b′′(v) = 0 in the expresion of mean
curvature of a 1,2H1 - helicoidal surface we obtain:

H =
1

2

(a′2(u)− 1)a2(u)− 2a′2(u)b′2(v)

(a2(u)(a′2(u)− 1)− a′2(u)b′2(v))3/2

From the condition (a′2(u)− 1)a2(u) = 2a′2(u)b′2(v) if follows:

H =
1

2

0

a′3(u)b′3(v)
= 0,
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so, the surface is minimal. �

Proposition 2.2. Let S be a spacelike 2,3H2 - helicoidal surface. The
mean curvature of surface S are:

(2.5) H =
1

2

2γ + σ−a(u)a′′(u)− ω+η−a(u)

(γ − ω+a2(u))3/2
,

where

(2.6) ε =

{
1, if S is timelike
−1, if S is spacelike

and

(2.7)
ω+ = a′2(u) + 1, σ− = a2(u)− b′2(v),

η− = a(u)− a′(u)b′′(v), γ = a′2(u)b′2(v),
θ = a(u)a′′(u)

Proof. Successively we have:

E = 1 + a′2(u),

F = b′(v),

G = b′2(v)− a2(u),

EG− F 2 = −a2(u)− a′2(u)a2(u) + a′2(u)b′2(v)

= a′2(u)b′2(v)− a2(u)(1 + a′2(u)),

L = − a(u)a′′(u)√
a′2(u)b′2(v)− a2(u)(1 + a′2(u))

,

M = − a′2(u)b′(v)√
a′2(u)b′2(v)− a2(u)(1 + a′2(u))

,

N =
a(u)a′(u)b′′(v)− a2(u)√

a′2(u)b′2(v)− a2(u)(1 + a′2(u))
,

from where, the mean curvature of surface S is:

H =
1

2
[(1 + a′2(u))(a(u)a′(u)b′′(v)− a2(u)) + 2a′2(u)b′2(v)−

−(b′2(v)− a2(u))a(u)a′′(u)]/[(a′2(u)b′2(v)− a2(u)(1 + a′2(u)))3/2]

For
ω+ = a′2(u) + 1, σ− = a2(u)− b′2(v),

η− = a(u)− a′(u)b′′(v), γ = a′2(u)b′2(v),
θ = a(u)a′′(u)
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the mean curvature become:

H =
1

2

−ω+η−a(u) + 2γ + σ−a(u)a′′(u)

(γ − ω+a2(u))3/2
.

�

Corollary 2.3. If for a spacelike 2,3H2 - helicoidal surface, a(u) and
b(v), with a′(u) 6= ±1, satisfy the relation

(2.8) b′′(v) = P (a)b′2(v) +Q(a)

where
(2.9)

P (a) =
a(u)a′′(u)− 2a′2(u)

(1 + a′2(u))a(u)a′(u)
, Q(a) =

a2(u)(1 + a′2(u))− a3(u)a′′(u)

(1 + a′2(u))a(u)a′(u)

then, the 2,3H2 - helicoidal surfaces are minimal.

Proof. From hypothesis:

b′′(v) =
a(u)a′′(u)− 2a′2(u)

(1 + a′2(u))a(u)a′(u)
b′2(v) +

a2(u)(1 + a′2(u))− a3(u)a′′(u)

(1 + a′2(u))a(u)a′(u)
⇔

b′′(v)(1 + a′2(u))a(u)a′(u) = b′2(v)(a(u)a′′(u)− 2a′2(u))+
+a2(u)(1 + a′2(u))− a3(u)a′′(u),

relation that lead to H = 0. �

Corollary 2.4. There are no minimal 2,3H2 - helicoidal surfaces for
which a(u) = Au+B and b(v) = Cv +D, b′(v) 6= 0.

Proof. From the mean curvature formula, for a′′(u) = 0 = b′′(v) we
have:

H =
1

2

−(1 + a′2(u))a2(u) + 2a′2(u)b′2(v)

(a′2(u)b′2(v)− a2(u)(1 + a′2(u)))3/2

If −(1 + a′2(u))a2(u) + 2a′2(u)b′2(v) = 0, b′(v) 6= 0, then:

H =
1

2

0

(−a′2(u)b′2(v))3/2

imposible. �

Proposition 2.3. Let S be a spacelike 1,3H3 - helicoidal surface. The
mean curvature of surface S is:

(2.10) H =
1

2

2γ + σ−θ − η−ω+a(u)

(γ − ω+a2(u))3/2
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where

(2.11)
ω+ = 1 + a′2(u), σ− = a2(u)− b′2(v),

η− = a(u)− a′(u)b′′(v), γ = a′2(u)b′2(v),
θ = a(u)a′′(u)

Proof. Since

E = 1 + a′2(u),

F = b′(v),

G = b′2(v)− a2(u),

EG− F 2 = −a2(u) + a′2(u)b′2(v)− a′2(u)a2(u)

= −a2(u)(a′2(u) + 1) + a′2(u)b′2(v),

L = − a(u)a′′(u)√
a′2(u)b′2(v)− a2(u)(a′2(u) + 1)

,

M = − a′2(u)b′(v)√
a′2(u)b′2(v)− a2(u)(a′2(u) + 1)

,

N =
a2(u) + a(u)a′(u)b′′(v)√

a′2(u)b′2(v)− a2(u)(a′2(u) + 1)
,

we have the mean curvature:

H =
1

2
[(1 + a′2(u))a(u)(a′(u)b′′(v)− a(u)) + 2a′2(u)b′2(v)−

−(b′2(v)− a2(u))a(u)a′′(u)]/[(a′2(u)b′2(v)− a2(u)(a′2(u) + 1))3/2].

For
ω+ = 1 + a′2(u), σ− = a2(u)− b′2(v),

η− = a(u)− a′(u)b′′(v), γ = a′2(u)b′2(v),
θ = a(u)a′′(u)

the expresion of mean curvature become:

H =
1

2

2γ + σ−θ − η−ω+a(u)

(γ − ω+a2(u))3/2
.

�

Corollary 2.5. If for a spacelike 1,3H3 - helicoidal surface, a(u) and
b(v), with a′(u) 6= ±1, satisfy the relation

(2.12) b′′(v) = P (a)b′2(v) +Q(a)
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where

P (a) =
a(u)a′′(u)− 2a′2(u)

(1 + a′2(u))a(u)a′(u)
,

Q(a) =
a2(u)(1 + a′2(u))− a3(u)a′′(u)

(1 + a′2(u))a(u)a′(u)
then, the surface is maximal.

Proof. From

b′′(v) =
a(u)a′′(u)− 2a′2(u)

(1 + a′2(u))a(u)a′(u)
b′2(v) +

a2(u)(1 + a′2(u))− a3(u)a′′(u)

(1 + a′2(u))a(u)a′(u)

it follows

b′′(v)(1 + a′2(u))a(u)a′(u) = b′2(v)(a(u)a′′(u)−
−2a′2(u)) + a2(u)(1 + a′2(u))− a3(u)a′′(u)

from where, H = 0. �
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