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STATIONARY POINTS FOR MULTIFUNCTIONS ON
THREE METRIC SPACES

VALERIU POPA

Abstract. In this paper we prove a general unique fixed point
theorem for multifunctions on three metric spaces which generalize
the main results from [3] and [4].

1. Introduction

Let (X, d) be a complete metric space and B(X) be the set of all
nonempty bounded subsets of X.

As in [1] we define the function 6(A, B) with A and B in B(X)by
d(A, B) = sup{d(a,b) :a € A,b € B} .

If A is consists of a single point a we write §(A, B) = d(a, B). If
B also consists of a single point b, then §(A, B) = d(a,b). It follows
immediately that §(A, B) = §(B,A) > 0 and §(A,B) < 6(A,C) +
d(C, B) for all sets A, B,C' in B(X).

If (A, B) =0, then A= B = {a}.

Now if {A,},n = 1,2,... is a sequence in B(X), we say that it
converges to the set A in B(X) if:

(i) each point a € A is limit of some convergent sequence {a,, }, where
an € Ap,m=1,2,..;
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(ii) for arbitrary € > 0, there exists an integer N such that A, C A.
for all n > N, where A. is the union of all open spheres with centers
in A of radius ¢.

The following Lemma was proved in [1].

Lemma. If{A,} and {B,} are sequences of bounded subsets of a
complete metric space (X,d), which converge to the bounded subsets

A and B, respectively, then the sequence {J(A,, B,)} converges to
d(A, B).

If Tis a multifunction of X into B(X), a point z € X is called a
stationary point of T if Tz = {z}.

Recently, Jain and Fisher [2] initiated the study of fixed points for
multifunctions in three metric spaces. The present author [4] proved
a general fixed point theorem for functions on three metric space sat-
isfying implicit relations.

The following theorem is proved in [3].

Theorem 1 [3]. Let (X,dy),(Y,ds) and (Z,ds) be complete metric
spaces and suppose F' is a mapping of X into B(Y'), G is a mapping
of Y into B(Z) and H is a mapping of Z into B(X) satisfying the
following inequalities:

5%(HGy,HGFI) S cmax{ d1<l’,HGy)d2<y, Fx)752(y7 FI), 51(ZE7HGF:L1)7 }7

0 (x, HGFx)o3(Gy, GFx),63(Gy, GFx)d(x, HGy))

(Sg(FHZ,FHGy) S cm(m{ dQ(yaFHZ)53(Z7 Gy),ég(z,Gy)(Sg(y,FHGy), }’

oy, FHGY)\(Hz, HGy), 6, (H 2, HGy)dy(y, FH 2)

and

2 ds(z, GFx)01(x, Hz), 81 (x, Hz)d3(2, GFHz),
03(GFz, GFPHz) < Cmax{ 55(z, GFH2)8y(Far, FH2), 65(Far, FH=)ds(z, GF)

forallz i X, yimY and z in Z, where 0 < ¢ < 1.

If at least one of the mappings F, G, H is continuous, then HGF' has
a unique fized point u in X, FHG has a unique fixed point v in'Y and
GFH has a unique fized point w in Z. Further, Fu = {v}, Gv = {w}
and Hw = {u}.
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In [4], it is denoted by F5 the set of all continuous functions F :
R’ — Rsuch that there exists h € [0, 1) having the following property:
for every u > 0,v > 0 with

(a) F(u,v,0,u,w) <0 or (b) F(u,v,u,0,w) <0,

we have u < hmaz{v, w}.

Example 1 [4]. F(ty,...,t5) = t; — cmaxz{ts, ..., t5}, where ¢ € [0,1).
Example 2 [4]. F(ty,...,t5) = t2 — cmaz{tsts, taly, tats, tsts}, where
ce[0,1).

Example 3 [4]. F(ty,...,t5) =t + t7 — (atity + biitz + ctity + dt3),
where 0 <a+b+c+d<1.

The following theorem is proved in [4].

Theorem 2 [4]. Let (X,d), (Y,p) and (Z,0) be complete metric
spaces. Assume that T is a mapping of X into Y, S is a mapping of
Y into Z and R is a mapping of Z into X, satisfying the inequalities
F(d(RSy, RSTx), p(y, Tx),d(x, RSTx),d(x, RSy),o(Sy, STz)) <0,
F(p(TRz,TRSy),0(z,Sy), p(y, TRSy), p(y, TRz),d(Rz, RSy)) <0,

and
F(o(STx,STRz),d(z, Rz),0(z,STRz),0(z,5Tx), p(Tx,TRz)) <0

forallz in X,y inY, z in Z, where F € F5.

If at least one of the mappings R, S, T is continuous, then RST has
a unique fixed point u in X, T RS has a unique fized point v in Y and
STR has a unique fized point w in Z. Further, Tu = v, Sv = w and
Rw = u.

In this paper we prove a generalization of Theorem 1 which extends
Theorem 2 to multivalued mappings.

2. Main result

Theorem 3. Let (X,dy),(Y,ds) and (Z,ds) be complete metric
spaces and suppose that F' is a mapping of X into B(Y), G is a map-
ping of Y into B(Z), and H is a mapping of Z into B(X) satisfying
the inequalities

(1) (I)((Sl(HGyaHGFx):52<ya Fﬂ?),d1($,HGy),51($,HGF.’L'),53(Gy,GFI')) S 07

(2) ®(62(FHz, FHGY), 3(z,Gy),ds(y, FH=),02(y, FHGY),0:(Hz, HGy)) < 0,



168 VALERIU POPA

(3) ®(63(GFx,GFHz),01(x,Hz),d3(z, GFx),03(2, GFHz),0o(Fx, FHz)) <0,

forallx in X,y inY and z in Z where ® € F5 and is nonincreasing
in each of the variables to, ..., ts.

If al least one of the mappings F, G, H is continuous, then HGF' has
a stationary point u in X, FHG has a stationary point v in Y and
GFH has a stationary point w in Z. Further, Fu = {v}, Gv = {w}
and Hw = {u}. If in addition

(c) @ is increasing in variable tq,

then wu is the unique fixed point of HGF', v 1s the unique fixed point
of FHG and w s the unique fived point of GF H.
Proof. Let x = x; be an arbitrary point in X. We define the se-
quences {z,,} in X, {y,} in Y and {2,} in Z, inductively, as follows.
Choose a point y; in Fx; and a point z; in Gy;. In general, having
choosen z,, in X, y, in Y and 2, in M, choose z,,1 € Hz,, Yni1 €
Fr,q, 2001 € Gypyg forn=1,2, ...

Applying the inequality (1) for y = vy, and = = z,,; we have
successively

P 51(HGyn,HGFxn+1),52(yn,F$n+1),d1(l‘n+1,HGyn)7 <0
51 (In-l—la HGFxn—&-l)a 53(Gyn7 GFIn—i—l) -

Y

o 0 (HGYn, HGFxp 1), 09(F2p, Frpyi),0, <0
51 (HGyn, HGFanrl), 53(GF.CI]n, GFanrl) -
which implies by (a)
0N (HGYn, HGF 1) < hmax{d(Fx,, Fx,y1),03(GFx,, GFx,1)}.

Since d(xp11, Tni2) < 01 (HGYn, HGYpi1) < 01(HGYn, HGFxp 1), we
obtain

(4) d(zpi1, Tnr2) < hmax{ds(Fy, Fr,y1),05(GFT,, GFT,41)}

But, from (2) we have successively for z = z, 1 and y = y,
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d 52(FHZn717FHGyn)7(53(Zn71>Gyn)ad2(yn7FHznfl)a < 0
52(3/?17FHGyn)afsl(HznflaHGyn) - ’

o 0(FHz, 1, FHGY,), 03(GYn_1,Gyn), 0, 0
(52(FHZH_1,FGHyn>,51<HGyn_1,HGyn) - ’

which implies by (a) that

0o(FHzy1, FHGY,) < hmaz{d3(Gyn—1, GYyn), 62(HGyn—1, HGy,)}.
Since 0o(Fp, Frpy1) < 09(FHzy—1, FHGY,) we have

(5) 52(Fxna Fﬂfn+1) S hmaz{53(Gyn—l7Gyn)aél(HGyn—la HGyn)}

Similarly, from (3) we have successively for x = z,, and z = z,

o 03(GFx,,GFHz,), 0 (xn, Hzy), ds(z,, GFzy,), <0
53(Zn,GFHZn),(52(F{Bn,FHZn) -

<0

— Y

o 03(GFx,,GFHz,),6(Hz,—1, HGyy), 0,
03(GFx,,GFz,),09(FHz, 1, FHGY,)
which implies by (a) that
03(GFr,, GFHz,) <
hmax{d1(Hzn,_1, HGyy,),02(FHz, 1, FHGY,)}.

Since 03(GFz,, GFx,y 1) < 03(GFx,, GFHz,), we have

(6) 03(GFx,,GFx,) <
hmax{d,(Hz,—1, HGy,)}, 02(FHz, 1, FHGy,)}.

On the other hand, by (2) for z = z,_; and y = y,, we have succes-
sively

) 52(FHZ77,—17FHGyn)a53(2n—17Gyn)7d2<yn7FHZn—1)7 <0
52(:%17FGHyn)a(Sl(HZn—hHGyn) -
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o ( 2 (FHzyy, FHGY,), 05(GYn_1, Gyn), 0, ) <0
0(FHz, 1, FHGY,), 01 (HGYyn—1, HGy,) | —
which implies by (a) that
(7) 0a(FHzy1, FGyn) < hmaz{3(Gyn—1, Gyn), 61(HGYn—1, HGyy)}
Then by (4),(5),(6) and (7) it follows that

(8) dy (xn+17 J}n+2> < & (HGym HGyn—H)
< hmax{6(HGFx, 1,GHF,),03(GFHz, o, GFHz, 1)}.

Similarly, we have
(9) do(Yns1, Ynyo) < RP*max{6,(HGFz,_ 1, HGFx,),65(GFHz, o, GFHz, 1)}

and
(10) ds(2ni1, Zny2) < hPmax{0(HGFx, 1, HGFx,),03(GFHz, 5, GFHz, 1)}.

It now follows easily by induction on using (8), (9) and (10) that
d1(Tpt1, Tnta) <
R2 =2 maz {6, (HGFxo, HGFx3),05(GFHz, GFHz)},

dQ(ynJrh yn+2) <

2= Dmax {5, (HGFxy, HGFx3),03(GFHz, GFHz)},
d3(2ny1, Zni2) <

W Dmaz{6,(HGFxy, HGFw3), 03(GFHz, GFHz)}.

Then for r = 1,2, ... and arbitrary € > 0, we have by (8)
(11) d(xn-&-b mn-ﬁ—r-i-l) < (51 (HGym HGF-Tn-i-r)

S 51 (HGyn, HGyn+1) + 61 (HGyn+1, HGyn+2) + ...51(HGyn+r_1, HGF%}H_T)

< (P22 p20=0 4 2= man {5 (HG Fry, HGFx3),03(GFHz, GFHzy)}
<é€
for n greater that some N, since 0 < h < 1. Therefore, {z,} is a
Cauchy sequence in the complete metric space (X, d;) and so has a
limit » in X. Similarly, the sequences {y,,} and {z,} are also Cauchy
sequences with limits v and w in complete metric spaces (Y, dy) and
(Z,d3), respectively. Further, the inequality (11) gives
0 (u, HGFz,) < di(u, Tpmi1) + 01(Tme1, HGF ) <
di(u, Tyy1) + 01 (HGF 2y, HGF ) < dy(U, Tpy1) + €
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for m,n > N. Letting m tend to infinity in the above inequality, it
follows that 01(u, GFz,) < ¢ for n > N and therefore

(12) lim HGFx, = {u} = lim HGys,

n—oo

since € > ( is arbitrary. Similarly,
(13) Aim FHGyy, = {v} = lim F'Hz,
and

(14) lim GFHz, = {w} = lim GFx,.

Suppose that F' is continuous . Then nlLHOlo Fzx, = Fu = nh_{& Yp = 0.
Hence, Fu = {v}.
By (3) for x = u and z = z,, we have successively

P (53(GFU,GFHZn>,51(U, HZn),dg(Zn,GFU), <0
53(Zn,GFHZn)752(FU,FHZn) -

o 33(Gv,GFHz,),01(u, HGy,), 03(zy, Gv), <0
03(zn, GFHzy,), 09(v, FHzy,) =

Letting n tend to infinity we obtain
@(53(GU, w), 0, (53(G’U, 'UJ), O, O) <0.

By (b) it follows that d3(Gv,w) = 0, which implies Gv = {w}.

By (1) for y = v and x = z,, we have successively

o 0 (HGv, HGFx,),0s(v, Fx,,), di(z,, HGv), <0
o1 (xn, HGFxy,), 63(Gv, GFxy,) =

o 01 (Hw, HGFx,,), 05(v, Fx,), 61(x,, Hw), <0
01 (xn, HGFx,,),03(Gv, GFxy,) -

Letting n tend to infinity we have ®(d;(Hw,u), 0, d;(u, Hw),0,0) <
0, which implies by (b) that {u} = Hw.
By (1) for y = y,, and x = u we have successively

o 0 (HGy,, HGFu), 05(yn, Fu), 01 (u, HGy,,), <0
01 (u, HGFu), 03(Gy,, GFu) =
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o ( 01(HGyn, HGFu), 05(yn, v), 01 (1, HGyy), ) <0

01 (u, HGFu), d3(GFx,, Gv)
Letting n tend to infinity we have
& (61 (u, HGFu),0,0,0(u, HGFu),0) <0,

which implies by (a) that HGFu = {u}.
Similarly, by (2) for z = z,, and y = v we obtain {v} = FHGwv.
By (3) for z = z,, and z = w we obtain that GFHw = {w}.

To prove uniqueness,we will suppose that HGF has a second fixed
point ' so that v’ € HGFv'. Then there exist v" € Fu and v’ € Hw'.
Using inequality (2), we have successively

® S(FHwW , FHGV'), d3(w', GV'), dy(v', FHW'), <0
S (v, FHGY"),§;(Hw', HGV') =

<0

— ?

o S(FHw , FHGV'),03(GFu',GF'),0,
S(FHW' ,FHGV'),6;(HGvV', HGV')

which implies by (a) that

d(FHwW' , FHGV') < hmax{d3(GFv,GFu'), 6 (HGV', HGV')}.
Since do(FHw', FHw') < §3(FHw', FHGV') it follows that

(15) 62(FHw', FHw'") < hmaz{d3(GFu',GFu'),0,(HGv', HGV')}.
Similarly, applying (3), we get
(16) 63(GFu',GFu') < hmaz{6,(HGV', HGV'), do(FHw', FHw'")}
and using (1), we have
(17) 61 (HGV', HGV') < hmax{d(FHw', FHw'), d3(GFu',GFu')}.
From (15) and (16) we obtain
(18) 6o(FHw', FHw'") < h6;(HGV', HGV').
Similarly, (16) and (17) give
(19) 63(GFu',GFu') < hoo( FHwW', FHW')
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and (15) and (17) yield

(20) 6;(HGV', HGV') < hé3(GFu',GFu').

Now, it follows from (20), (19) and (18) that

N (HGV, HGV') < hos(GFu,GFu') <
h*5y(FHwW', FHwW')6, (HGV', HGV'),

which implies that 6, (HGv', HGv') = 0.

Similarly, éo(FHw', FHw') = 0 and 03(GFu',GFu') = 0.

Since 61 (v, Hw') < §1(HGV', HGV'), 62 (v, Fu') < §o( FHW' FHw')
and d3(w’, Gv') < §3(GFu',GFv'), it follows that Fu' = {v'}, Gv' =
{w'} and Hw' = {u'}. Further, HGFv = HGV = Huw' = {u'},
FHGV = FHW' = Fu = {v'}, GFHwW' = GFu' = Gv' = {w'}.

Using (1) and (c) we have successively

<0,

o 0 (HGv, HGF'), 65(v, Fu'),dy (v, HGv),
o (v, HGFU'), 63(Gv, GF')

O(di(u, u'), da(v, '), di(u,u), 0, ds(w,w’) <0,
which implies by (b) that
(21) dy(u,u") < hmax{ds(v,v"),ds(w,w")}.
Similarly, applying (2), we have
(22) dy(v,v") < hmax{ds(w,w"), d;(u,u")}
and using (3), we obtain
(23) ds3(w,w") < hmaz{d(u,u),ds(v,v")}.
Now (21) and (22) yield
(24) dy(u,u’) < hds(w,w").
Similarly, (22) and (23) imply
(25) da(v,v") < hdy(u,u'),
while (21) and (23) imply
(26) d3(w,w'") < hdy(v,0").
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From (24), (25) and (26) it follows that
dy (u,u') < h*dy(u, '),

hence di(u,u') =0, i.e. u=u'.
Similarly dy(v,v") =0, i.e. v =v" and d3(w,w') =0, i.e. w =w'. This
completes the proof of Theorem 3.
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