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STATIONARY POINTS FOR MULTIFUNCTIONS ON
THREE METRIC SPACES

VALERIU POPA

Abstract. In this paper we prove a general unique fixed point
theorem for multifunctions on three metric spaces which generalize
the main results from [3] and [4].

1. Introduction

Let (X, d) be a complete metric space and B(X) be the set of all
nonempty bounded subsets of X.

As in [1] we define the function δ(A, B) with A and B in B(X)by
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B} .

If A is consists of a single point a we write δ(A,B) = δ(a,B). If
B also consists of a single point b, then δ(A,B) = d(a, b). It follows
immediately that δ(A,B) = δ(B, A) ≥ 0 and δ(A, B) ≤ δ(A,C) +
δ(C, B) for all sets A,B, C in B(X).

If δ(A,B) = 0, then A = B = {a}.
Now if {An}, n = 1, 2, ... is a sequence in B(X), we say that it

converges to the set A in B(X) if:
(i) each point a ∈ A is limit of some convergent sequence {an}, where
an ∈ An, n = 1, 2, .. ;
————————————–
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(ii) for arbitrary ε > 0, there exists an integer N such that An ⊂ Aε

for all n > N , where Aε is the union of all open spheres with centers
in A of radius ε.

The following Lemma was proved in [1].

Lemma. If {An} and {Bn} are sequences of bounded subsets of a
complete metric space (X, d), which converge to the bounded subsets
A and B, respectively, then the sequence {δ(An, Bn)} converges to
δ(A,B).

If T is a multifunction of X into B(X), a point z ∈ X is called a
stationary point of T if Tz = {z}.

Recently, Jain and Fisher [2] initiated the study of fixed points for
multifunctions in three metric spaces. The present author [4] proved
a general fixed point theorem for functions on three metric space sat-
isfying implicit relations.

The following theorem is proved in [3].
Theorem 1 [3]. Let (X, d1),(Y, d2) and (Z, d3) be complete metric
spaces and suppose F is a mapping of X into B(Y ), G is a mapping
of Y into B(Z) and H is a mapping of Z into B(X) satisfying the
following inequalities:

δ2
1(HGy,HGFx) ≤ cmax

{
d1(x,HGy)d2(y, Fx), δ2(y, Fx), δ1(x,HGFx),

δ1(x,HGFx)δ3(Gy, GFx), δ3(Gy, GFx)d1(x,HGy))

}
,

δ2
2(FHz, FHGy) ≤ cmax

{
d2(y, FHz)δ3(z, Gy), δ3(z, Gy)δ2(y, FHGy),

δ2(y, FHGy)δ1(Hz, HGy), δ1(Hz, HGy)d2(y, FHz)

}
,

and

δ2
3(GFx,GFHz) ≤ cmax

{
d3(z, GFx)δ1(x,Hz), δ1(x,Hz)δ3(z, GFHz),

δ3(z,GFHz)δ2(Fx, FHz), δ2(Fx, FHz)d3(z, GFx)

}

for all x in X, y in Y and z in Z, where 0 ≤ c < 1.
If at least one of the mappings F, G, H is continuous, then HGF has

a unique fixed point u in X, FHG has a unique fixed point v in Y and
GFH has a unique fixed point w in Z. Further, Fu = {v}, Gv = {w}
and Hw = {u}.
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In [4], it is denoted by F5 the set of all continuous functions F :
R5

+ → R such that there exists h ∈ [0, 1) having the following property:
for every u ≥ 0, v ≥ 0 with

(a) F (u, v, 0, u, w) ≤ 0 or (b) F (u, v, u, 0, w) ≤ 0,

we have u ≤ hmax{v, w}.
Example 1 [4]. F (t1, ..., t5) = t1 − cmax{t2, ..., t5}, where c ∈ [0, 1).
Example 2 [4]. F (t1, ..., t5) = t21 − cmax{t3t2, t2t4, t4t5, t5t3}, where
c ∈ [0, 1).
Example 3 [4]. F (t1, ..., t5) = t31 + t21 − (at1t2 + bt1t3 + ct1t4 + dt25),
where 0 ≤ a + b + c + d < 1.

The following theorem is proved in [4].
Theorem 2 [4]. Let (X, d), (Y, ρ) and (Z, σ) be complete metric

spaces. Assume that T is a mapping of X into Y , S is a mapping of
Y into Z and R is a mapping of Z into X, satisfying the inequalities

F (d(RSy, RSTx), ρ(y, Tx), d(x,RSTx), d(x, RSy), σ(Sy, STx)) ≤ 0,
F (ρ(TRz, TRSy), σ(z, Sy), ρ(y, TRSy), ρ(y, TRz), d(Rz, RSy)) ≤ 0 ,

and

F (σ(STx, STRz), d(x,Rz), σ(z, STRz), σ(z, STx), ρ(Tx, TRz)) ≤ 0

for all x in X, y in Y , z in Z, where F ∈ F5.
If at least one of the mappings R, S, T is continuous, then RST has

a unique fixed point u in X, TRS has a unique fixed point v in Y and
STR has a unique fixed point w in Z. Further, Tu = v, Sv = w and
Rw = u.

In this paper we prove a generalization of Theorem 1 which extends
Theorem 2 to multivalued mappings.

2. Main result

Theorem 3. Let (X, d1), (Y, d2) and (Z, d3) be complete metric
spaces and suppose that F is a mapping of X into B(Y ), G is a map-
ping of Y into B(Z), and H is a mapping of Z into B(X) satisfying
the inequalities

(1) Φ(δ1(HGy,HGFx), δ2(y, Fx), d1(x,HGy), δ1(x,HGFx), δ3(Gy, GFx)) ≤ 0,

(2) Φ(δ2(FHz, FHGy), δ3(z, Gy), d2(y, FHz), δ2(y, FHGy), δ1(Hz,HGy)) ≤ 0,
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(3) Φ(δ3(GFx,GFHz), δ1(x,Hz), d3(z,GFx), δ3(z, GFHz), δ2(Fx, FHz)) ≤ 0,

for all x in X, y in Y and z in Z where Φ ∈ F5 and is nonincreasing
in each of the variables t2, ..., t5.

If al least one of the mappings F, G,H is continuous, then HGF has
a stationary point u in X, FHG has a stationary point v in Y and
GFH has a stationary point w in Z. Further, Fu = {v}, Gv = {w}
and Hw = {u}. If in addition

(c) Φ is increasing in variable t1,

then u is the unique fixed point of HGF , v is the unique fixed point
of FHG and w is the unique fixed point of GFH.
Proof. Let x = x1 be an arbitrary point in X. We define the se-
quences {xn} in X, {yn} in Y and {zn} in Z, inductively, as follows.
Choose a point y1 in Fx1 and a point z1 in Gy1. In general, having
choosen xn in X, yn in Y and zn in M , choose xn+1 ∈ Hzn, yn+1 ∈
Fxn+1, zn+1 ∈ Gyn+1 for n = 1, 2, ....

Applying the inequality (1) for y = yn and x = xn+1 we have
successively

Φ

(
δ1(HGyn, HGFxn+1), δ2(yn, Fxn+1), d1(xn+1, HGyn),

δ1(xn+1, HGFxn+1), δ3(Gyn, GFxn+1)

)
≤ 0,

Φ

(
δ1(HGyn, HGFxn+1), δ2(Fxn, Fxn+1), 0,
δ1(HGyn, HGFxn+1), δ3(GFxn, GFxn+1)

)
≤ 0,

which implies by (a)

δ1(HGyn, HGFxn+1) ≤ hmax{δ2(Fxn, Fxn+1), δ3(GFxn, GFxn+1)}.
Since d(xn+1, xn+2) ≤ δ1(HGyn, HGyn+1) ≤ δ1(HGyn, HGFxn+1), we
obtain

(4) d(xn+1, xn+2) ≤ hmax{δ2(Fxn, Fxn+1), δ3(GFxn, GFxn+1)}
But, from (2) we have successively for z = zn−1 and y = yn
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Φ

(
δ2(FHzn−1, FHGyn), δ3(zn−1, Gyn), d2(yn, FHzn−1),

δ2(yn, FHGyn), δ1(Hzn−1, HGyn)

)
≤ 0,

Φ

(
δ2(FHzn−1, FHGyn), δ3(Gyn−1, Gyn), 0,
δ2(FHzn−1, FGHyn), δ1(HGyn−1, HGyn)

)
≤ 0,

which implies by (a) that

δ2(FHzn−1, FHGyn) ≤ hmax{δ3(Gyn−1, Gyn), δ2(HGyn−1, HGyn)}.
Since δ2(Fxn, Fxn+1) ≤ δ2(FHzn−1, FHGyn) we have

(5) δ2(Fxn, Fxn+1) ≤ hmax{δ3(Gyn−1, Gyn), δ1(HGyn−1, HGyn)}.

Similarly, from (3) we have successively for x = xn and z = zn

Φ

(
δ3(GFxn, GFHzn), δ1(xn, Hzn), d3(zn, GFxn),

δ3(zn, GFHzn), δ2(Fxn, FHzn)

)
≤ 0,

Φ

(
δ3(GFxn, GFHzn), δ1(Hzn−1, HGyn), 0,
δ3(GFxn, GFzn), δ2(FHzn−1, FHGyn)

)
≤ 0,

which implies by (a) that

δ3(GFxn, GFHzn) ≤
hmax{δ1(Hzn−1, HGyn), δ2(FHzn−1, FHGyn)}.

Since δ3(GFxn, GFxn+1) ≤ δ3(GFxn, GFHzn), we have

(6) δ3(GFxn, GFxn+1) ≤
hmax{δ1(Hzn−1, HGyn)}, δ2(FHzn−1, FHGyn)}.

On the other hand, by (2) for z = zn−1 and y = yn we have succes-
sively

Φ

(
δ2(FHzn−1, FHGyn), δ3(zn−1, Gyn), d2(yn, FHzn−1),

δ2(yn, FGHyn), δ1(Hzn−1, HGyn)

)
≤ 0,
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Φ

(
δ2(FHzn−1, FHGyn), δ3(Gyn−1, Gyn), 0,
δ2(FHzn−1, FHGyn), δ1(HGyn−1, HGyn)

)
≤ 0

which implies by (a) that

(7) δ2(FHzn−1, FGyn) ≤ hmax{δ3(Gyn−1, Gyn), δ1(HGyn−1, HGyn)}
Then by (4),(5),(6) and (7) it follows that

(8) d1(xn+1, xn+2) ≤ δ1(HGyn, HGyn+1)

≤ h2max{δ1(HGFxn−1, GHFxn), δ3(GFHzn−2, GFHzn−1)}.
Similarly, we have

(9) d2(yn+1, yn+2) ≤ h2max{δ1(HGFxn−1, HGFxn), δ3(GFHzn−2, GFHzn−1)}
and

(10) d3(zn+1, zn+2) ≤ h2max{δ1(HGFxn−1, HGFxn), δ3(GFHzn−2, GFHzn−1)}.

It now follows easily by induction on using (8), (9) and (10) that

d1(xn+1, xn+2) ≤
h2(n−2)max{δ1(HGFx2, HGFx3), δ3(GFHz1, GFHz2)},

d2(yn+1, yn+2) ≤
h2(n−2)max{δ1(HGFx2, HGFx3), δ3(GFHz1, GFHz2)},

d3(zn+1, zn+2) ≤
h2(n−2)max{δ1(HGFx2, HGFx3), δ3(GFHz1, GFHz2)}.

Then for r = 1, 2, ... and arbitrary ε > 0, we have by (8)

(11) d(xn+1, xn+r+1) ≤ δ1(HGyn, HGFxn+r)

≤ δ1(HGyn, HGyn+1) + δ1(HGyn+1, HGyn+2) + ...δ1(HGyn+r−1, HGFxn+r)

≤ (h2(n−2)+h2(n−1)+...+h2(n+r−3))max{δ1(HGFx2, HGFx3), δ3(GFHz1, GFHz2)}
< ε
for n greater that some N , since 0 ≤ h < 1. Therefore, {xn} is a
Cauchy sequence in the complete metric space (X, d1) and so has a
limit u in X. Similarly, the sequences {yn} and {zn} are also Cauchy
sequences with limits v and w in complete metric spaces (Y, d2) and
(Z, d3), respectively. Further, the inequality (11) gives

δ1(u,HGFxn) ≤ d1(u, xm+1) + δ1(xm+1, HGFxn) ≤
d1(u, xm+1) + δ1(HGFxm, HGFxn) < d1(u, xm+1) + ε
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for m,n > N . Letting m tend to infinity in the above inequality, it
follows that δ1(u,GFxn) ≤ ε for n > N and therefore

(12) lim
n→∞HGFxn = {u} = lim

n→∞HGyn,

since ε > 0 is arbitrary. Similarly,

(13) lim
n→∞FHGyn = {v} = lim

n→∞FHzn

and

(14) lim
n→∞GFHzn = {w} = lim

n→∞GFxn.

Suppose that F is continuous . Then lim
n→∞Fxn = Fu = lim

n→∞yn = v.

Hence, Fu = {v}.
By (3) for x = u and z = zn we have successively

Φ

(
δ3(GFu, GFHzn), δ1(u,Hzn), d3(zn, GFu),

δ3(zn, GFHzn), δ2(Fu, FHzn)

)
≤ 0,

Φ

(
δ3(Gv,GFHzn), δ1(u,HGyn), δ3(zn, Gv),

δ3(zn, GFHzn), δ2(v, FHzn)

)
≤ 0.

Letting n tend to infinity we obtain
Φ(δ3(Gv, w), 0, δ3(Gv, w), 0, 0) ≤ 0 .

By (b) it follows that δ3(Gv, w) = 0, which implies Gv = {w}.
By (1) for y = v and x = xn we have successively

Φ

(
δ1(HGv, HGFxn), δ2(v, Fxn), d1(xn, HGv),

δ1(xn, HGFxn), δ3(Gv, GFxn)

)
≤ 0,

Φ

(
δ1(Hw,HGFxn), δ2(v, Fxn), δ1(xn, Hw),

δ1(xn, HGFxn), δ3(Gv, GFxn)

)
≤ 0.

Letting n tend to infinity we have Φ(δ1(Hw, u), 0, δ1(u,Hw), 0, 0) ≤
0, which implies by (b) that {u} = Hw.

By (1) for y = yn and x = u we have successively

Φ

(
δ1(HGyn, HGFu), δ2(yn, Fu), δ1(u,HGyn),

δ1(u,HGFu), δ3(Gyn, GFu)

)
≤ 0,
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Φ

(
δ1(HGyn, HGFu), δ2(yn, v), δ1(u,HGyn),

δ1(u,HGFu), δ3(GFxn, Gv)

)
≤ 0

Letting n tend to infinity we have

Φ(δ1(u,HGFu), 0, 0, δ1(u,HGFu), 0) ≤ 0,

which implies by (a) that HGFu = {u}.
Similarly, by (2) for z = zn and y = v we obtain {v} = FHGv.

By (3) for x = xn and z = w we obtain that GFHw = {w}.
To prove uniqueness,we will suppose that HGF has a second fixed

point u′ so that u′ ∈ HGFu′. Then there exist v′ ∈ Fu and u′ ∈ Hw′.
Using inequality (2), we have successively

Φ

(
δ2(FHw′, FHGv′), δ3(w

′, Gv′), d2(v
′, FHw′),

δ2(v
′, FHGv′), δ1(Hw′, HGv′)

)
≤ 0,

Φ

(
δ2(FHw′, FHGv′), δ3(GFu′, GFu′), 0,
δ2(FHw′, FHGv′), δ1(HGv′, HGv′)

)
≤ 0,

which implies by (a) that

δ2(FHw′, FHGv′) ≤ hmax{δ3(GFu′, GFu′), δ1(HGv′, HGv′)}.
Since δ2(FHw′, FHw′) ≤ δ3(FHw′, FHGv′) it follows that

(15) δ2(FHw′, FHw′) ≤ hmax{δ3(GFu′, GFu′), δ1(HGv′, HGv′)}.
Similarly, applying (3), we get

(16) δ3(GFu′, GFu′) ≤ hmax{δ1(HGv′, HGv′), δ2(FHw′, FHw′)}
and using (1), we have

(17) δ1(HGv′, HGv′) ≤ hmax{δ2(FHw′, FHw′), δ3(GFu′, GFu′)}.
From (15) and (16) we obtain

(18) δ2(FHw′, FHw′) ≤ h δ1(HGv′, HGv′).

Similarly, (16) and (17) give

(19) δ3(GFu′, GFu′) ≤ h δ2(FHw′, FHw′)
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and (15) and (17) yield

(20) δ1(HGv′, HGv′) ≤ h δ3(GFu′, GFu′).

Now, it follows from (20), (19) and (18) that

δ1(HGv′, HGv′) ≤ h δ3(GFu′, GFu′) ≤
h2δ2(FHw′, FHw′)δ1(HGv′, HGv′),

which implies that δ1(HGv′, HGv′) = 0.
Similarly, δ2(FHw′, FHw′) = 0 and δ3(GFu′, GFu′) = 0.
Since δ1(u

′, Hw′) ≤ δ1(HGv′, HGv′), δ2(v
′, Fu′) ≤ δ2(FHw′FHw′)

and δ3(w
′, Gv′) ≤ δ3(GFu′, GFu′), it follows that Fu′ = {v′}, Gv′ =

{w′} and Hw′ = {u′}. Further, HGFu′ = HGv′ = Hw′ = {u′},
FHGv′ = FHw′ = Fu′ = {v′}, GFHw′ = GFu′ = Gv′ = {w′}.

Using (1) and (c) we have successively

Φ

(
δ1(HGv,HGFu′), δ2(v, Fu′), d1(u

′, HGv),
δ1(u

′, HGFu′), δ3(Gv, GFu′)

)
≤ 0,

Φ(d1(u, u′), d2(v, v′), d1(u, u′), 0, d3(w, w′) ≤ 0,

which implies by (b) that

(21) d1(u, u′) ≤ hmax{d2(v, v′), d3(w, w′)}.
Similarly, applying (2), we have

(22) d2(v, v′) ≤ hmax{d3(w, w′), d1(u, u′)}
and using (3), we obtain

(23) d3(w, w′) ≤ hmax{d1(u, u′), d2(v, v′)}.
Now (21) and (22) yield

(24) d1(u, u′) ≤ h d3(w, w′).

Similarly, (22) and (23) imply

(25) d2(v, v′) ≤ h d1(u, u′),

while (21) and (23) imply

(26) d3(w, w′) ≤ h d2(v, v′).
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From (24), (25) and (26) it follows that

d1(u, u′) ≤ h3 d1(u, u′),

hence d1(u, u′) = 0, i.e. u = u′.
Similarly d2(v, v′) = 0, i.e. v = v′ and d3(w, w′) = 0, i.e. w = w′. This
completes the proof of Theorem 3.
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