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THE GENERALIZED CEBYSEV TYPE INEQUALITY

ARIF RAFIQ, QAISER SHAHBAZ, ANA MARIA ACU

Abstract. A generalization of Pecari¢’s extension to the Mont-
gomery’s identity has been derived. The generalization is applicable
for any weight functions. The generalized Cebysev type inequality has
also been obtained.

1. INTRODUCTION

The Cebysev type inequality is given by [2] as:
1
(1) T (f,9)] < E(b—a)2||f'|!ooH9'Hoo
where the functions f,g : [a,b] — R are absolutely continuous func-

tions with bounded first derivatives.
The function T (f, g) is defined as:

(2)

rro=; [1@ewa- (i 1) (L [oww)
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and ||.||, is the norm in Ly [a,b] defined as ||p||, = esssup |p ().

tela,b]
In [3], Griiss established the following inequality

(3) T (f,9)] <

where m, M, n and N are real numbers satisfying the conditions,

(M —m)(N —mn),

—co<m< f(z) <M < o0, —oo<n<g(x) <N <oo, forallz € [a,b].

Some new Cebysev type inequalities has been derived by Pach-
patte using the weighted Montgomery identity given by Pecari¢’s [§]
in [[6], [7]].

In this paper we have generalized the Pecari¢’s work for Mont-
gomery’s identity. This generalization has been derived by using the
weight function that need not be a probability density function and
can be useful in deriving the Cebysev type inequalities for any abso-
lutely continuous function.

2. MAIN RESULTS

Let f : [a,b] — R be absolutely continuos function on [a,b], then
from [4] the Montgomery type identity holds:

WS- [ foas [ Peoro

where P (z,t) is the Peano kernel defined by:
t—a

b—a
t—>b

a<lt<zx
P (x,t) =

o <t<hb.

The weighted version of the identity (4) given by Pecari¢ in [8] is given
as:

(5) f@Z/rwf@ﬁﬁ/%@ﬁfwﬁ

where 7 (t) is some probability density function and the weighted
Peano kernel is defined as:

Pota) ={ 1
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t
provided R (t) = / r(s)ds is the cumulative distribution function of

r(t). We now givg a further generalization to (5) by using a weight
function
w : [a,b] — [0,400) which is not necessarily the probability density

b
function. We define m (a,b) = / w(s)ds as total area of w and

m(a,z) = / w (s)ds, so that m(a,x) = 0 for < a. Now using

these notatio%s, we define the generalized weighted Peano kernel as:

m(a,t)),a<t<x
6)  Pup () :{ Mm(a(',pt())—(gp()gn(a,b)),x§t§b

where ¢ : R, — R, be a differentiable function on R, with ¢ (0) = 0,
w(m(a,b)) # 0 and ¢’ is integrable on R, , and also a generalization
of (2) as follows:

'—;wa’maa: x)g(x)dr —
Dw-f.9:¢) = s [ w@) ¢ (ma.0) [ @9 () d

(v

m /abw(x) ¢ (m(a,2)) f (x) d:v) X
<m /ab“’ (2)¢' (m(a,2)) g (2) dx) |

We have given the generalized weighted Montgomery’s identity in the
following theorem.

Theorem 1.. Let f : [a,b] — R be absolutely continuous, then
1 b

m/a w(t) @' (m(a,t)) f () dt
1 b

so—())/a Pug (x,1) f'(t) dt,

i (m (a,b

for all x € [a,b], where P, (x,t) is defined in (6).
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Proof. Consider the kernel defined in (6). Using the hypothesis of ¢
and (6), we have:

[ Pacworwi = [ oono s o
T / (0 (m (a,1)) — o (m (a,b))) f' (t) dt
— [ r@d-pm@y) [ o

Integrating by parts and simplifying we obtain:

[ Pt @t = ¢ (@) f2)- [ w ()¢ (m(a.0) F @)

We now give an generalization of the Cebysev inequality in the
following theorem:

Theorem 2.. Let f,g : [a,b] — R be absolutely continuous functions
on [a,b]. Also let the functions w and ¢ satisfy the conditions given
in Theorem 1. Suppose

fd,¢ € Lo [a,b],
and
(9) / w(z) ¢ (m(a,x))dz = (m(a,b)) for all z € [a,b],

then
(10)

P
T, f.9.9)1= (m (@, b))

b
for all z € [a,b], where H (z) = / | Py (x,1)] dt.

b
1 11 1 / w ) H? @)da,

Proof. Since the functions f and g are absolutely continuous, we
have:

(11) f@) = ————
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1 b .
(12) g(z) - »lw@wmwmmﬂ

v (m(a,b

b
= m/ Py, (x,t) g (t)dt.

Using (11) and (12) we have:

b

1 b , /
iy ([ o0 s oar) ([wiog o)
Simplifying by using the condition (9) and (7), we get

1»/wm¢m@mx

3(m(a,b
b

T(w, f,9,¢) = .
( ) Py, (z,t) f'(t) dt) (/ab Py, (,t) g (t) dt) A

which implies that
1 b
Twﬁwmz————wuwuwm/wmmmm.
| ey el W [ @)

Remark 1.. If in (8) and (10), w is the probability density function,
then we recapture the corrected version of the results obtained in [1].
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