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SMOOTH DEPENDENCE ON RIEMANNIAN METRIC
OF EIGENVALUES OF HODGE-DE RHAM

OPERATORS

MIHAELA ALBICI

Abstract. Let M be an oriented, closed, smooth (= C∞) manifold
of dimension n ≥ 2, Ak(M) the space of smooth differential k-forms
on M , and M(M) the space of all Riemannian metrics on M endowed
with the canonical structure of smooth Fréchet manifold (for details,
see M. Golubitsky and V.G. Guillemin [8], pp.74-78). Using an idea
of J.Wenzelburger [10], [11], we prove that the eigenvalues of the
Hodge de-Rham operator ∆(p) : Ap(M) → Ap(M) depend smoothly
(= C∞) on Riemannian metric g ∈ M(M) for each k ∈ {0, . . . , n} if
on the space M(M) of all Riemannian metrics on such manifold is
considered the canonical structure of Fréchet smooth manifold. In
Corollary 14 it is shown that operators δ

(k)
g : Ak(M)→ Ak−1(M) and

∆
(k)
g : H2Ak(M)→ H0Ak(M) [see Definition 1 (vi) and (vii)] depend

smoothly by g ∈ M(M) for each k ∈ {0, . . . , n}. Minimax principle
(see Theorem 2.2 of M. Craioveanu, M. Puta, Th.M. Rassias [5], p.
286) and Theorem 6 imply the smoothly dependence on Riemannian
metric of eigenvalues of Hodge-de Rham operators and of restrictions
of these operators on spaces of differential exact forms, respectively
coexact forms (see Corollary 15).
————————————–
Keywords and phrases: Hodge-de Rham operator, eigenvalues,
Hodge-de Rham decomposition.
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Finally, another interesting consequence of Theorem 11 is presented
in Corollary 16, namely that the same assumptions as those stated
above M , Hodge-de Rham decomposition

H0Ak (M) = d(k−1)
(
H1Ak−1 (M)

)
⊕ δ(k+1)

g

(
H1Ak+1 (M)

)
⊕ker

(
∆(k)
g

)
smoothly depends on g ∈M(M) for each k ∈ {0, . . . , n}, the meaning
of the Remark 12.

1. Introduction

Let M be a smooth differential n-dimensional manifold and

A (M) =
n∑
p=0

Ap (M) the exterior algebra of smooth differential forms

on M .

Definition 1. Let M be a manifold with boundary. For assertions
(ii), (iii), (vi) and (vii) we assume in addition that M is equipped
with a Riemannian metric g.

(i) the outer product (or ∧-product) of differential forms is defined
by

∧ : Ak (M)× Al (M)→ Ak+l (M) ,

(ω ∧ η) (X1, . . . , Xk+l) =
∑

σ∈S(k,k+l)

(sgnσ)ω
(
Xσ(1), . . . , Xσ(k)

)
· η
(
Xσ(k+1), . . . , Xσ(k+l)

)
,

where X1, . . . , Xk+l are arbitrary vector fields on M .
(ii) Let (E1, . . . , En) be a local g-orthonormal frame on U ⊂M . It

defines a product on Ak(M), defined locally by

( | )Λk : Ak (M)× Ak (M)→ C∞ (M) ,

(ω|η)Λk(U) =
∑

σ∈S(k,n)

ω
(
Eσ(1), . . . , Eσ(k)

)
· η
(
Eσ(1), . . . , Eσ(k)

)
.

(iii) The Hodge star operator S(k) : Ak (M)→ An−k (M) is defined
by equality

η ∧ S(k)ω = (η|ω)Λk(M) µ, ∀η ∈ A
k (M) .

Here µ ∈ An (M) is the Riemannian volume form on M .



SMOOTH DEPENDENCE ON RIEMANNIAN METRIC 9

(iv) The inner product (or contraction) with a vector field Y ∈
Γ (TM) is defined by

i (Y ) : Ak (M)→ Ak−1 (M)

(i (Y )ω) (X1, . . . , Xk−1) = ω (Y,X1, . . . , Xk−1) , ∀X1, . . . , Xk−1 ∈ Γ (TM) .

(v) The exterior differential d : Ak (M) → Ak+1 (M), sometimes
denoted d(k), is defined (for k < n) by

dω (X0, X1, . . . , Xk) =
∑

0≤j≤k

(−1)j D
[
ω
(
X0, . . . , X̂j, . . . , Xk

)]
(Xj)

+
∑

0≤i<j≤k

(−1)i+j ω
(

[Xi, Xj] , X0, . . . , X̂i, . . . , X̂j, . . . , Xk

)
.

Here X0, . . . , Xk are arbitrary vector fields on M , and the sym-
bol X̂j expresses that argument Xj is missing. For ω ∈ An (M),
by definition dω = 0.

(vi) The codifferential operator is defined as the application δ :
Ak (M)→ Ak−1 (M), sometimes noted δ(k),

δω = (−1)nk+n+1 S(n−k−1)d
(
S(k)ω

)
, ω ∈ Ak (M) .

(vii) The Hodge-de Rham operator is defined as the application
∆(k) : Ak (M)→ Ak (M),

∆(k)ω = (dδ + δd)ω, ω ∈ Ak (M) .

From Definition 1. it follows that:

S(0) (1) = vg, S
(n) (vg) = 1 (1)

where vg denotes the canonical volume form of (M, g), 1 is the real
constant function on M having value 1 and

S(n−p) ◦ S(p) (ω) = (−1)p(n−p) ω for any ω ∈ Ap (M) . (2)

Remark 2. Note that ∆(0) is just the Laplace-Beltrami operator ∆ :
C∞ (M)→ C∞ (M).

Proposition 3. The operator ∆(p), for each 0 ≤ p ≤ n, has the
following properties:

(i) ∆(p) is formally self adjoint;
(ii) ∆(p) is formally positive, i.e.

〈
∆(p)α, α

〉
≥ 0 for any α ∈

Ap (M);
(iii) ∆(p)α = 0 if and only if d(p)α = 0 and δ(p)α = 0;
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(iv) ∆(n−p)S(p) = S(p)∆(p).

Proof. (i)〈
∆(p)α, β

〉
=
〈
d(p−1) ◦ δ(p)α + δ(p+1) ◦ d(p)α, β

〉
=

=
〈
δ(p)α, δ(p)β

〉
+
〈
d(p)α, d(p)β

〉
=

=
〈
α, d(p−1) ◦ δ(p)β

〉
+
〈
α, δ(p+1) ◦ d(p)β

〉
=
〈
α,∆(p)β

〉
for each α, β ∈ Ap (M).

(ii)
〈
∆(p)α, α

〉
=
〈
d(p)α, d(p)α

〉
+
〈
δ(p)α, δ(p)α

〉
=
∥∥d(p)α

∥∥2
+∥∥δ(p)α

∥∥2 ≥ 0 for each α ∈ Ap (M).

(iii) If ∆(p)α = 0, the equality
〈
∆(p)α, α

〉
=
〈
d(p)α, d(p)α

〉
+〈

δ(p)α, δ(p)α
〉

implies that
〈
d(p)α, d(p)α

〉
+
〈
δ(p)α, δ(p)α

〉
= 0, or

equivalently d(p)α = 0 and δ(p)α = 0. Conversely, if d(p)α = 0
and δ(p)α = 0, then by the definition of ∆(p), ∆(p)α = 0.

(iv) We shall consider two cases:
Case 1: n is even. Then we can write

∆(n−p) = −
(
d(n−p−1) ◦ S(p+1) ◦ d(p) ◦ S(n−p)

+ S(p) ◦ d(p−1) ◦ S(n−p+1) ◦ d(n−p))
and therefore using the relation (2),

S(p) ◦∆(p) = −
(
S(p) ◦ d(p+1) ◦ S(n−p+1) ◦ d(n−p) ◦ S(p)

+ S(p) ◦ S(n−p) ◦ d(n−p−1) ◦ S(p+1) ◦ d(p)
)

= −
[
−δ(n−p+1) ◦ d(n−p+1) ◦ S(p)

+ (−1)2p(n−p) (−1)(n−p−1)n+1 d(n−p−1) ◦ δ(n−p) ◦ S(p)
]

= ∆(n−p) ◦ S(p).

Case 2: n is odd. Then

∆(n−p) ◦ S(p) = d(n−p−1) ◦ δ(n−p) ◦ S(p) + δ(n−p+1) ◦ d(n−p) ◦ S(p)
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and therefore using the Definition 1 and relation (2),

∆(n−p) ◦ S(p) = (−1)n−p d(n−p−1) ◦ S(p+1) ◦ d(p)

+ (−1)n−p+1 S(p) ◦ d(p+1) ◦ S(n−p+1) ◦ d(n−p) ◦ S(p)

= (−1)n−p (−1)2p2+p(n−p)+1 S(p) ◦ δ(p+1) ◦ d(p)

+ (−1)n−p+1 (−1)p S(p) ◦ d(p+1) ◦ δ(p) =

= S(n−p) ◦
(
δ(n−p+1) ◦ d(n−p) + d(n−p+1) ◦ δ(n−p))

= S(p) ◦∆(p).

as desired. Q.E.D.
�

Remark 4. The normalization of ∧-product is chosen using the con-
vention used by Abraham, Marsden and Ratiu [1].

Proposition 5. (i) The outer differential operator and codiffer-
ential operator are nilpotents, ie

d (dω) = 0 and δ (δω) = 0, ∀ω ∈ Ak (M) ; (3)

(ii) The Hodge star operator is idempotent, ie

S(n−k)
(
S(k)ω

)
= (−1)k(n−k) ω, ∀ω ∈ Ak (M) ; (4)

(iii) The operators d and δ are in Hodge sense, adjoint each other,
ie

S(k−1)δω = (−1)k dS(k)ω, and S(k+1)dω = (−1)k+1 δS(k)ω, ∀ω ∈ Ak (M) ;
(5)

(iv) If (E1, . . . , En) is a local g-orthonormal frame on U ⊂ M and
σ ∈ S (k, n) the Hodge star operator is calculated as(

S(k)ω
) (
Eσ(k+1), . . . , Eσ(n)

)
= (sgnσ)ω

(
Eσ(1), . . . , Eσ(k)

)
, ∀ω ∈ Ak (M) .

(6)

Property (iv) can be deduced from the definition of Hodge star
operator noting that∑
σ∈S(k,n)

η
(
Eσ(1), . . . , Eσ(k)

)
· ω
(
Eσ(1), . . . , Eσ(k)

)
=
(
η ∧ S(k)ω

)
(E1, . . . , En)

=
∑

σ∈S(k,n)

(sgnσ) η
(
Eσ(1), . . . , Eσ(k)

)
·
(
S(k)ω

) (
Eσ(k+1), . . . , Eσ(n)

)
.
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Since ∀ω ∈ Ak (M) it is arbitrary follows that (6) is true for any
σ ∈ S (k, n).

The following theorem gives a precise characterization of eigenval-
ues, λ′k,p (M, g), k ∈ N, which not involves derivatives of Riemannian
metric g.

Theorem 6. (Dodziuk [7]) Let g ∈ M(M) and p ∈ {1, . . . , n} fixed.
Let

0 < λ′1,p (M, g) ≤ λ′2,p (M, g) ≤ . . .

be the eigenvalues of the restriction

∆
(p)
g|

d(p−1)(Ap−1(M))
: d(p−1)

(
Ap−1 (M)

)
→ d(p−1)

(
Ap−1 (M)

)
of ∆

(p)
g to the real vector space of exact differential p-forms

d(p−1) (Ap−1 (M)), counted with their multiplicity. Then

λ′k,p = inf
Vk

sup


∥∥d(p−1)θ

∥∥2

g

‖θ‖2
g

∣∣d(p−1)θ ∈ Vk\ {0}

 (7)

where Vk through the family of all k-dimensional real vector subspace
of it.

Proof. Let us note first that taking supremum in (7) can be done in two
stages. For each exact differential p-form let choose θ ∈ Ap−1 (M) \ {0}

to maximize quotient

∥∥d(p−1)θ
∥∥
g

‖θ‖g
. Let choose θ ∈ Ap−1 (M) \ {0} ar-

bitrarily, with Hodge-de Rham decomposition

θ = H(p−1) (θ) + d(p−2)ω1 + δ(p)
g ω2, ω1 ∈ Ap−2 (M) , ω2 ∈ Ap (M) ,

where H(p−1) denotes the harmonic projector, and be θ0 := δ
(p)
g ω2 ∈

δ
(p)
g (Ap (M)). Therefore,

inf
Vk

sup


∥∥d(p−1)θ

∥∥2

g

‖θ‖2
g

∣∣d(p−1)θ ∈ Vk\ {0}


= inf

Vk

sup


∥∥d(p−1)θ

∥∥2

g

‖θ0‖2
g

∣∣d(p−1)θ ∈ Vk\ {0}
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= inf
Wk

sup

{∥∥d(p−1)θ0

∥∥
g

‖θ0‖g

∣∣d(p−1)θ ∈ Wk\ {0}

}
(8)

where Wk through the set of all k-dimensional linear subspace of

δ
(p)
g Ap (M).

Because
δ(p)
g θ0 =

(
δ(p−1)
g ◦ δ(p)

g

)
(ω2) = 0

and

d(p−1)θ = d(p−1)
(
H(p−1) (θ) + d(p−2)ω1 + δ(p)

g ω2

)
= d(p−1)θ0,

it follows that∥∥d(p−1)θ
∥∥2

g
=
∥∥d(p−1)θ0

∥∥2

g
=
∥∥d(p−1)θ0

∥∥2

g
+
∥∥δ(p−1)

g θ0

∥∥2

g
.

Therefore, the right side of (8) gives the mini-max characterization of

the k eigenvalues λ′′k,p−1 (M, g) of the restriction of ∆
(p−1)
g to the vector

space of differential coexact (p − 1)-forms, which coinciding with the

k eigenvalue λ′k,p (M, g) of the restriction of ∆
(p)
g to the p-forms exact

differential space. Q.E.D. �

Let H be a real Hilbert space with the inner product 〈, 〉0 : H×H→
R and ‖ · ‖0 the induced norm. Let G(H) be the family of all closed
vector subspaces of H.

If E,F ∈ G(H) are fixed, let L(E,F) be the real vector space of
all the bounded linear operators from E into F. With respect to the
canonical norm of a bounded linear operator from the Hilbert space E
into the Hilbert space F, still denoted with ‖ · ‖0, L(E,F) is a Banach
space. For each E ∈ G(H) fixed, let

GE := {F ∈ G(H)| H = E⊕ F}
be the set of all closed complements of E in H and let us notice that
E⊥(= the orthogonal complement of E in H with respect to the inner
product 〈, 〉0) ∈ GE. Let

P(H,E) := {π ∈ L(H) := L(H,H)| π ◦ π = π and Im(π) = E}
be the space of all continuous projections of H onto E ∈ G(H) endowed
with the relative topology induced by the canonical topology on L(H).

Lemma 7. (see [11]). If the subspace E ∈ G(H) is fixed, then the map

Ker : P(H,E)→ GE, π 7→ Ker(π),

is a bijection.
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For F0,F ∈ GE, let π0, π ∈ P(H,E) so that Ker(π0) = F0 and
Ker(π) = F (see Lemma 7). If the closed vector subspace F0 of H
is fixed, the map ϕF0,E : GE → L(F0,E), which associates to each
vector subspace F ∈ GE the map from F0 into E having as graph
the subspace F of H = F0 ⊕ E, is a bijection. Moreover, the set of all
charts of the type {(GE, ϕF0,E, L(F0,E))| F0,E ∈ G(H),H = F0⊕E} is
a smooth atlas for G(H). Endowed with the Banach smooth manifold
structure defined by this atlas, G(H) is called the Grassmann manifold
associated to the Hilbert space H (see N. Bourbaki [3], p. 38). In
addition, one can show that the topological space G(H) is metrisable.

Lemma 8. Let E ∈ G(H) be fixed and GE with the C∞-manifold struc-
ture induced by the one previously defined on G(H). Then there is a
unique C∞-manifold structure on P(H,E), whose subjacent topology
coincides with the one induced on P(H,E) by the real Banach space
structure of L(H), so that the bijection

Ker : P(H,E)→ GE, π 7→ Ker(π),

(see Lemma 7) is a C∞-diffeomorphism.

For the proof, see E.Binz, J.Śniatycki and H.Fischer [2].
Let us denote by L2

sim(H; R) the real vector space of all symmetric
and continuous R-bilinear forms β : H×H→ R. With respect to the
supremum norm

‖β‖ := sup{ |β(u, v)|
‖u‖0‖v‖0

| u, v ∈ H \ {0}},

L2
sim(H; R) is a real Banach space. Let M(H) ⊂ L2

sim(H; R) be the set
of all inner products on H which are continuous with respect to the
topology induced by g0 := 〈, 〉0 on H and let us notice that M(H) is a
non-empty open subset [since g0 ∈M(H)] of L2

sim(H; R).

Lemma 9. (see [11]). Let H be a real Hilbert space with the inner
product g0. Then, for each g ∈M(H), the topologies induced on H by
g and g0, respectively, coincide. In particular, H is a complete metric
space with respect to each inner product g ∈M(H).

If the subspace E ∈ G(H) is fixed, then one agrees to denote the
subspace F ∈ GE which is orthogonal on E with respect to the inner
product g ∈M(H) with Fg and also to call Fg the g-orthogonal com-
plement of E in H: H = Fg ⊕ E and g(u, v) = 0 for any u ∈ Fg and
any v ∈ E.
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Definition 10. If the subspace E ∈ G(H) and the inner product g ∈
M(H) are fixed, then the orthogonal projection π ∈ P(H,E) of H =
Fg ⊕E onto E, denoted with πg, i.e. Ker(πg) = Fg (see Lemma 7), is
called the g-orthogonal projection of H onto E.

Using the Lemmas 8 and 9 it follows the next theorem.

Theorem 11. Let H be a real Hilbert space, E ∈ G(H) a fixed subspace
and Fg the g-orthogonal complement of E in H, where g ∈ M(H).
Then the g-orthogonal projection πg of H onto E depends smoothly
on the inner product g ∈ M(H), that is the map M(H) 3 g 7→ πg ∈
P(H,E) ⊂ L(H) is of class C∞ (meaning Fréchet differentiability).

Proof. Lemma 9 shows that all the topologies induced on H by inner
products g ∈ M(H) coincide. Let g0 ∈ M(H) fixed. As we have
already shown during the demonstration of Lemma 9, for each g ∈
M(H) there is an unique R-linear autoadjunct operator so that

g (u, v) = g0 (u,Ag0g (v)) (9)

for any u, v ∈ H. Moreover, Ag0g : H→ H is a omeomorfism for each
g ∈ M(H). Therefore Ag0g(E) is a closed vector subspace of H and -
on the basis of (9) - applications

Fg0
|Ag0g|Fg

: Fg → Fg0 and Ag0g(E) |Ag0g|E : E→ Ag0g (E) (10)

are R-linear isomorphisms and homeomorphisms. If πg0 ∈ P(H,E)
notes the g0-orthogonal projection of H on E (see Definition 10), so
that Ker (πg0) = Fg0 , then

Bg := A−1
g0g
◦ πg0 ◦ Ag0g ∈ P (H, Ag0g (E)) ⊂ L (H)

and Ker (Bg) = Fg. Since applications

M(H) 3 g 7→ Ag0g ∈ L (H) and M(H) 3 g 7→ A−1
g0g
∈ L (H)

are of class C∞ (in the Fréchet sense) [M(H) 6= Φ is an open sub-
set of Banach space L2

sim (H; R) and L (H) is a Banach space] and
the composition of C∞-applications between Banach spaces is all the
C∞-class (see for example M. Craioveanu, T.S. Ratiu [6]) results that
the application M(H) 3 g 7→ Bg ∈ L (H) is the C∞-class. Because
applications (10) are R-linear isomorphisms and homeomorphisms,
Fg ∈ GE ∩ GA−1

g0g(E) for any g ∈ M(H). On the other hand, in the

basis of Lemma 8, the application

P
(
H, A−1

g0g
(E)
)
3 π Ker−→Ker (π) ∈ GA−1

g0g(E)
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is C∞-difeomorfism for any g ∈ M(H). Since Ker (Bg) = Fg =
Ker (πg) for any g ∈M(H), the application

M(H) 3 g 7→ πg ∈ P (H,E) ⊂ L (H)

is C∞- class. Q.E.D. �

Remark 12. Since the map M(H) 3 g 7→ πg ∈ P(H,E) ⊂ L(H)
is smooth (see Theorem 11), in this case one may also say that the
orthogonal decomposition H = Fg⊕E depends smoothly on g ∈M(H).

Let M be again an oriented, closed n-dimensional (n ≥ 2), C∞-
manifold, Ak(M) the space of smooth differential k-forms on M , k ∈
{0, 1, . . . , n}, and M(M) the set of all smooth Riemannian metrics
on M , endowed with the smooth Fréchet manifold structure. Using
Riesz’s representation theorem, for any go, g ∈M(M), it follows that
there is a smooth automorphism of vector bundles Φgog : TM → TM
such that

g(X, Y ) = go(Φgog ◦X,Φgog ◦ Y ), (11)

for any X, Y ∈ X(M). The automorphism Φgog is uniquely determined
modulo an isometry of (M, go) and the maps

M(M) 3 g 7→ Φ∗gog ∈ L(L2(Ak(M))), M(M) 3 g 7→ (Φ∗gog)
−1 ∈ L(L2(Ak(M))),

induced by Φgog, are smooth for any k ∈ {0, 1, . . . , n} (for further

details, see E.Binz, J.Śniatycki and H.Fischer [2]).

Lemma 13. Let go, g ∈ M(M) be arbitrary, but fixed, Riemannian

metrics and S
(k)
go (respectively S

(k)
g ) : Ak(M) → An−k(M) the star

Hodge operator associated to go (respectively g), k ∈ {0, 1, . . . , n}.
Under the previous assumptions, the following equality

Φ∗gog ◦ S
(k)
go

= S(k)
g ◦ Φ∗gog : L2(Ak(M))→ L2(An−k(M))

is valid for any k ∈ {0, 1, . . . , n}. In particular, the map

M(M) 3 g 7→ S(k)
g ∈ L(L2(Ak(M)), L2(An−k(M))),

is smooth for any k ∈ {0, 1, . . . , n}.

Proof. If (E1, . . . , En) is a local g-orthonormal arbitrary frame on M ,
then - on the basis of (11) -Φg0g ◦ E1, . . . ,Φg0g ◦ En is a local g0-
orthonormal frame on M . In the basis of Proposition 5 (iv) true and
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for Riemannian manifold without boundary, result that((
Φ∗g0g ◦ S

(k)
g0

)
(ω)
) (
Eσ(k+1), . . . , Eσ(n)

)
=
(
Φ∗g0g

(
S(k)
g0

(ω)
)) (

Eσ(k+1), . . . , Eσ(n)

)
=
(
S(k)
g0

(ω)
) (

Φg0g ◦ Eσ(k+1), . . . .,Φg0g ◦ Eσ(n)

)
= sgn (σ)ω

(
Φg0g ◦ Eσ(1), . . . ,Φg0g ◦ Eσ(k)

)
= sgn (σ)

(
Φ∗g0g (ω)

) (
Eσ(1), . . . , Eσ(k)

)
=
(
S(k)
g

(
Φ∗g0g (ω)

)) (
Eσ(k+1), . . . , Eσ(n)

)
for any ω ∈ Ak (M) and every σ ∈ S(k, n) note the set of all per-
mutations σ of the set {1, . . . , n} so that σ (1) < . . . < σ (k) and
σ (1) < . . . < σ (k). Therefore, in the basis of the considerations set
out preceding this lemma, the application

M(M) 3 g 7→ S(k)
g = Φ∗g0g ◦ S

(k)
g0
◦
(
Φ∗g0g

)−1 ∈ L
(
Ak (M) , An−k (M)

)
is smooth for all k ∈ {0, . . . , n}. Q.E.D.

�

The Hodge star operator S
(k)
go (respectively S

(k)
g ) associated to the

Riemannian metric go (respectively g) ∈ M(M) induces the inner
product 〈, 〉go (respectively 〈, 〉g) on the Hilbert space L2(Ak(M)) =
H0(Ak(M)), hence:

〈ω1, ω2〉go :=

∫
M

ω1∧S(k)
go

(ω2) = (−1)k(n−k)

∫
M

ω1∧S(k)
g (S(n−k)

g ◦S(k)
go

)(ω2)

=: 〈ω1, A
(k)
ggo

(ω2)〉g (12)

for any ω1, ω2 ∈ Ak(M), where

A(k)
ggo

: Ak(M)→ Ak(M), A(k)
ggo

:= (−1)k(n−k)S(n−k)
g ◦ S(k)

go
, (13)

k ∈ {0, 1, . . . , n}.
A

(k)
ggo is a continuous and formally self-adjoint (symmetric) R-linear

operator, which can be extended to the Hilbert space L2(Ak(M)) =:
H0(Ak(M)). Therefore, (12) shows that all Riemannian metrics g ∈
M(M) induce the same topology on L2(Ak(M)) =: H0(Ak(M)), for
each k ∈ {0, 1, . . . , n}. The same property is also true for the Sobolev
spaces H1(Ak(M)) and H2(Ak(M)) for each k ∈ {0, 1, . . . , n}.
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Lemma 13 and the definitions of the codifferential δ
(k)
g : Ak(M) →

Ak−1(M) and of the Hodge-de Rham operator ∆
(k)
g : H2(Ak(M)) →

H0(Ak(M)) therefore lead to the following results.

Corollary 14. Let M be a closed, n-dimensional smooth manifold and
Hs(Ak(M)) the Sobolev space of class Hs, s ∈ {0, 1, 2}, associated to
the pre-Hilbertian vector space Ak(M), k ∈ {0, 1, . . . , n}. Then, the
next two statements are true:

(i) The map

M(M) 3 g 7→ δ(k)
g ∈ L(H1(Ak(M)), H0(Ak(M)))

is smooth for each k ∈ {0, 1, . . . , n}, i.e. the codifferential δ
(k)
g

smoothly depends on g ∈M(M) for each k ∈ {0, 1, . . . , n};
(ii) The map

M(M) 3 g 7→ ∆(k)
g := d(k−1)◦δ(k)

g +δ(k+1)
g ◦d(k) ∈ L(H2(Ak(M)), H0(Ak(M)))

is smooth for each k ∈ {0, 1, . . . , n}, that is the Hodge-de Rham oper-

ator ∆
(k)
g smoothly depends on g ∈M(M) for each k ∈ {0, 1, . . . , n}.

Let us also remark that still Lemma 13 shows that the map

M(M) 3 g 7→ A(k)
ggo
∈ L(H0(Ak(M))),

where A
(k)
ggo is the R-linear operator defined by the equality (13),

smoothly depends on g ∈ M(M), for each k ∈ {0, 1, . . . , n} so
that Corollary 14 (i), the minimax principle (see Theorem 2.2 of
M.Craioveanu, M.Puta, Th.M.Rassias [5], p.286) and Theorem 6 im-
ply the following result regarding the smooth dependence on the Rie-
mannian metric of the eigenvalues of Hodge-de Rham operators and of
the eigenvalues of their restrictions to the spaces of exact and co-exact,
smooth differential forms on M respectively.

Corollary 15. If M is a closed, n-dimensional smooth manifold,
λj,k(M, ·),
λ
′

j,k (M, ·), λ
′′

j,k(M, ·) : M(M) → R, are the real functions given by

the eigenvalues of Hodge-de Rham operator ∆(k) and the eigenvalues
of the restriction of ∆(k) to the space of exact (resp. co-exact) smooth
differential k-forms on M , j ∈ N and k ∈ {0, 1, . . . , n}, then those
functions are smooth with respect to the canonical Fréchet manifold
structure considered on M(M).
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Finally, in this context, we mention another interesting consequence
of Theorem 11.

Corollary 16. Under the same assumptions as those stated in corol-
lary 15, the Hodge-de Rham decomposition

H0Ak (M) = d(k−1)
(
H1Ak−1 (M)

)
⊕ δ(k+1)

g

(
H1Ak+1 (M)

)
⊕ker

(
∆(k)
g

)
(see Theorem 1.3.4 [9]) smoothly depends of g ∈M(M) for each k ∈
{0, . . . , n}, the meaning of the Remark 12.

Proof. In fact, to note that Hilbert space E := d(k−1)
(
H1Ak−1 (M)

)
does not depend on the choice of Riemannian metric on M , so our
assertion is an immediate consequence of Theorem 11, where we con-
sidered

Fg := δ(k+1)
g

(
H1Ak+1 (M)

)
⊕ ker

(
∆(k)
g

)
.

Q.E.D. �

Remark 17. The Fréchet manifold topology of M(M)is just the
C∞-topology on M(M), so that Corollary 15 includes in particu-
lar the continuity property of the real functions λj,k(M, ·), λ

′

j,k(M, ·),

λ
′′

j,k(M, ·) : M(M)→ R with respect to this topology for each j ∈ N and
k ∈ {0, 1, . . . , n} (see M.Craioveanu and M.Puta [4], M.Craioveanu,
M.Puta and Th.M.Rassias [5]).
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