"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 19 (2009), No. 2, 7 - 20

SMOOTH DEPENDENCE ON RIEMANNIAN METRIC OF EIGENVALUES OF HODGE-DE RHAM OPERATORS

MIHAELA ALBICI

Abstract. Let M be an oriented, closed, smooth $(= C^{\infty})$ manifold of dimension n > 2, $A^k(M)$ the space of smooth differential k-forms on M, and $\mathfrak{M}(M)$ the space of all Riemannian metrics on M endowed with the canonical structure of smooth Fréchet manifold (for details, see M. Golubitsky and V.G. Guillemin [8], pp.74-78). Using an idea of J.Wenzelburger [10], [11], we prove that the eigenvalues of the Hodge de-Rham operator $\Delta^{(p)} : A^p(M) \to A^p(M)$ depend smoothly $(=C^{\infty})$ on Riemannian metric $q \in \mathfrak{M}(M)$ for each $k \in \{0, \ldots, n\}$ if on the space $\mathfrak{M}(M)$ of all Riemannian metrics on such manifold is considered the canonical structure of Fréchet smooth manifold. In Corollary 14 it is shown that operators $\delta_g^{(k)} : A^k(M) \to A^{k-1}(M)$ and $\Delta_q^{(k)}: H^2 A^k(M) \to H^0 A^k(M)$ [see Definition 1 (vi) and (vii)] depend smoothly by $q \in \mathfrak{M}(M)$ for each $k \in \{0, \ldots, n\}$. Minimax principle (see Theorem 2.2 of M. Craioveanu, M. Puta, Th.M. Rassias [5], p. 286) and Theorem 6 imply the smoothly dependence on Riemannian metric of eigenvalues of Hodge-de Rham operators and of restrictions of these operators on spaces of differential exact forms, respectively coexact forms (see Corollary 15).

Keywords and phrases: Hodge-de Rham operator, eigenvalues, Hodge-de Rham decomposition.

(2000) Mathematics Subject Classification: 58J10, 58J50, 58A14

Finally, another interesting consequence of Theorem 11 is presented in Corollary 16, namely that the same assumptions as those stated above M, Hodge-de Rham decomposition

 $H^{0}A^{k}(M) = d^{(k-1)}\left(H^{1}A^{k-1}(M)\right) \oplus \delta_{g}^{(k+1)}\left(H^{1}A^{k+1}(M)\right) \oplus \ker\left(\Delta_{g}^{(k)}\right)$ smoothly depends on $g \in \mathfrak{M}(M)$ for each $k \in \{0, \ldots, n\}$, the meaning of the Remark 12.

1. INTRODUCTION

Let M be a smooth differential *n*-dimensional manifold and $A(M) = \sum_{p=0}^{n} A^{p}(M)$ the exterior algebra of smooth differential forms on M.

Definition 1. Let M be a manifold with boundary. For assertions (ii), (iii), (vi) and (vii) we assume in addition that M is equipped with a Riemannian metric g.

 (i) the outer product (or ∧-product) of differential forms is defined by

$$(\omega \wedge \eta) (X_1, \dots, X_{k+l}) = \sum_{\sigma \in S(k,k+l)} (\operatorname{sgn} \sigma) \omega (X_{\sigma(1)}, \dots, X_{\sigma(k)})$$
$$\cdot \eta (X_{\sigma(k+1)}, \dots, X_{\sigma(k+l)}),$$

where X_1, \ldots, X_{k+l} are arbitrary vector fields on M.

(ii) Let (E_1, \ldots, E_n) be a local g-orthonormal frame on $U \subset M$. It defines a product on $A^k(M)$, defined locally by

$$(|)_{\Lambda^{k}} : A^{k} (M) \times A^{k} (M) \to C^{\infty} (M) ,$$
$$(\omega|\eta)_{\Lambda^{k}(U)} = \sum_{\sigma \in S(k,n)} \omega (E_{\sigma(1)}, \dots, E_{\sigma(k)}) \cdot \eta (E_{\sigma(1)}, \dots, E_{\sigma(k)}).$$

(iii) The Hodge star operator $S^{(k)}: A^k(M) \to A^{n-k}(M)$ is defined by equality

$$\eta \wedge S^{(k)}\omega = (\eta|\omega)_{\Lambda^{k}(M)} \,\mu, \,\forall \eta \in A^{k}(M) \,.$$

Here $\mu \in A^n(M)$ is the Riemannian volume form on M.

(iv) The inner product (or contraction) with a vector field $Y \in \Gamma(TM)$ is defined by

$$i(Y): A^k(M) \to A^{k-1}(M)$$

 $(i(Y)\omega)(X_1,\ldots,X_{k-1}) = \omega(Y,X_1,\ldots,X_{k-1}), \ \forall X_1,\ldots,X_{k-1} \in \Gamma(TM).$

(v) The exterior differential $d : A^k(M) \to A^{k+1}(M)$, sometimes denoted $d^{(k)}$, is defined (for k < n) by

$$d\omega \left(X_0, X_1, \dots, X_k\right) = \sum_{0 \le j \le k} \left(-1\right)^j D\left[\omega \left(X_0, \dots, \hat{X}_j, \dots, X_k\right)\right] \left(X_j\right) + \sum_{0 \le i < j \le k} \left(-1\right)^{i+j} \omega \left(\left[X_i, X_j\right], X_0, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_k\right).$$

Here X_0, \ldots, X_k are arbitrary vector fields on M, and the symbol \hat{X}_j expresses that argument X_j is missing. For $\omega \in A^n(M)$, by definition $d\omega = 0$.

(vi) The codifferential operator is defined as the application δ : $A^{k}(M) \rightarrow A^{k-1}(M)$, sometimes noted $\delta^{(k)}$,

$$\delta\omega = (-1)^{nk+n+1} S^{(n-k-1)} d\left(S^{(k)}\omega\right), \omega \in A^k\left(M\right).$$

(vii) The Hodge-de Rham operator is defined as the application $\Delta^{(k)}: A^k(M) \to A^k(M),$

$$\Delta^{(k)}\omega = \left(d\delta + \delta d\right)\omega, \ \omega \in A^k\left(M\right).$$

From Definition 1. it follows that:

$$S^{(0)}(1) = v_g, S^{(n)}(v_g) = 1$$
(1)

where v_g denotes the canonical volume form of (M, g), 1 is the real constant function on M having value 1 and

$$S^{(n-p)} \circ S^{(p)}(\omega) = (-1)^{p(n-p)} \omega \text{ for any } \omega \in A^p(M).$$
(2)

Remark 2. Note that $\Delta^{(0)}$ is just the Laplace-Beltrami operator Δ : $C^{\infty}(M) \to C^{\infty}(M)$.

Proposition 3. The operator $\Delta^{(p)}$, for each $0 \leq p \leq n$, has the following properties:

- (i) $\Delta^{(p)}$ is formally self adjoint;
- (ii) $\Delta^{(p)}$ is formally positive, i.e. $\langle \Delta^{(p)} \alpha, \alpha \rangle \geq 0$ for any $\alpha \in A^p(M)$;
- (iii) $\Delta^{(p)}\alpha = 0$ if and only if $d^{(p)}\alpha = 0$ and $\delta^{(p)}\alpha = 0$;

(iv)
$$\Delta^{(n-p)}S^{(p)} = S^{(p)}\Delta^{(p)}$$
.

Proof. (i)

$$\begin{split} \left\langle \Delta^{(p)} \alpha, \beta \right\rangle &= \left\langle d^{(p-1)} \circ \delta^{(p)} \alpha + \delta^{(p+1)} \circ d^{(p)} \alpha, \beta \right\rangle = \\ &= \left\langle \delta^{(p)} \alpha, \delta^{(p)} \beta \right\rangle + \left\langle d^{(p)} \alpha, d^{(p)} \beta \right\rangle = \\ &= \left\langle \alpha, d^{(p-1)} \circ \delta^{(p)} \beta \right\rangle + \left\langle \alpha, \delta^{(p+1)} \circ d^{(p)} \beta \right\rangle \\ &= \left\langle \alpha, \Delta^{(p)} \beta \right\rangle \end{split}$$

for each $\alpha, \beta \in A^p(M)$.

(ii)
$$\langle \Delta^{(p)} \alpha, \alpha \rangle = \langle d^{(p)} \alpha, d^{(p)} \alpha \rangle + \langle \delta^{(p)} \alpha, \delta^{(p)} \alpha \rangle = ||d^{(p)} \alpha||^2 + ||\delta^{(p)} \alpha||^2 \ge 0$$
 for each $\alpha \in A^p(M)$.

- (iii) If $\Delta^{(p)}\alpha = 0$, the equality $\langle \Delta^{(p)}\alpha, \alpha \rangle = \langle d^{(p)}\alpha, d^{(p)}\alpha \rangle + \langle \delta^{(p)}\alpha, \delta^{(p)}\alpha \rangle$ implies that $\langle d^{(p)}\alpha, d^{(p)}\alpha \rangle + \langle \delta^{(p)}\alpha, \delta^{(p)}\alpha \rangle = 0$, or equivalently $d^{(p)}\alpha = 0$ and $\delta^{(p)}\alpha = 0$. Conversely, if $d^{(p)}\alpha = 0$ and $\delta^{(p)}\alpha = 0$, then by the definition of $\Delta^{(p)}, \Delta^{(p)}\alpha = 0$.
- (iv) We shall consider two cases:

Case 1: n is even. Then we can write

$$\Delta^{(n-p)} = - \left(d^{(n-p-1)} \circ S^{(p+1)} \circ d^{(p)} \circ S^{(n-p)} \right. \\ \left. + S^{(p)} \circ d^{(p-1)} \circ S^{(n-p+1)} \circ d^{(n-p)} \right)$$

and therefore using the relation (2),

$$S^{(p)} \circ \Delta^{(p)} = - \left(S^{(p)} \circ d^{(p+1)} \circ S^{(n-p+1)} \circ d^{(n-p)} \circ S^{(p)} + S^{(p)} \circ S^{(n-p)} \circ d^{(n-p-1)} \circ S^{(p+1)} \circ d^{(p)} \right)$$

= $- \left[-\delta^{(n-p+1)} \circ d^{(n-p+1)} \circ S^{(p)} + (-1)^{2p(n-p)} (-1)^{(n-p-1)n+1} d^{(n-p-1)} \circ \delta^{(n-p)} \circ S^{(p)} \right]$
= $\Delta^{(n-p)} \circ S^{(p)}.$

Case 2: n is odd. Then

$$\Delta^{(n-p)} \circ S^{(p)} = d^{(n-p-1)} \circ \delta^{(n-p)} \circ S^{(p)} + \delta^{(n-p+1)} \circ d^{(n-p)} \circ S^{(p)}$$

and therefore using the Definition 1 and relation (2),

$$\begin{split} \Delta^{(n-p)} \circ S^{(p)} &= (-1)^{n-p} d^{(n-p-1)} \circ S^{(p+1)} \circ d^{(p)} \\ &+ (-1)^{n-p+1} S^{(p)} \circ d^{(p+1)} \circ S^{(n-p+1)} \circ d^{(n-p)} \circ S^{(p)} \\ &= (-1)^{n-p} (-1)^{2p^2 + p(n-p) + 1} S^{(p)} \circ \delta^{(p+1)} \circ d^{(p)} \\ &+ (-1)^{n-p+1} (-1)^p S^{(p)} \circ d^{(p+1)} \circ \delta^{(p)} = \\ &= S^{(n-p)} \circ \left(\delta^{(n-p+1)} \circ d^{(n-p)} + d^{(n-p+1)} \circ \delta^{(n-p)} \right) \\ &= S^{(p)} \circ \Delta^{(p)}. \end{split}$$
as desired. Q.E.D.

as desired.

Remark 4. The normalization of \wedge -product is chosen using the convention used by Abraham, Marsden and Ratiu [1].

Proposition 5. (i) The outer differential operator and codifferential operator are nilpotents, ie

$$d(d\omega) = 0 \text{ and } \delta(\delta\omega) = 0, \ \forall \omega \in A^k(M);$$
(3)

(ii) The Hodge star operator is idempotent, ie

$$S^{(n-k)}\left(S^{(k)}\omega\right) = (-1)^{k(n-k)}\omega, \,\forall\omega\in A^k\left(M\right);\tag{4}$$

(iii) The operators d and δ are in Hodge sense, adjoint each other, ie

$$S^{(k-1)}\delta\omega = (-1)^{k} \, dS^{(k)}\omega, \text{ and } S^{(k+1)}d\omega = (-1)^{k+1} \, \delta S^{(k)}\omega, \, \forall \omega \in A^{k}(M) \, ;$$
(5)

(iv) If
$$(E_1, \ldots, E_n)$$
 is a local g-orthonormal frame on $U \subset M$ and $\sigma \in S(k, n)$ the Hodge star operator is calculated as

$$(S^{(k)}\omega) (E_{\sigma(k+1)}, \dots, E_{\sigma(n)}) = (\operatorname{sgn}\sigma) \omega (E_{\sigma(1)}, \dots, E_{\sigma(k)}), \ \forall \omega \in A^k(M) .$$
(6)

Property (iv) can be deduced from the definition of Hodge star operator noting that

$$\sum_{\sigma \in S(k,n)} \eta \left(E_{\sigma(1)}, \dots, E_{\sigma(k)} \right) \cdot \omega \left(E_{\sigma(1)}, \dots, E_{\sigma(k)} \right) = \left(\eta \wedge S^{(k)} \omega \right) \left(E_1, \dots, E_n \right)$$
$$= \sum_{\sigma \in S(k,n)} \left(\operatorname{sgn} \sigma \right) \eta \left(E_{\sigma(1)}, \dots, E_{\sigma(k)} \right) \cdot \left(S^{(k)} \omega \right) \left(E_{\sigma(k+1)}, \dots, E_{\sigma(n)} \right).$$

Since $\forall \omega \in A^k(M)$ it is arbitrary follows that (6) is true for any $\sigma \in S(k, n)$.

The following theorem gives a precise characterization of eigenvalues, $\lambda'_{k,p}(M,g), k \in \mathbb{N}$, which not involves derivatives of Riemannian metric g.

Theorem 6. (Dodziuk [7]) Let $g \in \mathfrak{M}(M)$ and $p \in \{1, \ldots, n\}$ fixed. Let

$$0 < \lambda_{1,p}'(M,g) \le \lambda_{2,p}'(M,g) \le \dots$$

be the eigenvalues of the restriction

$$\Delta_{g|_{d^{(p-1)}(A^{p-1}(M))}}^{(p)} : d^{(p-1)}\left(A^{p-1}(M)\right) \to d^{(p-1)}\left(A^{p-1}(M)\right)$$

of $\Delta_g^{(p)}$ to the real vector space of exact differential p-forms $d^{(p-1)}(A^{p-1}(M))$, counted with their multiplicity. Then

$$\lambda_{k,p}' = \inf_{V_k} \sup\left\{ \frac{\left\| d^{(p-1)}\theta \right\|_g^2}{\left\| \theta \right\|_g^2} \left| d^{(p-1)}\theta \in V_k \setminus \{0\} \right\}$$
(7)

where V_k through the family of all k-dimensional real vector subspace of it.

Proof. Let us note first that taking supremum in (7) can be done in two stages. For each exact differential *p*-form let choose $\theta \in A^{p-1}(M) \setminus \{0\}$ to maximize quotient $\frac{\|d^{(p-1)}\theta\|_g}{\|\theta\|_g}$. Let choose $\theta \in A^{p-1}(M) \setminus \{0\}$ arbitrarily, with Hodge-de Rham decomposition

$$\theta = H^{(p-1)}(\theta) + d^{(p-2)}\omega_1 + \delta_g^{(p)}\omega_2, \ \omega_1 \in A^{p-2}(M), \ \omega_2 \in A^p(M),$$

where $H^{(p-1)}$ denotes the harmonic projector, and be $\theta_0 := \delta_g^{(p)} \omega_2 \in \delta_g^{(p)}(A^p(M))$. Therefore,

$$\inf_{V_{k}} \sup \left\{ \frac{\left\| d^{(p-1)} \theta \right\|_{g}^{2}}{\left\| \theta \right\|_{g}^{2}} \left| d^{(p-1)} \theta \in V_{k} \setminus \{0\} \right\}$$
$$= \inf_{V_{k}} \sup \left\{ \frac{\left\| d^{(p-1)} \theta \right\|_{g}^{2}}{\left\| \theta_{0} \right\|_{g}^{2}} \left| d^{(p-1)} \theta \in V_{k} \setminus \{0\} \right\}$$

$$= \inf_{W_k} \sup\left\{ \frac{\left\| d^{(p-1)} \theta_0 \right\|_g}{\left\| \theta_0 \right\|_g} \left| d^{(p-1)} \theta \in W_k \setminus \{0\} \right\}$$
(8)

where W_k through the set of all k-dimensional linear subspace of $\delta_g^{(p)} A^p(M)$.

Because

$$\delta_g^{(p)}\theta_0 = \left(\delta_g^{(p-1)} \circ \delta_g^{(p)}\right)(\omega_2) = 0$$

and

$$d^{(p-1)}\theta = d^{(p-1)} \left(H^{(p-1)} \left(\theta \right) + d^{(p-2)} \omega_1 + \delta_g^{(p)} \omega_2 \right) = d^{(p-1)} \theta_0,$$

it follows that

$$\left\| d^{(p-1)}\theta \right\|_{g}^{2} = \left\| d^{(p-1)}\theta_{0} \right\|_{g}^{2} = \left\| d^{(p-1)}\theta_{0} \right\|_{g}^{2} + \left\| \delta_{g}^{(p-1)}\theta_{0} \right\|_{g}^{2}.$$

Therefore, the right side of (8) gives the mini-max characterization of the k eigenvalues $\lambda_{k,p-1}''(M,g)$ of the restriction of $\Delta_g^{(p-1)}$ to the vector space of differential coexact (p-1)-forms, which coinciding with the k eigenvalue $\lambda_{k,p}'(M,g)$ of the restriction of $\Delta_g^{(p)}$ to the p-forms exact differential space. Q.E.D.

Let \mathbb{H} be a real Hilbert space with the inner product $\langle, \rangle_0 : \mathbb{H} \times \mathbb{H} \to \mathbb{R}$ and $\|\cdot\|_0$ the induced norm. Let $\mathcal{G}(\mathbb{H})$ be the family of all closed vector subspaces of \mathbb{H} .

If $\mathbb{E}, \mathbb{F} \in \mathcal{G}(\mathbb{H})$ are fixed, let $L(\mathbb{E}, \mathbb{F})$ be the real vector space of all the bounded linear operators from \mathbb{E} into \mathbb{F} . With respect to the canonical norm of a bounded linear operator from the Hilbert space \mathbb{E} into the Hilbert space \mathbb{F} , still denoted with $\|\cdot\|_0$, $L(\mathbb{E}, \mathbb{F})$ is a Banach space. For each $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ fixed, let

$$\mathcal{G}_{\mathbb{E}} := \{ \mathbb{F} \in \mathcal{G}(\mathbb{H}) | \quad \mathbb{H} = \mathbb{E} \oplus \mathbb{F} \}$$

be the set of all closed complements of \mathbb{E} in \mathbb{H} and let us notice that $\mathbb{E}^{\perp}(=$ the orthogonal complement of \mathbb{E} in \mathbb{H} with respect to the inner product $\langle, \rangle_0 \in \mathcal{G}_{\mathbb{E}}$. Let

$$\mathcal{P}(\mathbb{H},\mathbb{E}) := \{ \pi \in L(\mathbb{H}) := L(\mathbb{H},\mathbb{H}) | \quad \pi \circ \pi = \pi \quad \text{and} \quad Im(\pi) = \mathbb{E} \}$$

be the space of all continuous projections of \mathbb{H} onto $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ endowed with the relative topology induced by the canonical topology on $L(\mathbb{H})$.

Lemma 7. (see [11]). If the subspace $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ is fixed, then the map $Ker : \mathcal{P}(\mathbb{H}, \mathbb{E}) \to \mathcal{G}_{\mathbb{E}}, \pi \mapsto Ker(\pi),$

is a bijection.

For $\mathbb{F}_0, \mathbb{F} \in \mathcal{G}_{\mathbb{E}}$, let $\pi_0, \pi \in \mathcal{P}(\mathbb{H}, \mathbb{E})$ so that $Ker(\pi_0) = \mathbb{F}_0$ and $Ker(\pi) = \mathbb{F}$ (see Lemma 7). If the closed vector subspace \mathbb{F}_0 of \mathbb{H} is fixed, the map $\varphi_{\mathbb{F}_0,\mathbb{E}} : \mathcal{G}_{\mathbb{E}} \to L(\mathbb{F}_0,\mathbb{E})$, which associates to each vector subspace $\mathbb{F} \in \mathcal{G}_{\mathbb{E}}$ the map from \mathbb{F}_0 into \mathbb{E} having as graph the subspace \mathbb{F} of $\mathbb{H} = \mathbb{F}_0 \oplus \mathbb{E}$, is a bijection. Moreover, the set of all charts of the type $\{(\mathcal{G}_{\mathbb{E}}, \varphi_{\mathbb{F}_0,\mathbb{E}}, L(\mathbb{F}_0, \mathbb{E})) \mid \mathbb{F}_0, \mathbb{E} \in \mathcal{G}(\mathbb{H}), \mathbb{H} = \mathbb{F}_0 \oplus \mathbb{E}\}$ is a smooth atlas for $\mathcal{G}(\mathbb{H})$. Endowed with the Banach smooth manifold structure defined by this atlas, $\mathcal{G}(\mathbb{H})$ is called the Grassmann manifold associated to the Hilbert space \mathbb{H} (see N. Bourbaki [3], p. 38). In addition, one can show that the topological space $\mathcal{G}(\mathbb{H})$ is metrisable.

Lemma 8. Let $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ be fixed and $\mathcal{G}_{\mathbb{E}}$ with the C^{∞} -manifold structure induced by the one previously defined on $\mathcal{G}(\mathbb{H})$. Then there is a unique C^{∞} -manifold structure on $\mathcal{P}(\mathbb{H}, \mathbb{E})$, whose subjacent topology coincides with the one induced on $\mathcal{P}(\mathbb{H}, \mathbb{E})$ by the real Banach space structure of $L(\mathbb{H})$, so that the bijection

$$Ker: \mathcal{P}(\mathbb{H}, \mathbb{E}) \to \mathcal{G}_{\mathbb{E}}, \pi \mapsto Ker(\pi),$$

(see Lemma 7) is a C^{∞} -diffeomorphism.

For the proof, see E.Binz, J.Śniatycki and H.Fischer [2].

Let us denote by $L^2_{sim}(\mathbb{H};\mathbb{R})$ the real vector space of all symmetric and continuous \mathbb{R} -bilinear forms $\beta:\mathbb{H}\times\mathbb{H}\to\mathbb{R}$. With respect to the supremum norm

$$\|\beta\|:=\sup\{\frac{|\beta(u,v)|}{\|u\|_0\|v\|_0}|\quad u,v\in\mathbb{H}\setminus\{0\}\},$$

 $L^2_{sim}(\mathbb{H};\mathbb{R})$ is a real Banach space. Let $\mathfrak{M}(\mathbb{H}) \subset L^2_{sim}(\mathbb{H};\mathbb{R})$ be the set of all inner products on \mathbb{H} which are continuous with respect to the topology induced by $g_0 := \langle, \rangle_0$ on \mathbb{H} and let us notice that $\mathfrak{M}(\mathbb{H})$ is a non-empty open subset [since $g_0 \in \mathfrak{M}(\mathbb{H})$] of $L^2_{sim}(\mathbb{H};\mathbb{R})$.

Lemma 9. (see [11]). Let \mathbb{H} be a real Hilbert space with the inner product g_0 . Then, for each $g \in \mathfrak{M}(\mathbb{H})$, the topologies induced on \mathbb{H} by g and g_0 , respectively, coincide. In particular, \mathbb{H} is a complete metric space with respect to each inner product $g \in \mathfrak{M}(\mathbb{H})$.

If the subspace $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ is fixed, then one agrees to denote the subspace $\mathbb{F} \in \mathcal{G}_{\mathbb{E}}$ which is orthogonal on \mathbb{E} with respect to the inner product $g \in \mathfrak{M}(\mathbb{H})$ with \mathbb{F}_g and also to call \mathbb{F}_g the g-orthogonal complement of \mathbb{E} in \mathbb{H} : $\mathbb{H} = \mathbb{F}_g \oplus \mathbb{E}$ and g(u, v) = 0 for any $u \in \mathbb{F}_g$ and any $v \in \mathbb{E}$.

Definition 10. If the subspace $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ and the inner product $g \in \mathfrak{M}(\mathbb{H})$ are fixed, then the orthogonal projection $\pi \in \mathcal{P}(\mathbb{H}, \mathbb{E})$ of $\mathbb{H} = \mathbb{F}_g \oplus \mathbb{E}$ onto \mathbb{E} , denoted with π_g , i.e. $Ker(\pi_g) = \mathbb{F}_g$ (see Lemma 7), is called the g-orthogonal projection of \mathbb{H} onto \mathbb{E} .

Using the Lemmas 8 and 9 it follows the next theorem.

Theorem 11. Let \mathbb{H} be a real Hilbert space, $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ a fixed subspace and \mathbb{F}_g the g-orthogonal complement of \mathbb{E} in \mathbb{H} , where $g \in \mathfrak{M}(\mathbb{H})$. Then the g-orthogonal projection π_g of \mathbb{H} onto \mathbb{E} depends smoothly on the inner product $g \in \mathfrak{M}(\mathbb{H})$, that is the map $\mathfrak{M}(\mathbb{H}) \ni g \mapsto \pi_g \in$ $\mathcal{P}(\mathbb{H}, \mathbb{E}) \subset L(\mathbb{H})$ is of class C^{∞} (meaning Fréchet differentiability).

Proof. Lemma 9 shows that all the topologies induced on \mathbb{H} by inner products $g \in \mathfrak{M}(\mathbb{H})$ coincide. Let $g_0 \in \mathfrak{M}(\mathbb{H})$ fixed. As we have already shown during the demonstration of Lemma 9, for each $g \in \mathfrak{M}(\mathbb{H})$ there is an unique \mathbb{R} -linear autoadjunct operator so that

$$g(u, v) = g_0(u, A_{g_0g}(v))$$
(9)

for any $u, v \in \mathbb{H}$. Moreover, $A_{g_0g} : \mathbb{H} \to \mathbb{H}$ is a omeomorfism for each $g \in \mathfrak{M}(\mathbb{H})$. Therefore $A_{g_0g}(\mathbb{E})$ is a closed vector subspace of \mathbb{H} and - on the basis of (9) - applications

$$_{\mathbb{F}_{g_0}} |A_{g_0g}|_{\mathbf{F}_g} : \mathbb{F}_g \to \mathbb{F}_{g_0} \text{ and } _{A_{g_0g}(\mathbb{E})} |A_{g_0g}|_{\mathbb{E}} : \mathbb{E} \to A_{g_0g}(\mathbb{E})$$
(10)

are \mathbb{R} -linear isomorphisms and homeomorphisms. If $\pi_{g_0} \in \mathcal{P}(\mathbb{H}, \mathbb{E})$ notes the g_0 -orthogonal projection of \mathbb{H} on \mathbb{E} (see Definition 10), so that Ker $(\pi_{g_0}) = \mathbb{F}_{g_0}$, then

$$\mathbb{B}_{g} := A_{g_{0}g}^{-1} \circ \pi_{g_{0}} \circ A_{g_{0}g} \in \mathcal{P}\left(\mathbb{H}, A_{g_{0}g}\left(\mathbb{E}\right)\right) \subset L\left(\mathbb{H}\right)$$

and $\operatorname{Ker}(\mathbb{B}_g) = \mathbb{F}_g$. Since applications

$$\mathfrak{M}(\mathbb{H}) \ni g \mapsto A_{g_0g} \in L(\mathbb{H}) \text{ and } \mathfrak{M}(\mathbb{H}) \ni g \mapsto A_{q_0g}^{-1} \in L(\mathbb{H})$$

are of class C^{∞} (in the Fréchet sense) $[\mathfrak{M}(\mathbb{H}) \neq \Phi$ is an open subset of Banach space $L^2_{sim}(\mathbb{H};\mathbb{R})$ and $L(\mathbb{H})$ is a Banach space] and the composition of C^{∞} -applications between Banach spaces is all the C^{∞} -class (see for example M. Craioveanu, T.S. Ratiu [6]) results that the application $\mathfrak{M}(\mathbb{H}) \ni g \mapsto \mathbb{B}_g \in L(\mathbb{H})$ is the C^{∞} -class. Because applications (10) are \mathbb{R} -linear isomorphisms and homeomorphisms, $\mathbb{F}_g \in \mathbb{G}_{\mathbb{E}} \cap \mathbb{G}_{A^{-1}_{gog}(\mathbf{E})}$ for any $g \in \mathfrak{M}(\mathbb{H})$. On the other hand, in the basis of Lemma 8, the application

$$\mathcal{P}\left(\mathbb{H}, A_{g_0g}^{-1}\left(\mathbb{E}\right)\right) \ni \pi \xrightarrow{\mathrm{Ker}} \mathrm{Ker}\left(\pi\right) \in \mathbb{G}_{A_{g_0g}^{-1}\left(\mathbb{E}\right)}$$

is C^{∞} -diffeomorfism for any $g \in \mathfrak{M}(\mathbb{H})$. Since $\operatorname{Ker}(\mathbb{B}_g) = \mathbb{F}_g = \operatorname{Ker}(\pi_q)$ for any $g \in \mathfrak{M}(\mathbb{H})$, the application

$$\mathfrak{M}(\mathbb{H}) \ni g \mapsto \pi_g \in \mathcal{P}(\mathbb{H}, \mathbb{E}) \subset L(\mathbb{H})$$
Q.E.D.

is C^{∞} - class.

Remark 12. Since the map $\mathfrak{M}(\mathbb{H}) \ni g \mapsto \pi_g \in \mathcal{P}(\mathbb{H}, \mathbb{E}) \subset L(\mathbb{H})$ is smooth (see Theorem 11), in this case one may also say that the orthogonal decomposition $\mathbb{H} = \mathbb{F}_g \oplus \mathbb{E}$ depends smoothly on $g \in \mathfrak{M}(\mathbb{H})$.

Let M be again an oriented, closed n-dimensional $(n \geq 2)$, C^{∞} manifold, $A^k(M)$ the space of smooth differential k-forms on $M, k \in \{0, 1, \ldots, n\}$, and $\mathfrak{M}(M)$ the set of all smooth Riemannian metrics on M, endowed with the smooth Fréchet manifold structure. Using Riesz's representation theorem, for any $g_o, g \in \mathfrak{M}(M)$, it follows that there is a smooth automorphism of vector bundles $\Phi_{g_og}: TM \to TM$ such that

$$g(X,Y) = g_o(\Phi_{g_og} \circ X, \Phi_{g_og} \circ Y), \tag{11}$$

for any $X, Y \in \mathfrak{X}(M)$. The automorphism Φ_{g_og} is uniquely determined modulo an isometry of (M, g_o) and the maps

$$\mathfrak{M}(M) \ni g \mapsto \Phi_{g_og}^* \in L(L^2(A^k(M))), \quad \mathfrak{M}(M) \ni g \mapsto (\Phi_{g_og}^*)^{-1} \in L(L^2(A^k(M))),$$

induced by Φ_{g_og} , are smooth for any $k \in \{0, 1, \ldots, n\}$ (for further details, see E.Binz, J.Śniatycki and H.Fischer [2]).

Lemma 13. Let $g_o, g \in \mathfrak{M}(M)$ be arbitrary, but fixed, Riemannian metrics and $S_{g_o}^{(k)}$ (respectively $S_g^{(k)}$) : $A^k(M) \to A^{n-k}(M)$ the star Hodge operator associated to g_o (respectively g), $k \in \{0, 1, \ldots, n\}$. Under the previous assumptions, the following equality

$$\Phi_{g_og}^* \circ S_{g_o}^{(k)} = S_g^{(k)} \circ \Phi_{g_og}^* : L^2(A^k(M)) \to L^2(A^{n-k}(M))$$

is valid for any $k \in \{0, 1, ..., n\}$. In particular, the map

$$\mathfrak{M}(M) \ni g \mapsto S_a^{(k)} \in L(L^2(A^k(M)), L^2(A^{n-k}(M))),$$

is smooth for any $k \in \{0, 1, \ldots, n\}$.

Proof. If (E_1, \ldots, E_n) is a local g-orthonormal arbitrary frame on M, then - on the basis of (11) $-\Phi_{g_0g} \circ E_1, \ldots, \Phi_{g_0g} \circ E_n$ is a local g_0 -orthonormal frame on M. In the basis of Proposition 5 (iv) true and

16

for Riemannian manifold without boundary, result that

$$\begin{pmatrix} \left(\Phi_{g_{0}g}^* \circ S_{g_{0}}^{(k)} \right) (\omega) \right) \begin{pmatrix} E_{\sigma(k+1)}, \dots, E_{\sigma(n)} \end{pmatrix} \\ = \left(\Phi_{g_{0}g}^* \left(S_{g_{0}}^{(k)} (\omega) \right) \right) \begin{pmatrix} E_{\sigma(k+1)}, \dots, E_{\sigma(n)} \end{pmatrix} \\ = \left(S_{g_{0}}^{(k)} (\omega) \right) \left(\Phi_{g_{0}g} \circ E_{\sigma(k+1)}, \dots, \Phi_{g_{0}g} \circ E_{\sigma(n)} \right) \\ = \operatorname{sgn} \left(\sigma \right) \omega \left(\Phi_{g_{0}g} \circ E_{\sigma(1)}, \dots, \Phi_{g_{0}g} \circ E_{\sigma(k)} \right) \\ = \operatorname{sgn} \left(\sigma \right) \left(\Phi_{g_{0}g}^* (\omega) \right) \left(E_{\sigma(1)}, \dots, E_{\sigma(k)} \right) \\ = \left(S_{g}^{(k)} \left(\Phi_{g_{0}g}^* (\omega) \right) \right) \left(E_{\sigma(k+1)}, \dots, E_{\sigma(n)} \right)$$

for any $\omega \in A^k(M)$ and every $\sigma \in S(k, n)$ note the set of all permutations σ of the set $\{1, \ldots, n\}$ so that $\sigma(1) < \ldots < \sigma(k)$ and $\sigma(1) < \ldots < \sigma(k)$. Therefore, in the basis of the considerations set out preceding this lemma, the application

$$\mathfrak{M}(M) \ni g \mapsto S_g^{(k)} = \Phi_{g_0g}^* \circ S_{g_0}^{(k)} \circ \left(\Phi_{g_0g}^*\right)^{-1} \in L\left(A^k\left(M\right), A^{n-k}\left(M\right)\right)$$

is smooth for all $k \in \{0, \dots, n\}$. Q.E.D.

The Hodge star operator $S_{g_o}^{(k)}$ (respectively $S_g^{(k)}$) associated to the Riemannian metric g_o (respectively g) $\in \mathfrak{M}(M)$ induces the inner product \langle, \rangle_{g_o} (respectively \langle, \rangle_g) on the Hilbert space $L^2(A^k(M)) = H^0(A^k(M))$, hence:

$$\langle \omega_1, \omega_2 \rangle_{g_o} := \int_M \omega_1 \wedge S_{g_o}^{(k)}(\omega_2) = (-1)^{k(n-k)} \int_M \omega_1 \wedge S_g^{(k)}(S_g^{(n-k)} \circ S_{g_o}^{(k)})(\omega_2)$$

=: $\langle \omega_1, A_{gg_o}^{(k)}(\omega_2) \rangle_g$ (12)

for any $\omega_1, \omega_2 \in A^k(M)$, where

$$A_{gg_o}^{(k)}: A^k(M) \to A^k(M), \quad A_{gg_o}^{(k)}:= (-1)^{k(n-k)} S_g^{(n-k)} \circ S_{g_o}^{(k)}, \quad (13)$$

 $k \in \{0, 1, \dots, n\}.$

 $A_{gg_o}^{(k)}$ is a continuous and formally self-adjoint (symmetric) \mathbb{R} -linear operator, which can be extended to the Hilbert space $L^2(A^k(M)) =: H^0(A^k(M))$. Therefore, (12) shows that all Riemannian metrics $g \in \mathfrak{M}(M)$ induce the same topology on $L^2(A^k(M)) =: H^0(A^k(M))$, for each $k \in \{0, 1, \ldots, n\}$. The same property is also true for the Sobolev spaces $H^1(A^k(M))$ and $H^2(A^k(M))$ for each $k \in \{0, 1, \ldots, n\}$.

Lemma 13 and the definitions of the codifferential $\delta_g^{(k)} : A^k(M) \to A^{k-1}(M)$ and of the Hodge-de Rham operator $\Delta_g^{(k)} : H^2(A^k(M)) \to H^0(A^k(M))$ therefore lead to the following results.

Corollary 14. Let M be a closed, n-dimensional smooth manifold and $H^s(A^k(M))$ the Sobolev space of class H^s , $s \in \{0, 1, 2\}$, associated to the pre-Hilbertian vector space $A^k(M)$, $k \in \{0, 1, ..., n\}$. Then, the next two statements are true:

(i) The map

$$\mathfrak{M}(M) \ni g \mapsto \delta_g^{(k)} \in L(H^1(A^k(M)), H^0(A^k(M)))$$

is smooth for each $k \in \{0, 1, ..., n\}$, i.e. the codifferential $\delta_g^{(k)}$ smoothly depends on $g \in \mathfrak{M}(M)$ for each $k \in \{0, 1, ..., n\}$;

(ii) The map

$$\mathfrak{M}(M) \ni g \mapsto \Delta_g^{(k)} := d^{(k-1)} \circ \delta_g^{(k)} + \delta_g^{(k+1)} \circ d^{(k)} \in L(H^2(A^k(M)), H^0(A^k(M)))$$

is smooth for each $k \in \{0, 1, \dots, n\}$, that is the Hodge-de Rham oper-

ator $\Delta_g^{(k)}$ smoothly depends on $g \in \mathfrak{M}(M)$ for each $k \in \{0, 1, \dots, n\}$.

Let us also remark that still Lemma 13 shows that the map

$$\mathfrak{M}(M) \ni g \mapsto A_{gg_o}^{(k)} \in L(H^0(A^k(M))),$$

where $A_{gg_o}^{(k)}$ is the \mathbb{R} -linear operator defined by the equality (13), smoothly depends on $g \in \mathfrak{M}(M)$, for each $k \in \{0, 1, \ldots, n\}$ so that Corollary 14 (i), the minimax principle (see Theorem 2.2 of M.Craioveanu, M.Puta, Th.M.Rassias [5], p.286) and Theorem 6 imply the following result regarding the smooth dependence on the Riemannian metric of the eigenvalues of Hodge-de Rham operators and of the eigenvalues of their restrictions to the spaces of exact and co-exact, smooth differential forms on M respectively.

Corollary 15. If M is a closed, n-dimensional smooth manifold, $\lambda_{j,k}(M, \cdot)$,

 $\lambda'_{j,k}(M,\cdot), \lambda''_{j,k}(M,\cdot) : \mathfrak{M}(M) \to \mathbb{R}$, are the real functions given by the eigenvalues of Hodge-de Rham operator $\Delta^{(k)}$ and the eigenvalues of the restriction of $\Delta^{(k)}$ to the space of exact (resp. co-exact) smooth differential k-forms on $M, j \in \mathbb{N}$ and $k \in \{0, 1, \ldots, n\}$, then those functions are smooth with respect to the canonical Fréchet manifold structure considered on $\mathfrak{M}(M)$.

Finally, in this context, we mention another interesting consequence of Theorem 11.

Corollary 16. Under the same assumptions as those stated in corollary 15, the Hodge-de Rham decomposition

$$H^{0}A^{k}(M) = d^{(k-1)}(H^{1}A^{k-1}(M)) \oplus \delta_{g}^{(k+1)}(H^{1}A^{k+1}(M)) \oplus \ker\left(\Delta_{g}^{(k)}\right)$$

(see Theorem 1.3.4 [9]) smoothly depends of $g \in \mathfrak{M}(M)$ for each $k \in \{0, \ldots, n\}$, the meaning of the Remark 12.

Proof. In fact, to note that Hilbert space $\mathbb{E} := d^{(k-1)} \left(H^1 A^{k-1} (M) \right)$ does not depend on the choice of Riemannian metric on M, so our assertion is an immediate consequence of Theorem 11, where we considered

$$\mathbb{F}_g := \delta_g^{(k+1)} \left(H^1 A^{k+1} \left(M \right) \right) \oplus \ker \left(\Delta_g^{(k)} \right).$$

Q.E.D.

Remark 17. The Fréchet manifold topology of $\mathfrak{M}(M)$ is just the C^{∞} -topology on $\mathfrak{M}(M)$, so that Corollary 15 includes in particular the continuity property of the real functions $\lambda_{j,k}(M, \cdot), \lambda'_{j,k}(M, \cdot), \lambda'_{j,k}(M, \cdot)$, $\lambda''_{j,k}(M, \cdot) : \mathfrak{M}(M) \to \mathbb{R}$ with respect to this topology for each $j \in \mathbb{N}$ and $k \in \{0, 1, \ldots, n\}$ (see M.Craioveanu and M.Puta [4], M.Craioveanu, M.Puta and Th.M.Rassias [5]).

References

- Abraham, R., Marsden, J.E. and Ratiu, T., Manifolds, Tensors Analysis, and Applications. 2 Edition, Applied Mathematical Sciences 75, Springer Verlag, New York, 1988.
- Binz, E., Śniatycki, J. and Fischer, H., Geometry of Classical Fields, Mathematical Studies 154, North Holland Publishing, Amsterdam, 1988.
- [3] Bourbaki, N., Variétés différentielles et analytiques, Fascicule de résultats, Paragraphes 1 à 7, Hermann, Paris, 1967.
- [4] Craioveanu, M. and Puta, M., On the continuous dependence on the Riemannian metric of the eigenvalues of the Hodge-de Rham-Laplace operators, Proc. of the 24th National Conference of Geometry and Topology, Timisoara, July 5-9, 1994, Editura Mirton Timisoara (1996),pp. 85-95.
- [5] Craioveanu,M., Puta,M. and Rassias,Th.M., Old and New Aspects in Spectral Geometry, Springer-Verlag, Mathematics and Its Applications, Vol.534, Berlin, Heidelberg, New-York, 2001.

- [6] Craioveanu, M. and Rațiu, T.S., Elements of local analysis, (Romanian), Vol.II, Monografii Matematice Nr.7, Tipografia Universității din Timişoara, 1976.
- [7] Dodziuk, J., Eigenvalues of the Laplacian on forms, Proc.Amer.Math.Soc., 85, (3)(1982), 437-443.
- [8] Golubitsky, M. and Guillemin, V.G., Stable Mappings and Their Singularities, GTM, Vol.14, Springer-Verlag, New-York, Heidelberg, Berlin, 1973.
- [9] Turmacu,M., A study of some problems regarding the spectrums of Hodge-de Rham operators associated to a closed Riemannian manifold, (Romanian), PhD Thesis, Universitatea de Vest din Timişoara, România 2007.
- [10] Wenzelburger, J., Die Hodge-Zerlegung in der Kontinuumstheorie von Defekten, Dissertation, Universität Mannheim, 1984.
- [11] Wenzelburger, J., On the smooth deformation of Hilbert space decompositions, Appendix in Schwarz, G., Hodge Decomposition-A Method for Solving Boundary Value Problems, Springer-Verlag, Berlin, Heidelberg, New-York, 1995.

"Constantin Brâncoveanu" University of Râmnicu Vâlcea, România mturmacu@yahoo.com