"Vasile Alecsandri" University of Bacău
 Faculty of Sciences
 Scientific Studies and Research
 Series Mathematics and Informatics
 Vol. 19 (2009), No. 2, 7-20

 SMOOTH DEPENDENCE ON RIEMANNIAN METRIC

 SMOOTH DEPENDENCE ON RIEMANNIAN METRIC OF EIGENVALUES OF HODGE-DE RHAM OF EIGENVALUES OF HODGE-DE RHAM OPERATORS

 OPERATORS}

MIHAELA ALBICI

Abstract

Let M be an oriented, closed, smooth $\left(=C^{\infty}\right)$ manifold of dimension $n \geq 2, A^{k}(M)$ the space of smooth differential k-forms on M, and $\mathfrak{M}(M)$ the space of all Riemannian metrics on M endowed with the canonical structure of smooth Fréchet manifold (for details, see M. Golubitsky and V.G. Guillemin [8], pp.74-78). Using an idea of J.Wenzelburger [10], [11], we prove that the eigenvalues of the Hodge de-Rham operator $\Delta^{(p)}: A^{p}(M) \rightarrow A^{p}(M)$ depend smoothly $\left(=C^{\infty}\right)$ on Riemannian metric $g \in \mathfrak{M}(M)$ for each $k \in\{0, \ldots, n\}$ if on the space $\mathfrak{M}(M)$ of all Riemannian metrics on such manifold is considered the canonical structure of Fréchet smooth manifold. In Corollary 14 it is shown that operators $\delta_{g}^{(k)}: A^{k}(M) \rightarrow A^{k-1}(M)$ and $\Delta_{g}^{(k)}: H^{2} A^{k}(M) \rightarrow H^{0} A^{k}(M)$ [see Definition 1 (vi) and (vii)] depend smoothly by $g \in \mathfrak{M}(M)$ for each $k \in\{0, \ldots, n\}$. Minimax principle (see Theorem 2.2 of M. Craioveanu, M. Puta, Th.M. Rassias [5], p. 286) and Theorem 6 imply the smoothly dependence on Riemannian metric of eigenvalues of Hodge-de Rham operators and of restrictions of these operators on spaces of differential exact forms, respectively coexact forms (see Corollary 15).

Keywords and phrases: Hodge-de Rham operator, eigenvalues, Hodge-de Rham decomposition.
(2000)Mathematics Subject Classification: 58J10, 58J50, 58A14

Finally, another interesting consequence of Theorem 11 is presented in Corollary 16, namely that the same assumptions as those stated above M, Hodge-de Rham decomposition
$H^{0} A^{k}(M)=d^{(k-1)}\left(H^{1} A^{k-1}(M)\right) \oplus \delta_{g}^{(k+1)}\left(H^{1} A^{k+1}(M)\right) \oplus \operatorname{ker}\left(\Delta_{g}^{(k)}\right)$ smoothly depends on $g \in \mathfrak{M}(M)$ for each $k \in\{0, \ldots, n\}$, the meaning of the Remark 12.

1. Introduction

Let M be a smooth differential n-dimensional manifold and $A(M)=\sum_{p=0}^{n} A^{p}(M)$ the exterior algebra of smooth differential forms on M.

Definition 1. Let M be a manifold with boundary. For assertions (ii), (iii), (vi) and (vii) we assume in addition that M is equipped with a Riemannian metric g.
(i) the outer product (or \wedge-product) of differential forms is defined by

$$
\wedge: A^{k}(M) \times A^{l}(M) \rightarrow A^{k+l}(M)
$$

$$
(\omega \wedge \eta)\left(X_{1}, \ldots, X_{k+l}\right)=\sum_{\sigma \in S(k, k+l)}(\operatorname{sgn} \sigma) \omega\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right)
$$

$$
\eta\left(X_{\sigma(k+1)}, \ldots, X_{\sigma(k+l)}\right),
$$

where X_{1}, \ldots, X_{k+l} are arbitrary vector fields on M.
(ii) Let $\left(E_{1}, \ldots, E_{n}\right)$ be a local g-orthonormal frame on $U \subset M$. It defines a product on $A^{k}(M)$, defined locally by

$$
\begin{gathered}
(\mid)_{\Lambda^{k}}: A^{k}(M) \times A^{k}(M) \rightarrow C^{\infty}(M), \\
(\omega \mid \eta)_{\Lambda^{k}(U)}=\sum_{\sigma \in S(k, n)} \omega\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right) \cdot \eta\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right) .
\end{gathered}
$$

(iii) The Hodge star operator $S^{(k)}: A^{k}(M) \rightarrow A^{n-k}(M)$ is defined by equality

$$
\eta \wedge S^{(k)} \omega=(\eta \mid \omega)_{\Lambda^{k}(M)} \mu, \forall \eta \in A^{k}(M) .
$$

Here $\mu \in A^{n}(M)$ is the Riemannian volume form on M.
(iv) The inner product (or contraction) with a vector field $Y \in$ $\Gamma(T M)$ is defined by

$$
\begin{aligned}
& i(Y): A^{k}(M) \rightarrow A^{k-1}(M) \\
& (i(Y) \omega)\left(X_{1}, \ldots, X_{k-1}\right)=\omega\left(Y, X_{1}, \ldots, X_{k-1}\right), \forall X_{1}, \ldots, X_{k-1} \in \Gamma(T M) . \\
& \text { (v) The exterior differential } d: A^{k}(M) \rightarrow A^{k+1}(M) \text {, sometimes } \\
& \text { denoted d } \left.{ }^{(k)} \text {, is defined (for } k<n\right) \text { by } \\
& d \omega\left(X_{0}, X_{1}, \ldots, X_{k}\right)=\sum_{0 \leq j \leq k}(-1)^{j} D\left[\omega\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{k}\right)\right]\left(X_{j}\right) \\
& +\sum_{0 \leq i<j \leq k}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k}\right) .
\end{aligned}
$$

Here X_{0}, \ldots, X_{k} are arbitrary vector fields on M, and the symbol \hat{X}_{j} expresses that argument X_{j} is missing. For $\omega \in A^{n}(M)$, by definition $d \omega=0$.
(vi) The codifferential operator is defined as the application δ : $A^{k}(M) \rightarrow A^{k-1}(M)$, sometimes noted $\delta^{(k)}$,

$$
\delta \omega=(-1)^{n k+n+1} S^{(n-k-1)} d\left(S^{(k)} \omega\right), \omega \in A^{k}(M)
$$

(vii) The Hodge-de Rham operator is defined as the application $\Delta^{(k)}: A^{k}(M) \rightarrow A^{k}(M)$,

$$
\Delta^{(k)} \omega=(d \delta+\delta d) \omega, \omega \in A^{k}(M)
$$

From Definition 1. it follows that:

$$
\begin{equation*}
S^{(0)}(1)=v_{g}, S^{(n)}\left(v_{g}\right)=1 \tag{1}
\end{equation*}
$$

where v_{g} denotes the canonical volume form of $(M, g), 1$ is the real constant function on M having value 1 and

$$
\begin{equation*}
S^{(n-p)} \circ S^{(p)}(\omega)=(-1)^{p(n-p)} \omega \text { for any } \omega \in A^{p}(M) \tag{2}
\end{equation*}
$$

Remark 2. Note that $\Delta^{(0)}$ is just the Laplace-Beltrami operator Δ : $C^{\infty}(M) \rightarrow C^{\infty}(M)$.

Proposition 3. The operator $\Delta^{(p)}$, for each $0 \leq p \leq n$, has the following properties:
(i) $\Delta^{(p)}$ is formally self adjoint;
(ii) $\Delta^{(p)}$ is formally positive, i.e. $\left\langle\Delta^{(p)} \alpha, \alpha\right\rangle \geq 0$ for any $\alpha \in$ $A^{p}(M)$;
(iii) $\Delta^{(p)} \alpha=0$ if and only if $d^{(p)} \alpha=0$ and $\delta^{(p)} \alpha=0$;
(iv) $\Delta^{(n-p)} S^{(p)}=S^{(p)} \Delta^{(p)}$.

Proof.
(i)

$$
\begin{aligned}
\left\langle\Delta^{(p)} \alpha, \beta\right\rangle & =\left\langle d^{(p-1)} \circ \delta^{(p)} \alpha+\delta^{(p+1)} \circ d^{(p)} \alpha, \beta\right\rangle= \\
& =\left\langle\delta^{(p)} \alpha, \delta^{(p)} \beta\right\rangle+\left\langle d^{(p)} \alpha, d^{(p)} \beta\right\rangle= \\
& =\left\langle\alpha, d^{(p-1)} \circ \delta^{(p)} \beta\right\rangle+\left\langle\alpha, \delta^{(p+1)} \circ d^{(p)} \beta\right\rangle \\
& =\left\langle\alpha, \Delta^{(p)} \beta\right\rangle
\end{aligned}
$$

for each $\alpha, \beta \in A^{p}(M)$.
(ii) $\left\langle\Delta^{(p)} \alpha, \alpha\right\rangle=\left\langle d^{(p)} \alpha, d^{(p)} \alpha\right\rangle+\left\langle\delta^{(p)} \alpha, \delta^{(p)} \alpha\right\rangle=\left\|d^{(p)} \alpha\right\|^{2}+$ $\left\|\delta^{(p)} \alpha\right\|^{2} \geq 0$ for each $\alpha \in A^{p}(M)$.
(iii) If $\Delta^{(p)} \alpha=0$, the equality $\left\langle\Delta^{(p)} \alpha, \alpha\right\rangle=\left\langle d^{(p)} \alpha, d^{(p)} \alpha\right\rangle+$ $\left\langle\delta^{(p)} \alpha, \delta^{(p)} \alpha\right\rangle$ implies that $\left\langle d^{(p)} \alpha, d^{(p)} \alpha\right\rangle+\left\langle\delta^{(p)} \alpha, \delta^{(p)} \alpha\right\rangle=0$, or equivalently $d^{(p)} \alpha=0$ and $\delta^{(p)} \alpha=0$. Conversely, if $d^{(p)} \alpha=0$ and $\delta^{(p)} \alpha=0$, then by the definition of $\Delta^{(p)}, \Delta^{(p)} \alpha=0$.
(iv) We shall consider two cases:

Case 1: n is even. Then we can write

$$
\begin{aligned}
\Delta^{(n-p)} & =-\left(d^{(n-p-1)} \circ S^{(p+1)} \circ d^{(p)} \circ S^{(n-p)}\right. \\
& \left.+S^{(p)} \circ d^{(p-1)} \circ S^{(n-p+1)} \circ d^{(n-p)}\right)
\end{aligned}
$$

and therefore using the relation (2),

$$
\begin{aligned}
S^{(p)} \circ \Delta^{(p)} & =-\left(S^{(p)} \circ d^{(p+1)} \circ S^{(n-p+1)} \circ d^{(n-p)} \circ S^{(p)}\right. \\
& \left.+S^{(p)} \circ S^{(n-p)} \circ d^{(n-p-1)} \circ S^{(p+1)} \circ d^{(p)}\right) \\
& =-\left[-\delta^{(n-p+1)} \circ d^{(n-p+1)} \circ S^{(p)}\right. \\
& \left.+(-1)^{2 p(n-p)}(-1)^{(n-p-1) n+1} d^{(n-p-1)} \circ \delta^{(n-p)} \circ S^{(p)}\right] \\
& =\Delta^{(n-p)} \circ S^{(p)} .
\end{aligned}
$$

Case 2: n is odd. Then

$$
\Delta^{(n-p)} \circ S^{(p)}=d^{(n-p-1)} \circ \delta^{(n-p)} \circ S^{(p)}+\delta^{(n-p+1)} \circ d^{(n-p)} \circ S^{(p)}
$$

and therefore using the Definition 1 and relation (2),

$$
\begin{aligned}
\Delta^{(n-p)} \circ S^{(p)} & =(-1)^{n-p} d^{(n-p-1)} \circ S^{(p+1)} \circ d^{(p)} \\
& +(-1)^{n-p+1} S^{(p)} \circ d^{(p+1)} \circ S^{(n-p+1)} \circ d^{(n-p)} \circ S^{(p)} \\
& =(-1)^{n-p}(-1)^{2 p^{2}+p(n-p)+1} S^{(p)} \circ \delta^{(p+1)} \circ d^{(p)} \\
& +(-1)^{n-p+1}(-1)^{p} S^{(p)} \circ d^{(p+1)} \circ \delta^{(p)}= \\
& =S^{(n-p)} \circ\left(\delta^{(n-p+1)} \circ d^{(n-p)}+d^{(n-p+1)} \circ \delta^{(n-p)}\right) \\
& =S^{(p)} \circ \Delta^{(p)} .
\end{aligned}
$$

as desired.
Q.E.D.

Remark 4. The normalization of \wedge-product is chosen using the convention used by Abraham, Marsden and Ratiu [1].

Proposition 5. (i) The outer differential operator and codifferential operator are nilpotents, ie

$$
\begin{equation*}
d(d \omega)=0 \text { and } \delta(\delta \omega)=0, \forall \omega \in A^{k}(M) ; \tag{3}
\end{equation*}
$$

(ii) The Hodge star operator is idempotent, ie

$$
\begin{equation*}
S^{(n-k)}\left(S^{(k)} \omega\right)=(-1)^{k(n-k)} \omega, \forall \omega \in A^{k}(M) \tag{4}
\end{equation*}
$$

(iii) The operators d and δ are in Hodge sense, adjoint each other, ie

$$
\begin{equation*}
S^{(k-1)} \delta \omega=(-1)^{k} d S^{(k)} \omega, \text { and } S^{(k+1)} d \omega=(-1)^{k+1} \delta S^{(k)} \omega, \forall \omega \in A^{k}(M) ; \tag{5}
\end{equation*}
$$

(iv) If $\left(E_{1}, \ldots, E_{n}\right)$ is a local g-orthonormal frame on $U \subset M$ and $\sigma \in S(k, n)$ the Hodge star operator is calculated as
$\left(S^{(k)} \omega\right)\left(E_{\sigma(k+1)}, \ldots, E_{\sigma(n)}\right)=(\operatorname{sgn} \sigma) \omega\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right), \forall \omega \in A^{k}(M)$.

Property (iv) can be deduced from the definition of Hodge star operator noting that

$$
\begin{aligned}
& \sum_{\sigma \in S(k, n)} \eta\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right) \cdot \omega\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right)=\left(\eta \wedge S^{(k)} \omega\right)\left(E_{1}, \ldots, E_{n}\right) \\
= & \sum_{\sigma \in S(k, n)}(\operatorname{sgn} \sigma) \eta\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right) \cdot\left(S^{(k)} \omega\right)\left(E_{\sigma(k+1)}, \ldots, E_{\sigma(n)}\right) .
\end{aligned}
$$

Since $\forall \omega \in A^{k}(M)$ it is arbitrary follows that (6) is true for any $\sigma \in S(k, n)$.

The following theorem gives a precise characterization of eigenvalues, $\lambda_{k, p}^{\prime}(M, g), k \in \mathbb{N}$, which not involves derivatives of Riemannian metric g.

Theorem 6. (Dodziuk [7]) Let $g \in \mathfrak{M}(M)$ and $p \in\{1, \ldots, n\}$ fixed. Let

$$
0<\lambda_{1, p}^{\prime}(M, g) \leq \lambda_{2, p}^{\prime}(M, g) \leq \ldots
$$

be the eigenvalues of the restriction

$$
\Delta_{\left.g\right|_{d^{(p-1)}\left(A^{p-1}(M)\right)} ^{(p)}}^{\left(d^{(p-1)}\right.}\left(A^{p-1}(M)\right) \rightarrow d^{(p-1)}\left(A^{p-1}(M)\right)
$$

of $\Delta_{g}^{(p)}$ to the real vector space of exact differential p-forms $d^{(p-1)}\left(A^{p-1}(M)\right)$, counted with their multiplicity. Then

$$
\begin{equation*}
\lambda_{k, p}^{\prime}=\inf _{V_{k}} \sup \left\{\left.\frac{\left\|d^{(p-1)} \theta\right\|_{g}^{2}}{\|\theta\|_{g}^{2}} \right\rvert\, d^{(p-1)} \theta \in V_{k} \backslash\{0\}\right\} \tag{7}
\end{equation*}
$$

where V_{k} through the family of all k-dimensional real vector subspace of $i t$.

Proof. Let us note first that taking supremum in (7) can be done in two stages. For each exact differential p-form let choose $\theta \in A^{p-1}(M) \backslash\{0\}$ to maximize quotient $\frac{\left\|d^{(p-1)} \theta\right\|_{g}}{\|\theta\|_{g}}$. Let choose $\theta \in A^{p-1}(M) \backslash\{0\}$ arbitrarily, with Hodge-de Rham decomposition

$$
\theta=H^{(p-1)}(\theta)+d^{(p-2)} \omega_{1}+\delta_{g}^{(p)} \omega_{2}, \omega_{1} \in A^{p-2}(M), \omega_{2} \in A^{p}(M)
$$

where $H^{(p-1)}$ denotes the harmonic projector, and be $\theta_{0}:=\delta_{g}^{(p)} \omega_{2} \in$ $\delta_{g}^{(p)}\left(A^{p}(M)\right)$. Therefore,

$$
\begin{aligned}
& \inf _{V_{k}} \sup \left\{\left.\frac{\left\|d^{(p-1)} \theta\right\|_{g}^{2}}{\|\theta\|_{g}^{2}} \right\rvert\, d^{(p-1)} \theta \in V_{k} \backslash\{0\}\right\} \\
= & \inf _{V_{k}} \sup \left\{\left.\frac{\left\|d^{(p-1)} \theta\right\|_{g}^{2}}{\left\|\theta_{0}\right\|_{g}^{2}} \right\rvert\, d^{(p-1)} \theta \in V_{k} \backslash\{0\}\right\}
\end{aligned}
$$

$$
\begin{equation*}
=\inf _{W_{k}} \sup \left\{\left.\frac{\left\|d^{(p-1)} \theta_{0}\right\|_{g}}{\left\|\theta_{0}\right\|_{g}} \right\rvert\, d^{(p-1)} \theta \in W_{k} \backslash\{0\}\right\} \tag{8}
\end{equation*}
$$

where W_{k} through the set of all k-dimensional linear subspace of $\delta_{g}^{(p)} A^{p}(M)$.

Because

$$
\delta_{g}^{(p)} \theta_{0}=\left(\delta_{g}^{(p-1)} \circ \delta_{g}^{(p)}\right)\left(\omega_{2}\right)=0
$$

and

$$
d^{(p-1)} \theta=d^{(p-1)}\left(H^{(p-1)}(\theta)+d^{(p-2)} \omega_{1}+\delta_{g}^{(p)} \omega_{2}\right)=d^{(p-1)} \theta_{0}
$$

it follows that

$$
\left\|d^{(p-1)} \theta\right\|_{g}^{2}=\left\|d^{(p-1)} \theta_{0}\right\|_{g}^{2}=\left\|d^{(p-1)} \theta_{0}\right\|_{g}^{2}+\left\|\delta_{g}^{(p-1)} \theta_{0}\right\|_{g}^{2}
$$

Therefore, the right side of (8) gives the mini-max characterization of the k eigenvalues $\lambda_{k, p-1}^{\prime \prime}(M, g)$ of the restriction of $\Delta_{g}^{(p-1)}$ to the vector space of differential coexact $(p-1)$-forms, which coinciding with the k eigenvalue $\lambda_{k, p}^{\prime}(M, g)$ of the restriction of $\Delta_{g}^{(p)}$ to the p-forms exact differential space.
Q.E.D.

Let \mathbb{H} be a real Hilbert space with the inner product $\langle,\rangle_{0}: \mathbb{H} \times \mathbb{H} \rightarrow$ \mathbb{R} and $\|\cdot\|_{0}$ the induced norm. Let $\mathcal{G}(\mathbb{H})$ be the family of all closed vector subspaces of \mathbb{H}.
If $\mathbb{E}, \mathbb{F} \in \mathcal{G}(\mathbb{H})$ are fixed, let $L(\mathbb{E}, \mathbb{F})$ be the real vector space of all the bounded linear operators from \mathbb{E} into \mathbb{F}. With respect to the canonical norm of a bounded linear operator from the Hilbert space \mathbb{E} into the Hilbert space \mathbb{F}, still denoted with $\|\cdot\|_{0}, L(\mathbb{E}, \mathbb{F})$ is a Banach space. For each $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ fixed, let

$$
\mathcal{G}_{\mathbb{E}}:=\{\mathbb{F} \in \mathcal{G}(\mathbb{H}) \mid \quad \mathbb{H}=\mathbb{E} \oplus \mathbb{F}\}
$$

be the set of all closed complements of \mathbb{E} in \mathbb{H} and let us notice that \mathbb{E}^{\perp} (= the orthogonal complement of \mathbb{E} in \mathbb{H} with respect to the inner product $\left.\langle,\rangle_{0}\right) \in \mathcal{G}_{\mathbb{E}}$. Let

$$
\mathcal{P}(\mathbb{H}, \mathbb{E}):=\{\pi \in L(\mathbb{H}):=L(\mathbb{H}, \mathbb{H}) \mid \quad \pi \circ \pi=\pi \quad \text { and } \quad \operatorname{Im}(\pi)=\mathbb{E}\}
$$

be the space of all continuous projections of \mathbb{H} onto $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ endowed with the relative topology induced by the canonical topology on $L(\mathbb{H})$.
Lemma 7. (see [11]). If the subspace $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ is fixed, then the map

$$
\operatorname{Ker}: \mathcal{P}(\mathbb{H}, \mathbb{E}) \rightarrow \mathcal{G}_{\mathbb{E}}, \pi \mapsto \operatorname{Ker}(\pi),
$$

is a bijection.

For $\mathbb{F}_{0}, \mathbb{F} \in \mathcal{G}_{\mathbb{E}}$, let $\pi_{0}, \pi \in \mathcal{P}(\mathbb{H}, \mathbb{E})$ so that $\operatorname{Ker}\left(\pi_{0}\right)=\mathbb{F}_{0}$ and $\operatorname{Ker}(\pi)=\mathbb{F}$ (see Lemma 7). If the closed vector subspace \mathbb{F}_{0} of \mathbb{H} is fixed, the map $\varphi_{\mathbb{F}_{0}, \mathbb{E}}: \mathcal{G}_{\mathbb{E}} \rightarrow L\left(\mathbb{F}_{0}, \mathbb{E}\right)$, which associates to each vector subspace $\mathbb{F} \in \mathcal{G}_{\mathbb{E}}$ the map from \mathbb{F}_{0} into \mathbb{E} having as graph the subspace \mathbb{F} of $\mathbb{H}=\mathbb{F}_{0} \oplus \mathbb{E}$, is a bijection. Moreover, the set of all charts of the type $\left\{\left(\mathcal{G}_{\mathbb{E}}, \varphi_{\mathbb{F}_{0}, \mathbb{E}}, L\left(\mathbb{F}_{0}, \mathbb{E}\right)\right) \mid \quad \mathbb{F}_{0}, \mathbb{E} \in \mathcal{G}(\mathbb{H}), \mathbb{H}=\mathbb{F}_{0} \oplus \mathbb{E}\right\}$ is a smooth atlas for $\mathcal{G}(\mathbb{H})$. Endowed with the Banach smooth manifold structure defined by this atlas, $\mathcal{G}(\mathbb{H})$ is called the Grassmann manifold associated to the Hilbert space \mathbb{H} (see N. Bourbaki [3], p. 38). In addition, one can show that the topological space $\mathcal{G}(\mathbb{H})$ is metrisable.
Lemma 8. Let $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ be fixed and $\mathcal{G}_{\mathbb{E}}$ with the C^{∞}-manifold structure induced by the one previously defined on $\mathcal{G}(\mathbb{H})$. Then there is a unique C^{∞}-manifold structure on $\mathcal{P}(\mathbb{H}, \mathbb{E})$, whose subjacent topology coincides with the one induced on $\mathcal{P}(\mathbb{H}, \mathbb{E})$ by the real Banach space structure of $L(\mathbb{H})$, so that the bijection

$$
\operatorname{Ker}: \mathcal{P}(\mathbb{H}, \mathbb{E}) \rightarrow \mathcal{G}_{\mathbb{E}}, \pi \mapsto \operatorname{Ker}(\pi),
$$

(see Lemma 7) is a C^{∞}-diffeomorphism.
For the proof, see E.Binz, J.Śniatycki and H.Fischer [2].
Let us denote by $L_{\text {sim }}^{2}(\mathbb{H} ; \mathbb{R})$ the real vector space of all symmetric and continuous \mathbb{R}-bilinear forms $\beta: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}$. With respect to the supremum norm

$$
\|\beta\|:=\sup \left\{\left.\frac{|\beta(u, v)|}{\|u\|_{0}\|v\|_{0}} \right\rvert\, \quad u, v \in \mathbb{H} \backslash\{0\}\right\}
$$

$L_{\text {sim }}^{2}(\mathbb{H} ; \mathbb{R})$ is a real Banach space. Let $\mathfrak{M}(\mathbb{H}) \subset L_{\text {sim }}^{2}(\mathbb{H} ; \mathbb{R})$ be the set of all inner products on \mathbb{H} which are continuous with respect to the topology induced by $g_{0}:=\langle,\rangle_{0}$ on \mathbb{H} and let us notice that $\mathfrak{M}(\mathbb{H})$ is a non-empty open subset [since $\left.g_{0} \in \mathfrak{M}(\mathbb{H})\right]$ of $L_{\text {sim }}^{2}(\mathbb{H} ; \mathbb{R})$.
Lemma 9. (see [11]). Let \mathbb{H} be a real Hilbert space with the inner product g_{0}. Then, for each $g \in \mathfrak{M}(\mathbb{H})$, the topologies induced on \mathbb{H} by g and g_{0}, respectively, coincide. In particular, \mathbb{H} is a complete metric space with respect to each inner product $g \in \mathfrak{M}(\mathbb{H})$.

If the subspace $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ is fixed, then one agrees to denote the subspace $\mathbb{F} \in \mathcal{G}_{\mathbb{E}}$ which is orthogonal on \mathbb{E} with respect to the inner product $g \in \mathfrak{M}(\mathbb{H})$ with \mathbb{F}_{g} and also to call \mathbb{F}_{g} the g-orthogonal complement of \mathbb{E} in $\mathbb{H}: \mathbb{H}=\mathbb{F}_{g} \oplus \mathbb{E}$ and $g(u, v)=0$ for any $u \in \mathbb{F}_{g}$ and any $v \in \mathbb{E}$.

Definition 10. If the subspace $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ and the inner product $g \in$ $\mathfrak{M}(\mathbb{H})$ are fixed, then the orthogonal projection $\pi \in \mathcal{P}(\mathbb{H}, \mathbb{E})$ of $\mathbb{H}=$ $\mathbb{F}_{g} \oplus \mathbb{E}$ onto \mathbb{E}, denoted with π_{g}, i.e. $\operatorname{Ker}\left(\pi_{g}\right)=\mathbb{F}_{g}$ (see Lemma 7), is called the g-orthogonal projection of \mathbb{H} onto \mathbb{E}.

Using the Lemmas 8 and 9 it follows the next theorem.
Theorem 11. Let \mathbb{H} be a real Hilbert space, $\mathbb{E} \in \mathcal{G}(\mathbb{H})$ a fixed subspace and \mathbb{F}_{g} the g-orthogonal complement of \mathbb{E} in \mathbb{H}, where $g \in \mathfrak{M}(\mathbb{H})$. Then the g-orthogonal projection π_{g} of \mathbb{H} onto \mathbb{E} depends smoothly on the inner product $g \in \mathfrak{M}(\mathbb{H})$, that is the map $\mathfrak{M}(\mathbb{H}) \ni g \mapsto \pi_{g} \in$ $\mathcal{P}(\mathbb{H}, \mathbb{E}) \subset L(\mathbb{H})$ is of class C^{∞} (meaning Fréchet differentiability).
Proof. Lemma 9 shows that all the topologies induced on \mathbb{H} by inner products $g \in \mathfrak{M}(\mathbb{H})$ coincide. Let $g_{0} \in \mathfrak{M}(\mathbb{H})$ fixed. As we have already shown during the demonstration of Lemma 9, for each $g \in$ $\mathfrak{M}(\mathbb{H})$ there is an unique \mathbb{R}-linear autoadjunct operator so that

$$
\begin{equation*}
g(u, v)=g_{0}\left(u, A_{g_{0} g}(v)\right) \tag{9}
\end{equation*}
$$

for any $u, v \in \mathbb{H}$. Moreover, $A_{g_{0} g}: \mathbb{H} \rightarrow \mathbb{H}$ is a omeomorfism for each $g \in \mathfrak{M}(\mathbb{H})$. Therefore $A_{g_{0} g}(\mathbb{E})$ is a closed vector subspace of \mathbb{H} and on the basis of (9) - applications

$$
\begin{equation*}
\mathbb{F}_{g_{0}}\left|A_{g_{0} g}\right|_{\mathbf{F}_{g}}: \mathbb{F}_{g} \rightarrow \mathbb{F}_{g_{0}} \text { and } A_{g_{0} g}(\mathbb{E})\left|A_{g_{0} g}\right|_{\mathbb{E}}: \mathbb{E} \rightarrow A_{g_{0} g}(\mathbb{E}) \tag{10}
\end{equation*}
$$

are \mathbb{R}-linear isomorphisms and homeomorphisms. If $\pi_{g_{0}} \in \mathcal{P}(\mathbb{H}, \mathbb{E})$ notes the g_{0}-orthogonal projection of \mathbb{H} on \mathbb{E} (see Definition 10), so that $\operatorname{Ker}\left(\pi_{g_{0}}\right)=\mathbb{F}_{g_{0}}$, then

$$
\mathbb{B}_{g}:=A_{g_{0} g}^{-1} \circ \pi_{g_{0}} \circ A_{g_{0} g} \in \mathcal{P}\left(\mathbb{H}, A_{g_{0} g}(\mathbb{E})\right) \subset L(\mathbb{H})
$$

and $\operatorname{Ker}\left(\mathbb{B}_{g}\right)=\mathbb{F}_{g}$. Since applications

$$
\mathfrak{M}(\mathbb{H}) \ni g \mapsto A_{g_{0} g} \in L(\mathbb{H}) \text { and } \mathfrak{M}(\mathbb{H}) \ni g \mapsto A_{g_{0} g}^{-1} \in L(\mathbb{H})
$$

are of class C^{∞} (in the Fréchet sense) $[\mathfrak{M}(\mathbb{H}) \neq \Phi$ is an open subset of Banach space $L_{\text {sim }}^{2}(\mathbb{H} ; \mathbb{R})$ and $L(\mathbb{H})$ is a Banach space] and the composition of C^{∞}-applications between Banach spaces is all the C^{∞}-class (see for example M. Craioveanu, T.S. Ratiu [6]) results that the application $\mathfrak{M}(\mathbb{H}) \ni g \mapsto \mathbb{B}_{g} \in L(\mathbb{H})$ is the C^{∞}-class. Because applications (10) are \mathbb{R}-linear isomorphisms and homeomorphisms, $\mathbb{F}_{g} \in \mathbb{G}_{\mathbb{E}} \cap \mathbb{G}_{A_{g_{0} g}^{-1}(\mathbf{E})}$ for any $g \in \mathfrak{M}(\mathbb{H})$. On the other hand, in the basis of Lemma 8, the application

$$
\mathcal{P}\left(\mathbb{H}, A_{g_{0} g}^{-1}(\mathbb{E})\right) \ni \pi \xrightarrow{\mathrm{Ker}} \operatorname{Ker}(\pi) \in \mathbb{G}_{A_{g_{0} g}^{-1}(\mathbb{E})}
$$

is C^{∞}-difeomorfism for any $g \in \mathfrak{M}(\mathbb{H})$. Since $\operatorname{Ker}\left(\mathbb{B}_{g}\right)=\mathbb{F}_{g}=$ $\operatorname{Ker}\left(\pi_{g}\right)$ for any $g \in \mathfrak{M}(\mathbb{H})$, the application

$$
\mathfrak{M}(\mathbb{H}) \ni g \mapsto \pi_{g} \in \mathcal{P}(\mathbb{H}, \mathbb{E}) \subset L(\mathbb{H})
$$

is C^{∞} - class.
Q.E.D.

Remark 12. Since the map $\mathfrak{M}(\mathbb{H}) \ni g \mapsto \pi_{g} \in \mathcal{P}(\mathbb{H}, \mathbb{E}) \subset L(\mathbb{H})$ is smooth (see Theorem 11), in this case one may also say that the orthogonal decomposition $\mathbb{H}=\mathbb{F}_{g} \oplus \mathbb{E}$ depends smoothly on $g \in \mathfrak{M}(\mathbb{H})$.
Let M be again an oriented, closed n-dimensional $(n \geq 2), C^{\infty}$ manifold, $A^{k}(M)$ the space of smooth differential k-forms on $M, k \in$ $\{0,1, \ldots, n\}$, and $\mathfrak{M}(M)$ the set of all smooth Riemannian metrics on M, endowed with the smooth Fréchet manifold structure. Using Riesz's representation theorem, for any $g_{o}, g \in \mathfrak{M}(M)$, it follows that there is a smooth automorphism of vector bundles $\Phi_{g_{o g}}: T M \rightarrow T M$ such that

$$
\begin{equation*}
g(X, Y)=g_{o}\left(\Phi_{g_{o} g} \circ X, \Phi_{g_{o} g} \circ Y\right) \tag{11}
\end{equation*}
$$

for any $X, Y \in \mathfrak{X}(M)$. The automorphism $\Phi_{g_{o} g}$ is uniquely determined modulo an isometry of $\left(M, g_{o}\right)$ and the maps
$\mathfrak{M}(M) \ni g \mapsto \Phi_{g_{o} g}^{*} \in L\left(L^{2}\left(A^{k}(M)\right)\right), \quad \mathfrak{M}(M) \ni g \mapsto\left(\Phi_{g_{o} g}^{*}\right)^{-1} \in L\left(L^{2}\left(A^{k}(M)\right)\right)$,
induced by $\Phi_{g_{o} g}$, are smooth for any $k \in\{0,1, \ldots, n\}$ (for further details, see E.Binz, J.Śniatycki and H.Fischer [2]).
Lemma 13. Let $g_{o}, g \in \mathfrak{M}(M)$ be arbitrary, but fixed, Riemannian metrics and $S_{g_{o}}^{(k)}\left(\right.$ respectively $\left.S_{g}^{(k)}\right): A^{k}(M) \rightarrow A^{n-k}(M)$ the star Hodge operator associated to g_{o} (respectively g), $k \in\{0,1, \ldots, n\}$. Under the previous assumptions, the following equality

$$
\Phi_{g_{o} g}^{*} \circ S_{g_{o}}^{(k)}=S_{g}^{(k)} \circ \Phi_{g_{o} g}^{*}: L^{2}\left(A^{k}(M)\right) \rightarrow L^{2}\left(A^{n-k}(M)\right)
$$

is valid for any $k \in\{0,1, \ldots, n\}$. In particular, the map

$$
\mathfrak{M}(M) \ni g \mapsto S_{g}^{(k)} \in L\left(L^{2}\left(A^{k}(M)\right), L^{2}\left(A^{n-k}(M)\right)\right),
$$

is smooth for any $k \in\{0,1, \ldots, n\}$.
Proof. If $\left(E_{1}, \ldots, E_{n}\right)$ is a local g-orthonormal arbitrary frame on M, then - on the basis of (11) $-\Phi_{g_{0} g} \circ E_{1}, \ldots, \Phi_{g_{0} g} \circ E_{n}$ is a local $g_{0^{-}}$ orthonormal frame on M. In the basis of Proposition 5 (iv) true and
for Riemannian manifold without boundary, result that

$$
\begin{aligned}
& \left(\left(\Phi_{g_{0} g}^{*} \circ S_{g_{0}}^{(k)}\right)(\omega)\right)\left(E_{\sigma(k+1)}, \ldots, E_{\sigma(n)}\right) \\
& =\left(\Phi_{g_{0} g}^{*}\left(S_{g_{0}}^{(k)}(\omega)\right)\right)\left(E_{\sigma(k+1)}, \ldots, E_{\sigma(n)}\right) \\
& =\left(S_{g_{0}}^{(k)}(\omega)\right)\left(\Phi_{g_{0} g} \circ E_{\sigma(k+1)}, \ldots, \Phi_{g_{0} g} \circ E_{\sigma(n)}\right) \\
& =\operatorname{sgn}(\sigma) \omega\left(\Phi_{g_{0} g} \circ E_{\sigma(1)}, \ldots, \Phi_{g_{0} g} \circ E_{\sigma(k)}\right) \\
& =\operatorname{sgn}(\sigma)\left(\Phi_{g_{0} g}^{*}(\omega)\right)\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right) \\
& =\left(S_{g}^{(k)}\left(\Phi_{g_{0} g}^{*}(\omega)\right)\right)\left(E_{\sigma(k+1)}, \ldots, E_{\sigma(n)}\right)
\end{aligned}
$$

for any $\omega \in A^{k}(M)$ and every $\sigma \in S(k, n)$ note the set of all permutations σ of the set $\{1, \ldots, n\}$ so that $\sigma(1)<\ldots<\sigma(k)$ and $\sigma(1)<\ldots<\sigma(k)$. Therefore, in the basis of the considerations set out preceding this lemma, the application

$$
\mathfrak{M}(M) \ni g \mapsto S_{g}^{(k)}=\Phi_{g_{0} g}^{*} \circ S_{g_{0}}^{(k)} \circ\left(\Phi_{g_{0} g}^{*}\right)^{-1} \in L\left(A^{k}(M), A^{n-k}(M)\right)
$$

is smooth for all $k \in\{0, \ldots, n\}$.
Q.E.D.

The Hodge star operator $S_{g_{o}}^{(k)}$ (respectively $S_{g}^{(k)}$) associated to the Riemannian metric g_{o} (respectively g) $\in \mathfrak{M}(M)$ induces the inner product $\langle,\rangle_{g_{o}}$ (respectively \langle,\rangle_{g}) on the Hilbert space $L^{2}\left(A^{k}(M)\right)=$ $H^{0}\left(A^{k}(M)\right)$, hence:

$$
\begin{gather*}
\left\langle\omega_{1}, \omega_{2}\right\rangle_{g_{o}}:=\int_{M} \omega_{1} \wedge S_{g_{o}}^{(k)}\left(\omega_{2}\right)=(-1)^{k(n-k)} \int_{M} \omega_{1} \wedge S_{g}^{(k)}\left(S_{g}^{(n-k)} \circ S_{g_{o}}^{(k)}\right)\left(\omega_{2}\right) \\
=:\left\langle\omega_{1}, A_{g g_{o}}^{(k)}\left(\omega_{2}\right)\right\rangle_{g} \tag{12}
\end{gather*}
$$

for any $\omega_{1}, \omega_{2} \in A^{k}(M)$, where

$$
\begin{equation*}
A_{g g_{o}}^{(k)}: A^{k}(M) \rightarrow A^{k}(M), \quad A_{g g_{o}}^{(k)}:=(-1)^{k(n-k)} S_{g}^{(n-k)} \circ S_{g_{o}}^{(k)} \tag{13}
\end{equation*}
$$

$k \in\{0,1, \ldots, n\}$.
$A_{g g_{o}}^{(k)}$ is a continuous and formally self-adjoint (symmetric) \mathbb{R}-linear operator, which can be extended to the Hilbert space $L^{2}\left(A^{k}(M)\right)=$: $H^{0}\left(A^{k}(M)\right)$. Therefore, (12) shows that all Riemannian metrics $g \in$ $\mathfrak{M}(M)$ induce the same topology on $L^{2}\left(A^{k}(M)\right)=: H^{0}\left(A^{k}(M)\right)$, for each $k \in\{0,1, \ldots, n\}$. The same property is also true for the Sobolev spaces $H^{1}\left(A^{k}(M)\right)$ and $H^{2}\left(A^{k}(M)\right)$ for each $k \in\{0,1, \ldots, n\}$.

Lemma 13 and the definitions of the codifferential $\delta_{g}^{(k)}: A^{k}(M) \rightarrow$ $A^{k-1}(M)$ and of the Hodge-de Rham operator $\Delta_{g}^{(k)}: H^{2}\left(A^{k}(M)\right) \rightarrow$ $H^{0}\left(A^{k}(M)\right)$ therefore lead to the following results.

Corollary 14. Let M be a closed, n-dimensional smooth manifold and $H^{s}\left(A^{k}(M)\right)$ the Sobolev space of class $H^{s}, s \in\{0,1,2\}$, associated to the pre-Hilbertian vector space $A^{k}(M), k \in\{0,1, \ldots, n\}$. Then, the next two statements are true:
(i) The map

$$
\mathfrak{M}(M) \ni g \mapsto \delta_{g}^{(k)} \in L\left(H^{1}\left(A^{k}(M)\right), H^{0}\left(A^{k}(M)\right)\right)
$$

is smooth for each $k \in\{0,1, \ldots, n\}$, i.e. the codifferential $\delta_{g}^{(k)}$ smoothly depends on $g \in \mathfrak{M}(M)$ for each $k \in\{0,1, \ldots, n\}$;
(ii) The map
$\mathfrak{M}(M) \ni g \mapsto \Delta_{g}^{(k)}:=d^{(k-1)} \circ \delta_{g}^{(k)}+\delta_{g}^{(k+1)} \circ d^{(k)} \in L\left(H^{2}\left(A^{k}(M)\right), H^{0}\left(A^{k}(M)\right)\right)$
is smooth for each $k \in\{0,1, \ldots, n\}$, that is the Hodge-de Rham operator $\Delta_{g}^{(k)}$ smoothly depends on $g \in \mathfrak{M}(M)$ for each $k \in\{0,1, \ldots, n\}$.

Let us also remark that still Lemma 13 shows that the map

$$
\mathfrak{M}(M) \ni g \mapsto A_{g g_{o}}^{(k)} \in L\left(H^{0}\left(A^{k}(M)\right)\right),
$$

where $A_{g g_{o}}^{(k)}$ is the \mathbb{R}-linear operator defined by the equality (13), smoothly depends on $g \in \mathfrak{M}(M)$, for each $k \in\{0,1, \ldots, n\}$ so that Corollary 14 (i), the minimax principle (see Theorem 2.2 of M.Craioveanu, M.Puta, Th.M.Rassias [5], p.286) and Theorem 6 imply the following result regarding the smooth dependence on the Riemannian metric of the eigenvalues of Hodge-de Rham operators and of the eigenvalues of their restrictions to the spaces of exact and co-exact, smooth differential forms on M respectively.

Corollary 15. If M is a closed, n-dimensional smooth manifold, $\lambda_{j, k}(M, \cdot)$,
$\lambda_{j, k}^{\prime}(M, \cdot), \lambda_{j, k}^{\prime \prime}(M, \cdot): \mathfrak{M}(M) \rightarrow \mathbb{R}$, are the real functions given by the eigenvalues of Hodge-de Rham operator $\Delta^{(k)}$ and the eigenvalues of the restriction of $\Delta^{(k)}$ to the space of exact (resp. co-exact) smooth differential k-forms on $M, j \in \mathbb{N}$ and $k \in\{0,1, \ldots, n\}$, then those functions are smooth with respect to the canonical Fréchet manifold structure considered on $\mathfrak{M}(M)$.

Finally, in this context, we mention another interesting consequence of Theorem 11.

Corollary 16. Under the same assumptions as those stated in corollary 15, the Hodge-de Rham decomposition
$H^{0} A^{k}(M)=d^{(k-1)}\left(H^{1} A^{k-1}(M)\right) \oplus \delta_{g}^{(k+1)}\left(H^{1} A^{k+1}(M)\right) \oplus \operatorname{ker}\left(\Delta_{g}^{(k)}\right)$
(see Theorem 1.3.4 [9]) smoothly depends of $g \in \mathfrak{M}(M)$ for each $k \in$ $\{0, \ldots, n\}$, the meaning of the Remark 12.

Proof. In fact, to note that Hilbert space $\mathbb{E}:=d^{(k-1)}\left(H^{1} A^{k-1}(M)\right)$ does not depend on the choice of Riemannian metric on M, so our assertion is an immediate consequence of Theorem 11, where we considered

$$
\mathbb{F}_{g}:=\delta_{g}^{(k+1)}\left(H^{1} A^{k+1}(M)\right) \oplus \operatorname{ker}\left(\Delta_{g}^{(k)}\right) .
$$

Q.E.D.

Remark 17. The Fréchet manifold topology of $\mathfrak{M}(M)$ is just the C^{∞}-topology on $\mathfrak{M}(M)$, so that Corollary 15 includes in particular the continuity property of the real functions $\lambda_{j, k}(M, \cdot), \lambda_{j, k}^{\prime}(M, \cdot)$, $\lambda_{j, k}^{\prime \prime}(M, \cdot): \mathfrak{M}(M) \rightarrow \mathbb{R}$ with respect to this topology for each $j \in \mathbb{N}$ and $k \in\{0,1, \ldots, n\}$ (see M.Craioveanu and M.Puta [4], M.Craioveanu, M.Puta and Th.M.Rassias [5]).

References

[1] Abraham, R., Marsden, J.E. and Ratiu, T., Manifolds, Tensors Analysis, and Applications. 2 Edition, Applied Mathematical Sciences 75, Springer Verlag, New York, 1988.
[2] Binz,E., Śniatycki,J. and Fischer,H., Geometry of Classical Fields, Mathematical Studies 154, North Holland Publishing, Amsterdam, 1988.
[3] Bourbaki,N., Variétés différentielles et analytiques, Fascicule de résultats, Paragraphes 1 à 7, Hermann, Paris, 1967.
[4] Craioveanu, M. and Puta, M., On the continuous dependence on the Riemannian metric of the eigenvalues of the Hodge-de RhamLaplace operators, Proc. of the 24th National Conference of Geometry and Topology, Timisoara, July 5-9, 1994, Editura Mirton Timisoara (1996),pp. 85-95.
[5] Craioveanu,M., Puta,M. and Rassias,Th.M., Old and New Aspects in Spectral Geometry, Springer-Verlag, Mathematics and Its Applications, Vol.534, Berlin, Heidelberg, New-York, 2001.
[6] Craioveanu,M. and Raţiu,T.S., Elements of local analysis, (Romanian), Vol.II, Monografii Matematice Nr.7, Tipografia Universităţii din Timişoara, 1976.
[7] Dodziuk,J., Eigenvalues of the Laplacian on forms, Proc.Amer.Math.Soc., 85, (3)(1982), 437-443.
[8] Golubitsky,M. and Guillemin,V.G., Stable Mappings and Their Singularities, GTM, Vol.14, Springer-Verlag, New-York, Heidelberg, Berlin, 1973.
[9] Turmacu,M., A study of some problems regarding the spectrums of Hodge-de Rham operators associated to a closed Riemannian manifold, (Romanian), PhD Thesis, Universitatea de Vest din Timişoara, România 2007.
[10] Wenzelburger,J., Die Hodge-Zerlegung in der Kontinuumstheorie von Defekten, Dissertation, Universität Mannheim, 1984.
[11] Wenzelburger,J., On the smooth deformation of Hilbert space decompositions, Appendix in Schwarz,G., Hodge Decomposition-A Method for Solving Boundary Value Problems, Springer-Verlag, Berlin, Heidelberg, NewYork, 1995.

[^0]
[^0]: "Constantin Brâncoveanu" University of Râmnicu Vâlcea, România mturmacu@yahoo.com

