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Abstract. Our aim is to solve the electromagnetic problem of the
diffraction of a plane wave by a one dimensional lamellar grating.
In that case the solution to Maxwell’s equations can be split into
two canonical cases : the so-called transverse magnetic (TM) and
transverse electric (TE) polarizations. These cases can be treated
separately, reducing the problem to a scalar one. In this paper we
only consider the TE polarization case in which the only non null
component of the electric field is parallel to the grating grooves.
Since the grating is invariant in one direction the Maxwell’s equations
reduce to an eigenvalue problem for which a numerical solution
is obtained by using the method of moments. First the unknown
function is expanded in a series of spline functions and then the
operator deduced from the Maxwell’s equations is projected onto a
set of test functions after a suitable inner product has been defined.
The choice of the basis and test functions and their properties have
an essential impact for the rate of convergence. One of the reasons
for choosing splines functions is that they were successfully used in
the signal processing field.
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We can take advantage of their analytical definition as piecewise
polynomials and their compact support. Concerning the test func-
tions, we compare three possible choices : Dirac, gate or spline func-
tions. Thanks to their attractive properties, these functions allow
calculating analytically the matrix coefficients deduced from the inner
product. The computational effort is therefore drastically minimized.

1. INTRODUCTION

The scale of microelectronic devices continues to decrease. At
smaller scales, the relative impact of intrinsic circuit properties such
as interconnections may become more significant. The goal of the mi-
croelectronics is to find ways to compensate for or to minimize these
effects, while always delivering smaller, faster, and cheaper devices.

Many applications in microelectronics fields require the electromag-
netic equations to be modeled accurately within a very short com-
putation time. To manufacture advanced integrated circuits optical
projection micro lithography is used and pushed very close to the phys-
ical resolution limits. The correction of the so called optical proximity
effects at the mask level is a mandatory step. This requires fully opti-
mized models and a fast and accurate solution of the electromagnetic
problem is required.

Many rigorous methods exist but large efforts remain to be made
on obtaining 3D electromagnetic codes that are sufficiently robust and
fast. The finite difference (FD) modal method and the coupled-wave
method [1] also called the Fourier modal method (FMM) are examples
of the most efficient and commonly used methods to solve diffraction
problems.

On the other hand, in the field of signal processing, functions with a
compact support showed a very strong potential through their ability
to provide fast convergence. We used the spline expansion to solve
the 2D electromagnetic problems that appear in several lithography
applications to improve the efficiency of the current methods based on
a modal approach. The improvement is obtained thanks to a rigorous
numerical treatment of the discontinuities of the permittivity function.

2. DEFINITION OF THE PROBLEM

2.1. Physical formulation. We consider the case of a lamellar grat-
ing configuration as shown in fig.1.
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F1GURE 1. Geometry of the diffraction problem

A piecewise homogenous medium is characterized by a refractive
index that is periodic along the x direction with a d period.

(1) va(x) =
vy, for fd<z<d
where f is a parameter between 0 and 1.

The refractive index of the medium through which the light is inci-
dent is denoted by 1y and that of the substrate 5. These refractive
indices may be complex, describing lossy dielectrics or metals with
the exception of the incident medium which is assumed to be vacuum.
This structure is illuminated by a linearly polarized monochromatic
plane wave. The wave is inclined at #° on the Oy axis. Our goal
is to determine the ratio of the diffracted light intensity, of a given
diffracted order, to the incident light intensity namely the reflected
and transmitted diffraction efficiencies.

2.2. Mathematical formulation. This paragraph outlines the
mathematical approach of the physical problem presented above.
In order to describe the properties of the electromagnetic field,
the Maxwell equations are solved in a Cartesian coordinate system
(x,y,2). It can be shown that the electromagnetic field can be ex-
pressed as sum of a transverse electric (TE) and transverse mag-
netic (TM) polarization part. In the TE polarization case the only
nonzero components are (H,, H,, E,) while in TM polarization the
only nonzero components are (E,, E,, H,). Both polarizations can be
treated separately, reducing the problem to a scalar problem. For the
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sake of simplicity we treat only the TE polarization case. Then for a
time dependance of the form e™!, Maxwell’s equations write:

( 0,E, = —iwpoH,

(2) 0. E, =iwnoH,

0.H, — 0,H, =iwe;(z)E,

where 0, = 8% and ¢; (z) = v7 (z) characterizes the lamellar grating

permittivity , 7 = {1,2,3}. Eliminating H, and H, in equation (2)
the propagation equation is obtained:

1 1
) (22 + 60)) B (o) = ~ 5328 ()
where k = 2* is the wavenumber (A =wavelength). Since the operator

at the left-hand side of the equation (3) depends only on z-variable,
the solution can be expressed as:

E.(x,y) = f(z)e*"

Thus an eigenvalue problem is obtained:

(4) Lf(x)=1"f(z)
where f(x) and r? are the eigenfunction and eigenvalues respectively,
L is a linear operator that depends only on the z-variable.

1d

The square root of the eigenvalue is chosen so that the propagative
wave amplitude decreases along the propagation direction so only the
eigenvalues that fulfill the following condition are selected :

reRYorreCandIm(r)<0

The boundary conditions at the interfaces of the three regions deter-
mine the amplitude field coefficients. The field £, may be expanded
in an eigenfunction series:

(5) E(z,y) = Y (Ahe™™V + AL e *m) . (2)

m=1
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where A and A, denote the upward and downward field amplitude.
The diffracted and refracted efficiencies are then expressed as:

To To

where the subscript n refers to the n'” reflected or transmitted order,
whilst the subscript 0 refer to the incident wave.

2.3. Numerical approach. In this paragraph, the details for the
numerical implementations are presented. Equation (4) is reduced to a
matrix form and solved using the method of moments [2]. This consist
into two steps. Firstly, each f,, from equation (5) is expanded into
a finite weighted sum of basis functions B,,. Secondly, this expansion
is projected onto a set of test functions 7,. We denote by N the
truncation number, all the indexes are assumed by default {1,2,...N}.
Equation (3) leads to the following matrix form:

(6) (G (DG'D + G| [E.,] =r*[E.,]

where G, D are square matrix expressing the inner product between
the test functions and the basis functions as well as the inner product
between the test function and the derivative of the basis function
respectively.

(7) G=[(T,,B,)] D= [(T,.B,)]

The matrix G° takes into account the jump of the permittivity func-
tion :

(8) G = [(T;, €By)]

2.4. Adaptive spatial resolution. In order to improve the numeri-
cal results, an adaptive spatial resolution is implemented [1]. For that
purpose, a new system of coordinates (u,y, z) is introduced. z (u) is
chosen so that the spatial resolution increases around the z = 0 and
x = fd, points where the permittivity function is discontinuous. The
following function is used :

u—n%sin <2}+j> ifu< fd
(9) T =

u—i—n%sin (%) ifu<d
where 7 is a parameter between 0 and 1.



42 AM.ARMEANU,K.EDEE ,G.GRANET AND P. SCHIAVONE

A short computation shows that only the matrix D from the equa-
tion (6) is changed into XD, where X is a square sparse matrix con-
taining the values of the derivative of the z(u) function on its main
diagonal.

3. SPLINE EXPANSION

The basis functions used in this paper are the splines of the second
order defined as in ref. [3]. As the above problem is pseudoperiodic,
the basis functions used must be periodic. This condition is accom-
plished by the first ¢; and the last ¢ splines. The figure below shows
the example of spline functions over the interval [0,1]. One can see
that the first and the last spline assure the periodicity.

F1GURE 2. Spline functions. The first and the last
spline function are drawn with bold lines

In order to take into account the pseudoperiodicity properties of the
field, a phase factor is added to the periodic basis functions ¢, :

B,, = e(Ttkoaoz) g ()  with ag = sin (6y)
The support of the basis functions B, remains compact due to the
compactness of the support of the spline function ¢,,.
4. TEST FUNCTIONS

The inner product involved into evaluation of the operator from
the equations (7) and (8) is often difficult to perform in problems of
practical interest.
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A simple way to obtain approximate solutions is to require that
equation (6) be satisfied for a discrete set of points in the region of
interest. This procedure is called a point-matching method. In terms
of the method of moments, it is equivalent to using Dirac delta func-

d
tions as test functions. These points are denoted by x,, = n— where

N
n=1{0,1,..,N —1}.

Another approach for this practical problem of diffraction is to use a
gate function as test function. A possible definition of a gate function
is detailed below :

=~ (%)2 T € [Ty, Tpyi)
(10) I_In, N (l’) =
0 otherwise

Finally, another particular choice of test functions is known as
Galerkin’s method. More precisely, in this kind of approach the test
functions are identical to basis functions : T, = B,.

The evaluation of the matrix coefficients of G, D and G¢ from the
equation (6) involves time consuming numerical integrations. These
matrices contain inner products of the form (7}, B,,) so an integration
must be computed. Even though the integration limits range from 0 to
d, the intervals of actual integrations are much smaller because of the
compact support of the test and basis functions. By taking advantage
of this property many entries of the matrices can be directly identified
to zero. Only these inner products in which the test and the basis
functions overlap, have to be computed.

5. ILLUSTRATION OF THE RESULTS

We model the impact of a grating on a TE polarized incident wave.
We consider the same grating geometry previously studied by Lalanne
[4] (d = 1pm, f = 0,5um,h = Tlum, A = lum,vey = vz = 0.22 —
6.71 % i, and = 30°). The figure 3 shows the zeroth order reflected
diffraction efficiency computed with spline basis functions projected
on the Dirac, gate or spline functions as test functions as a function of
the truncation order. For the sake of comparison the results obtained
with FD modal method taken from Ref.[4] are also plotted.
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Convergence of the zeroth diffraction order efficiency
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FiGUurE 3. Comparison of different implementations of
different methods

It is seen that the gate-spline (stars) and the Galerkin’s method
(dotted line) results compares favorably with the Finite Difference-
modal method. As could be expected the Galerkin’s method gives us
the most accurate results.

6. CONCLUSION

In this paper, we solved Maxwell’s equations with a modal method.
Numerically, the solution of the eigenvalue problem is obtained by
using the method of moments : the unknown function is expanded
on a set of basis functions and equations are projected on a set of
test functions. This approach was also used in the finite difference
modal method. The fundamental difference between the latter and
our approach is the choice of the basis and test functions.

In our method, the splines were chosen as basis functions whereas
the FD-modal method uses gate functions. The FD-modal method
uses the Dirac functions as test functions. For the sake of comparison,
we have introduced three test functions: the Dirac(point matching
method), gate and spline functions(Galerkins method). On the case
investigated in this paper the rate of convergence of the FD-modal,
gate-spline and Galerkin’s methods, are comparable. Our three ap-
proaches of the diffraction problem allow us to conclude that the more
elaborate the test functions, the more accurate the results.
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Another strong point is that splines allow calculating the inner prod-
uct analytically. Furthermore, this method offers symmetrical sparse
matrices. The computational effort and the space memory are there-
fore drastically minimized.

Other numerical simulations not presented in this paper show that
numerical results obtained with our approach converge slightly slower
than those given by the adaptive spatial resolution Fourier modal
method, at least on the specific example considered here. We may
conclude that on this specific case, the convergence speed places it
between the adaptive FMM and non-uniform sampling FD-modal
method.

This paper is the starting point for the wavelets splines and mul-
tiresolution analysis. The addition of a hierarchical basis will allow
the implementation of a multilevel analysis, preferably located around
a region of the field with rapid variation. Thus, the use of a spline
expansion will certainly provide better performance than the Fourier
Modal Method. This next step of our work will be presented in a
subsequent paper.
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