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CONTROLLING CHAOTIC DYNAMICAL SYSTEMS
THROUGH FIXED POINT ITERATIVE TECHNIQUES

VASILE BERINDE

Abstract. An extremely simple and efficient controlling mecha-
nism has been developed to stabilize discrete dynamical systems. The
new technique is essentially based on considering controllers taken
from typical fixed point iterative methods. Theoretical analysis as
well as computer simulations have been provided to show the simplic-
ity, great power, effectiveness and efficiency of this new method in
practice.

1. Introduction

In recent years, deterministic chaos has been observed when ap-
plying simple models to various phenomena in nature and science:
population dynamics, chemical reactions, electronic circuits, cardiol-
ogy, laser technology etc.

One of the topics related to chaotic dynamical systems has been
the development of techniques for the control of chaotic phenomena.
Some of the basic methods of controlling chaos are summarized in
Lynch [15], where a selection of various applications of chaos control
in the real world are listed, see also Ditto et al. [7], Chan [6]; Ott et
al. [17] etc. Stabilizing unstable dynamical systems through feedback
adjustment methods have dominated the recent research in the field
of chaos control, see Huang [13] and references therein.
————————————–
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A nonlinear feedback mechanism through controlling the growth
rate has been developed by Huang [13]. This method has been shown
theoretically and by numerical simulations to be effective in stabilizing
unstable periodic points of chaotic discrete systems. In this article, a
simple growth-rate type mechanism for controlling chaos in discrete
systems is developed. We show in theory and by numerical simu-
lations that our technique of stabilizing unstable periodic points of
chaotic discrete systems in effective and, moreover, compared to other
stabilizing methods, has a high speed.

It is worth noting that idea of the methods used here are inspired
from recent and classical methods in the iterative approximation of
fixed points, see Berinde [3], although they were independently devel-
oped in economics as ”adaptive” methods, see [11]-[13].

2. Fixed point type controlling mechanisms

Consider a one-dimensional discrete system defined by a first order
difference equation:

xi = θ(xi−1),(2.1)

where θ : [a, b] → [a, b], a, b ∈ R, is a continuous function.
We know by the Brower’s fixed point theorem, that θ has at least

one fixed point in the interval [a, b] , that is, there exists at least one
x such that θ(x) = x. Suppose further that θ′(x) exists. By a fixed
point type (FPT) mechanism, we mean the following modification to
the original system (2.1):

xi = θ̃(xi−1) ≡ (1− γ)xi−1 + γθ(xi−1),(2.2)

where γ is a control parameter that can take any value in the interval
[0, 1].

Note that for γ = 1 we find the original system (2.1), while for
γ = 0 we get the trivial stable system xi = xi−1. Therefore, we will
consider in the following only control parameters in the open interval
(0, 1).

Inspired by the fixed point iterative methods in [3] we also consider
the fixed point type (FPT) mechanism associated to the system (2.1)
and given by:

xi = θ̂(xi−1) ≡ (1− γi)xi−1 + γiθ(xi−1),(2.3)
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where γi is a control parameter sequence that can take any values in
the interval [0, 1].

Remark 1. 1) The concept of growth rate, which is used extensively in
many fields that involves discrete dynamics, has been used in Huang
[13] to name his controlling mechanism. Note that the controlling
mechanism defined by Eq. (2.2) is of growth-rate type, too.

Indeed, for an one-dimensional discrete dynamics given by Eq.
(2.1) the growth rate is defined as

gi ≡ xi − xi−1

xi−1

=
θ(xi)

xi−1

− 1.(2.4)

The FPT controlling mechanism defined by Eq. (2.2) is mathemati-
cally equivalent to the following growth-rate type equation

xi − xi−1

xi−1

= γ

[
θ(xi)

xi−1

− 1

]
,(2.5)

which in fact controls the growth rates of the original system Eq. (2.1)
adaptively.

2) In order to ensure that the growth rate is well defined, we may
assume in the following that the origin is excluded from the interval
[a, b].

The following theorem essentially ensures two desired properties
of the FPT controlling mechanism.

Theorem 1. The controlled system defined by Eq. (2.2) possesses the
following mathematical characteristics:

i) (Generic property) The process θ and θ̃ share exactly the same

set of fixed points, that is, if θ(x) = x for some x ∈ [a, b], then θ̃(x) =
x, and vice versa.

ii) (Necessary and sufficient condition) For an unstable fixed point
x, with θ ′(x) < −1, there always exists an effective regime for the
control parameter, such that

∣∣θ ′(x)
∣∣ < 1 for γ ∈ Γ.

Proof. . If x ∈ [a, b] is a fixed point of θ, that is θ(x) = x, then

θ̃(x) = (1− γ)x + γθ(x) = (1− γ)x + γx = x,

that is, x is a fixed point of the adjusted system θ̃, too.

Conversely, if θ̃(x) = x then by Eq. (2.2), it results θ(x) = x.
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As the derivative of θ̃ is given by θ̃ ′(x) = 1 − γ(1 − θ ′(x), if
θ ′(x) < −1, then we have

θ̃ ′(x) = 1− γ(1− θ ′(x)) < 1.

Moreover, in order to have θ̃ ′(x) > −1, γ must satisfy

γ <
2

1− θ ′(x)
.

As θ ′(x) < −1, it results that 1− θ ′(x) > 2 and therefore

γmax <
2

1− θ ′(x)
< 1.

This shows that indeed there exists an effective regime for the control
parameter: Γ = (0, γmax), provided x is an unstable fixed point for
the original system satisfying θ ′(x) < −1. ¤

Remark 2. We illustrate the conclusion of Theorem 1 by some numer-
ical simulations. To simultaneously offer a comparison to the results
in Huang [13], we shall consider first the examples there.

Note that all numerical tests presented in this paper have been
obtained by means of the software package FIXPOINT.

Example 1. ([13])
Consider the cubic process defined by g : [1, 2] → [1, 2], g(x) =

1 + (x− 1)(4x− 7)2, that is

xi = g(xi−1) ≡ 1 + (xi−1 − 1)(4xi−1 − 7)2,(2.6)

which has three unstable fixed points x1 = 1, x2 = 1.5 and x3 = 2,
because g ′(x1) = 9 > 1, g ′(x2) = −3 < −1 and g ′(x1) = 9.

In view of Theorem 1, x2 = 1.5 will become a stable fixed point
for the controlled system associated to the original system given Eq.
(2.6):

xi = g̃(xi−1) ≡ (1− γ)xi−1 + γ
[
1 + (xi−1 − 1)(4xi−1 − 7)2

]
=

= 16γx3 − 72γx2 + (104γ + 1)x− 48γ.(2.7)

It follows by Theorem 1 that the unstable fixed point x2 of g will be a
stable fixed point of g̃.
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The range for the control parameter γ will be Γ =

(
0,

1

2

)
, since

γmax =
2

1− g ′(x2)
=

1

2
.

Table 1 shows the first 12 iterations for the systems defined by θ = g,

θ̃ and θ̂, respectively, starting with the same initial point x0 = 1.3333.

While θ shows a totally unstable trajectory, θ̃ presents a stabilized

trajectory after the 12nd iteration and θ̂ presents a stabilized trajectory
after the 10th iteration, both at the unstable fixed point x2 = 1.5.

It is easy to see that the process defined by θ̂ (corresponding to
Mann fixed point iteration procedure, see [3]) converges faster than

the process defined by θ̃ (corresponding to Krasnoselskij fixed point
iteration procedure, see [14] and [3]).

Example 2. ([13])
Consider now the well known Logistic system defined by f : [0, 1] →

[0, 1], f(x) = 4x(1− x), that is

xi = f(xi−1) ≡ 4xi−1(1− xi−1),(2.8)

which has two unstable fixed points x1 = 0 and x2 = 0.75, because
f ′(x1) = 4 > 1 and f ′(x2) = −2 < −1.

In view of Theorem 1, x2 = 0.75 will become a stable fixed point
for the controlled system associated to the original system given Eq.
(2.6):

xi = f̃(xi−1) ≡ (1− γ)xi−1 + γ(4xi−1(1− xi−1) = −4γx2 + (3γ + 1)x.

(2.9)

It follows by Theorem 1 that the unstable fixed point x2 of f will be a

stable fixed point of f̃ .

The range for the control parameter γ will be Γ =

(
0,

2

3

)
, since

γmax =
2

1− f ′(x2)
=

2

3
.

Table 2 shows the first 12 iterations for the systems defined by θ = f ,

θ̃ and θ̂, respectively, starting with the same initial point x0 = 0.8333.

While θ shows a totally unstable trajectory, θ̃ presents a stabilized
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Table 1. The first 12 iterations for the dynamical sys-
tem defined by θ = g and x0 = 1.3333; here γ = 1

6
,

γi = 1
i+1

n θ θ̃ θ̂

0 1.3333 1.333 1.3333
1 1.925981 1.432080 1.925981
2 1.458835 1.476525 1.692408
3 1.622380 1.492140 1.473854
4 1.162186 1.497379 1.499929
5 1.896630 1.499126 1.499986
6 1.308444 1.499709 1.499995
7 1.962206 1.499903 1.499998
8 1.693273 1.499968 1.499999
9 1.035695 1.499989 1.499999
10 1.291405 1.499996 1.500000
11 1.980563 1.499999 1.500000
12 1.834016 1.500000 1.500000

trajectory after the 8th iteration and θ̂ presents a stabilized trajectory
after the 21th iteration, both at the unstable fixed point x2 = 0.75.

It is easy to see that in this case the process defined by θ̃ (corre-
sponding to Krasnoselskij fixed point iteration procedure, see [3] and

[14]) converges faster than the process defined by θ̂ (corresponding to
Mann fixed point iteration procedure).

Following the same pattern we can stabilize unstable periodic fixed
point or multi-dimensional systems, like in [13].

3. The case when Theorem 1 does not apply

Note that an unstable fixed point x of θ, with θ ′(x) > 1 cannot
be stabilized by applying Theorem 1.

In this section we consider an example of chaotic dynamical sys-
tem for which we can give not only empirical results like in the case
of the previous two examples but also analytical results. For this dy-
namical system, Theorem 1 does not apply but, as it will be seen,
the chaotic dynamical can be, however, stabilized by the fixed point
iterative schemes (2.2), in view of the theoretical results in [5].
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Table 2. The first 12 iterations for the dynamical sys-
tem defined by θ = f and x0 = 0.8333; here γ = 2

5
,

γi = 1
i+1

n θ θ̃ θ̂

0 0.833300 0.833300 0.833300
1 0.555644 0.722238 0.555644
2 0.987615 0.754319 0.771630
3 0.048927 0.749106 0.749376
4 0.186134 0.750177 0.749844
5 0.605952 0.749964 0.749937
6 0.955097 0.750007 0.749969
7 0.171547 0.749999 0.749982
8 0.568474 0.750000 0.749989
9 0.981245 0.750000 0.749993
10 0.073612 0.750000 0.749995
11 0.272772 0.750000 0.749996
12 0.793469 0.750000 0.749997

Example 3. ([1])

Consider the nonlinear dynamical system defined by h :

[
−3

2
,
1

2

]
→

[
−3

2
,
1

2

]
, h(x) = 2x2 + 2x− 1, that is

xn+1 = 2x2
n + 2xn − 1, n = 0, 1, 2, ...,(3.1)

which has two unstable fixed points: x1 = −1 and x2 = 0.5, because
h ′(x1) = 11 > 1 and f ′(x2) = 3 > 1.

Hence, Theorem 1 cannot be applied here in order to establish if
one or both fixed points will become stable fixed points for the controlled
systems associated to the original system.

It is a simple task to show that for all x0 ∈
[
−3

2
,
1

2

]
we have

(3.2) xn ∈
[
−3

2
,
1

2

]
, n ≥ 1.
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By (3.1) we have

xn+1 +
1

2
= 2

(
xn +

1

2

)2

− 1, n ≥ 0

and using the fact that, by (3.2)

xn +
1

2
∈ [−1, 1] , n ≥ 0,

we can denote x0 +
1

2
= cos α and then by the formula

cos 2α = 2 cos α2 − 1,

we inductively obtain that

xn +
1

2
= cos (2nα) , n ≥ 0

that is,

(3.3) xn = −1

2
+ cos (2nα) , n ≥ 0.

For x0 =
1

2
, lim

n→∞
xn =

1

2
, while for x0 = −1, lim

n→∞
xn = −1.

There are also other values of x0 for which {xn} converges to −1, e.g.

x0 = 0 a̧nd, similarly, there are other values of x0, e.g. −3

2
,−1

2
etc.,

for which (xn) converges to
1

2
.

By (3.3) and the previous assertion, it follows that for a certain
x0, {xn} is convergent if and only if it is ”embeded” in a fixed point

of h, that is, if there exists a rank n such that xn ∈
{
−1,

1

2

}
.

We thus deduce that for x0 in the set

(3.4) C =

{
−1

2
+ sin

kπ

2n
| k ∈ Z, n ∈ N

}
,

{xn} gets stabilized, while for x0 in the set

(3.5) P =

{
−1

2
+ cos

2kπ

2p ± 1
| k ∈ Z, n ∈ N

}
,

{xn} is periodic, of period p, hence divergent.
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For example, when starting from

x0 = −1

2
+ cos

2π

5
= −3

4
+

√
5

4
,

{xn} is periodic of period p = 2.
The sets (3.4) and (3.5) are infinite and it is not very difficult to

show they are both dense in the interval

[
−3

2
,
1

2

]
.

This dynamical system allows us to better illustrates chaotic be-
haviour: for any ε > 0, there exists ω ∈ C and ω′ ∈ P , satisfying
|ω − ω′| < ε and such that starting from x0 = ω, {xn} converges,
while, starting from x0 = ω′, {xn} diverges (being periodic).

Table 3 shows some of the first 30 iterations for the systems defined

by θ = h, θ̃ and θ̂, respectively, starting with the same initial point

x0 = 0.4999. While θ shows a totally unstable trajectory, θ̃ presents a
stabilized trajectory after the 28th iteration at the unstable fixed point

x1 = −1 but the Mann type controlled system θ̂ gets not stabilized after
30th iterations. Note that x2 = 0.5 remains an unstable fixed point for

the controlled system θ̃, too.

4. Conclusions and bibliographical comments

Theorem 1 and Examples 1-3 in this paper illustrate how a chaotic
discrete dynamical system can be stabilized by means of fixed point
iterative techniques. Theorem 1 ensures the framework of stabilizing
only fixed points x of differentiable dynamical systems for which, in
addition, the condition θ ′(x) is satisfied, like in Examples 1-2.

This condition is not satisfied by the two fixed points of the dy-
namical system in Example 3. A more general result that do not
involve any assumption on the first order derivative, established in [5],
is needed to guarantee the stabilization of an unstable fixed point of
the dynamical system in Example 3. The only property that is re-
quired to the function that defines such a dynamical system is to be
Lipschitzian.

Note that in order to prove the theorems in [5], some classical
results in [14], [8], [2] and [9] have been used and extended.



56 VASILE BERINDE

Table 3. The first 30 iterations for the dynamical sys-
tem defined by θ = h and x0 = 0.4999; here γ = 1

2
,

γi = 1
i+1

n θ θ̃ θ̂

0 0.4999 0.4999 0.4999
1 0.499600 0.499750 0.499600
2 0.498400 0.499375 0.499000
3 0.493607 0.498438 0.498001
4 0.474509 0.496098 0.496504
5 0.399334 0.490260 0.494411
. . . . . . . . . . . .
25 -1.157044 -0.999992 0.224155
26 -0.636587 -1.000004 0.198180
27 -1.462688 -0.999998 0.171392
28 0.353536 -1.000001 0.143898
29 -0.042953 -1.000000 0.115805
30 -1.082217 -1.000000 0.087226

Note also that the techniques on which the controlling techniques
of chaotic dynamical systems are based, appear to have been devel-
oped rather in parallel in mathematics and economics, see [12] and
references therein.

It is interesting to note that the well known Krasnoselskij-Mann
fixed point iterative method [3] have been used in economics as early
as 1958, under the name of ”adaptive adjustment”, see [16], that is,
three years later than the Krasnoselskij-Mann fixed point iterative
method has been developed by Krasnoselskij [14] in a mathematical
context.
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[5] Berinde, V. and Kovács, G., Stabilizing discrete dynamical systems
by monotone Krasnoselskij type iterative schemes, Creative Math.
Inform. 17 (2008), No. 3, 298-307

[6] Chan, N. P., Controlling chaos by proportional pulses, Phys. Lett. A.,
234 (1997), 193–197

[7] Ditto, W. L., Raussco, S. N., Spano, M. L., Experimental control of chaos,
Phys. Rev. Lett., 65 (1990), 3211–3214

[8] Franks, R. L., Mrazec, R. P., A theorem on mean-value iterations, Proc.
Amer. Math. Soc., 30 (1971), 324–326

[9] Hillam, B. P., A generalization of Krasnoseski’s theorem on the real
line, Math. Magazine, 48 (1975), 167–168

[10] Holmgren, R. A., First course in discrete dynamical systems, Second
edition, Springer Verlag, 2000

[11] Huang, W., Stabilizing nonlinear dynamical systems by an adaptive
adjustment mechanism, Phys. Rev. E, 61 (2000), No. 2, 1012–1015

[12] Huang, W., Theory of adaptive adjustment, Discrete Dyn. Nat. Soc., 5
(2001), 247–263

[13] Huang, W., Controlling chaos through growth rate adjustment, Dis-
crete Dynamics in Nature and Society, 7 (2002), 191–199

[14] Krasnoselskij, M.A., Two remarks on the method of successive ap-
proximations (in Russian), Uspehi Math. Nauk (N.S.), 10 (1955), no. 1,
123–127

[15] Lynch, S., Dynamical Systems with Applications using MATLAB,
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