
"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 19 (2009), No. 2, 119 - 132

A HYBRID GENETIC ALGORITHM FOR BALANCING ASSEMBLY

LINES WITH COMPATIBILITY CONSTRAINTS

OCTAV BRUDARU, DIANA POPOVICI and CINTIA COPACEANU

 Abstract. The paper presents a hybrid genetic algorithm for deterministic
assembly line balancing (ALB) problem with a single model and an additional
constraint, which requires that the workstations are compatible with a given
cover of the assembly tasks. The performance criteria are the minimizing of
the idle time and the smoothing index. The algorithm includes a special
procedure to generate the cover sets and a special mutation operator
preserving the topological order. It is also combined with an efficient greedy
procedure proper to the problem. All genetic operators are applied with
dynamic probabilities that favour the creating and preserving of good
constructive blocks. The experimental investigation proves the ability of the
hybrid method to find good solutions to this type of balancing problem.

I. INTRODUCTION

The assembly line balancing (ALB) involves the assignment of various
tasks of an assembly process to workstations, so as to optimise an objective
function while the precedence constraints imposed on the set of tasks are
satisfied and the execution time of each workstation does not exceed the cycle
time. This problem belongs to the NP-hard class of combinatorial
optimisation. Different variants of the ALB problem and solving techniques
can be found in [1], [2].

In many practical situations, more complicated constraints caused by
different technological factors may exist. The ALB problem considered in [3]
includes a preplanned imbalance and assigns the tasks to particular types of
workstations. A distinction of the set of tasks according to the process design
in ”fixed” tasks and ”float” tasks is considered in [4].

Keywords and phrases: assembly line balancing, hybrid genetic algorithm,
compatibility constraints, greedy method
(2000) Mathematics Subject Classification: 68T20, 90-08

OCTAV BRUDARU, DIANA POPOVICI and CINTIA COPACEANU 120

This paper considers the deterministic ALB problem with compatibility
constraints, assuming that the value of the cycle is predefined and the
objective is to minimize both the number of the workstations and the
smoothing index. An order-based genetic algorithm (GA) is presented for
solving this problem. It is hybridised with a greedy method proper for the
problem [5]. In section 2, the statement of the problem is presented. Section 3
outlines the greedy method for assembly line balancing with compatibility
constraints. Section 4 explains the components of the GA, including the
grafting of the greedy method. The results of experimental investigation are
given in section 5. The paper ends with some final conclusions.

II. PROBLEM STATEMENT
The mathematical formulation of the deterministic ALB with compatibility

constraints (shortly ALBC) can be stated as it follows ([6], [7]). Let be
},...,2,1{ nV = the set of the tasks of an assembly process. The acyclic digraph

),(AVG = is associated to the precedence restrictions in task execution. If
Ayx ∈),(, then the execution of task y can begin after the task x is finished.

The positive real number it is the execution time of task i , Vi∈ . Let us
denote by C the pre-specified value of the cycle time and suppose that

Cit ≤)(, ni ,...,1= . Let be },...,{ 1 pQQQ = a cover of i.e. VQi ⊆ , pi ,...,1= and

pQQV ∪∪= ...1 . Let S be the set of all partitions },...,{ 1 mWWW = of V ,
which satisfies the following conditions:

(1) if Ayx ∈),(, rWx∈ , sWy∈ sr ≤⇒ ;
(2) CxtWT

jWx
j ≤= ∑

∈
)()(, mj ,...,1= ;

(3) },...,1{)()(},...,1{)(pjkmj ∈∃∈∀ so that)(jkj QW ⊆ .
Each member of S is called a solution to the ALBC problem. The solution

with a minimum number of workstations m is an optimal solution. The
condition (3) reflects the compatibility constraints. Since the classical ALB
problem is NP-hard, the ALBC problem is at its turn NP-hard.

The concept of assembly line balancing problem with compatibility
constraints is introduced in [5] as a tool for handling different technological
restrictions and it is obtained from the originally formulated problem by
adding the condition that the partition of the set of tasks into stations is
compatible with a given cover of this set. In [5] it is shown how five
modifications to the original problem can be treated in a rigorous and unitary
manner as compatibility constraints: requirement of each station to contain a

ASSEMBLY LINES BALANCINNG WITH COMPATIBILITY CONSTRAINTS 121

limited number of types of equipments, requirement of tasks to be assigned to
particular types of stations, the execution of some tasks in only a left (right)-
of-line station, the association of tasks according with tasks skill level, and the
separation of some tasks. A dynamic programming approach is proposed for
solving ALBC problem, but even if it guarantees the solution optimality, the
computing time needed for solving real life problem instances is prohibitive.

An effective tool for solving large ALBC problem instances is described in
the next section. Moreover, the proposed GA can simultaneously treat many
compatibility constraints addressed to different covers of the set of tasks.

III. GREEDY METHOD FOR LINE BALANCING WITH COMPATIBILITY CONSTRAINTS

The idea of the greedy algorithm is to create a solution },...,{ 1 mWWW = by
assigning tasks in a serial manner such as 1+jW is created after jW ,

1,...,1 −= mj . The creation of workstations jW is performed by indicating an
optimizing measure that establishes the order of tasks that candidate to fill the
current workstation. So, a list L of assignable tasks is created. This list
contains unassigned tasks that have no predecessors or whose predecessors
have already been assigned to the workstations under construction. List L is
sorted in decreasing order of the processing times then by the number of sets
of the cover containing the current task. The tasks in L are considered for the
assignment in the resulted order. The algorithm starts by the initialization of
workstation 1W with the first task in list L that, at this moment, contains tasks
without predecessors. If jW is the current workstation then the first task *y
in L so that (i) it fits in the idle time of jW and (ii) kj QyW ⊆∪ *}{ for
some },....,1{ pk ∈ is added to jW and list L is updated. If such a task does
not exist, then a new workstation 1+jW is created. The process continues until
the list L becomes empty and this happens if the digraph G is acyclic. If
G is reduced to or contains a Hamiltonian path then this procedure becomes
that used to compute the fitness of a chromosome in the genetic algorithm
described in the next section. In this case, list L contains exactly one task at
every time when the current workstation is under completion.

IV. HYBRID GENETIC ALGORITHM FOR ALB WITH COMPATIBILITY CONSTRAINTS

In this section the main components of the proposed hybrid GA are
presented.

OCTAV BRUDARU, DIANA POPOVICI and CINTIA COPACEANU 122

Solution representation. The individuals in the populations are represented
as permutations of V ,),...,(1 nxxx = that sort V in topological order. Each
chromosome represents a feasible assembly flow. This approach is a
constructive one, the solution structure being calculated during the fitness
evaluation and it is not stored during the evolution. In this way, the GA
intrinsically operates with sets of solutions corresponding to the current
chromosome instead of working with individual solutions. From this set of
solutions that can be build on the corresponding assembly flow, the best one
only gives the fitness value of the chromosome.

Initial population. The initial population is generated with the classical
topological sorting algorithm that is adapted for randomly selecting the
vertices forming the components of the returned topological sorting. The
solution produced by greedy method described in the previous section is
injected in the initial population. The population size as an empirically
determined function of the number n of tasks is given in Table 1.

Table 1 - Population size as a function of task number n
n 8-30 31-60 61-100 101-200 201-300 301->

pop_size 40 53 66 106 130 200
Fitness function. Consider a chromosome),...,(1 nxxx = and the solution

},...,{ 1 mWW constructed on this assembly flow. The procedure for computing
the workstations corresponding to a given chromosome),...,(1 nxxx = has the
following steps.
Step 1. 1=m , ∅=1W
Step 2. for ni ,..,1= do:
 if (CxWT im ≤∪ }){() and (him QxW ⊆∪ }{ for some },...,1{ ph∈)

then }{ imm xWW ∪=
else 1+= mm , }{ im xW = .

This procedure ensures all data the fitness computation needs. Using this
solution },...,{ 1 mWW the fitness value for x is defined by the formula:

()()
2

1

1

2
21

1)()(⎥
⎦

⎤
⎢
⎣

⎡
−⋅+−⋅⋅= ∑

=

m

j
jWTC

m
wTCmwxfit ,

where m is the number of workstations and ∑=
n

itot tT
1

 is the total execution

time. The first part of this function expresses the total idle time of the
assembly line, whilst the second part is the smoothing index, that measures the

ASSEMBLY LINES BALANCINNG WITH COMPATIBILITY CONSTRAINTS 123

equality of the work distribution between workstations. The factor 1w linearly
varies from 9.0max =w to 2.0min =w when the number t of the evolution
stages goes from 1 to maxt , where maxt is the maximum number of stages,
whilst 12 1 ww −= .
Example. Let consider the digraph given in Fig. 1. The task times and the
value of the cycle time are indicated in Table 2.

1

2

5

4

3

9

8

6

7

10

11

12

Fig. 1. The digraph of precedence restrictions

Table 2. The processing times of the tasks
Task 1 2 3 4 5 6 7 8 9 10 11 12 C
Time 4 5 2 2 3 4 2 1 2 2 1 0.5 10

Suppose that }10,7,6,9,8,5,4,3,2,1{1 =Q and are }12,11,10,7,6,9{2 =Q the cover
sets and consider the topological sorting given by the chromosome

)12,11,10,7,6,9,8,5,4,3,2,1(=x . By applying the previous procedure it results that
3=m , 11 }2,1{ QW ⊂= , 9)(1 =WT , 12 }9,8,5,4,3{ QW ⊂= , 10)(2 =WT ,

23 }12,11,10,7,6{ QW ⊂= , 5.9)(3 =WT and 5.28=totT . Finally, it is obtained that

() 21
2/122

21 646.05.13/)5.01()5.28103()(wwwwxfit +=++−⋅= .
Mutation. The mutation is applied to the entire population and each

individual supports mutation with the same probability mπ . Once an individual
is selected for mutation the basic mutation step is recursively applied ρ times.
The value of multiplicity ρ depends on the number of chromosomes and the
number of the current iteration and is defined by

⎩
⎨
⎧

≤+
>++

=
0*,1

0*),*(
)(

bta
btabtaceil

tρ

where a = (1- n/8)/(0.9∗ maxt - 1), b = n/8 - (1 - n/8)/(0.9∗ maxt - 1) and
}/integermin{)(yxyxceil ≤= . Appropriate values for pm are between 0.1

and 0.2. A mutation operator that preserves topological sorting is used.

OCTAV BRUDARU, DIANA POPOVICI and CINTIA COPACEANU 124

Suppose that),...,,(21 nvvvv = is a randomly selected chromosome. The basic
mutation step tries to move a task hv between the margins allowed by the
precedence constraints. So, the vertex hv , },...,1{ nh∈ is randomly selected
and let us denote by lv the rightmost predecessor of hv and by rv the leftmost
successor of hv . The mutation is successful either 1−< hl or 1+> hr . If it is
not, a next mutation attempt is made. If lhhr −>− , then the task hv is
moved to the position 1−r , and the sequence 11,..., −+ rh vv shifts leftwards one
position. If hrlh −≥− , then the task hv is moved to the position 1+l and
the sequence shifts rightwards. By moving the task hv to the furthest position,
the Hamming distance between the initial chromosome and its mutant is
maximized, favoring a better variability of individuals. The performance of
this operator is investigated in [9] and [10].

Crossover. For each crossover, two different parents are randomly selected
from the matting pool that consists in the best %s individuals of the
population, where 6040 ≤≤ s . The crossover probability is cπ . Both parents
are cut into a random number of parts r , where TCnr /*2 ≤≤ . The first
(second) offspring takes the first part from the first (second) parent and then
the parts of both parents are alternated so that each task appears just once.
This crossover operator ensures that the offsprings are topological sorted if so
were their parents.

Hypermutation. As mentioned before, the first way of hybridisation is to
put the solution produced by the greedy method into the initial population. In
order to improve the performance of the GA, the greedy method is grafted on
a mutation type operator. The result is a hypermutation operator that acts with
the probability Hπ (usually, 08.005,0 ≤≤ Hπ). Two indexes 1j and 2j of
workstations with 5/0 12 mjj ≤−< are randomly chosen in the solution
corresponding to the current chromosome. The greedy method is then applied
to the ALBC instance corresponding to the tasks within this segment. The
returned sequence of tasks replaces the former one in the chromosome.

Population management. The evolution is organized in stages. During the
current stage, mutation, crossover and hypermutation produce new individuals
that compete with current population for the next population. The survival
selection is deterministic and elitist. The population passes from one evolution
stage to the next stage until a stopping condition is reached. Denote by *

kfit
the best fitness value at the end of stage k -th evolution and let tol be a

ASSEMBLY LINES BALANCINNG WITH COMPATIBILITY CONSTRAINTS 125

prescribed tolerance threshold, If tolfitfitfit kkk ≤− −
**

1
* /)(along a prescribed

number sn of successive stages (usually, between 5 and 10), then this situation
is assimilated with stagnation and the probability of the simple mutation is
increasing with 02.0=ms . If the fitness of the best individual continues to
stagnate after this reinforcement of the mutation, for the next sn*2 stages,
then it is considered that the best solution was reached and the algorithm
stops. Another ending criterion is to achieve the maximum number of
iterations, maxt .

V. EXPERIMENTAL RESULTS

In order to prove the efficiency of the hybrid GA, an experimental
investigation was carried out on classical test problems.

5.1 Generating of the cover sets
 In the first phase of the experiment, some difficult problem instances have

been produced using the test problems presented in [10] and [11] for ALB
problem. The following procedure was applied.
Step 1. An instance of an ALB problem without compatibility constraints is
considered. The hybrid GA developed in [6] is applied on this instance and
from the best found assembly flow),...,(1 nxxx = the corresponding
solution },...,{ 1 mWW is obtained. The cover sets pQQ ,...,1 are generated with
the next steps:

1.1 For },..,1{ mi∈ , let il and 1+il be the limits of the workstation iW a,
i.e. },...,,{

11 ++=
iii llli xxxW ;

1.2 Two random numbers ii lh ≤ and 11 ++ ≥ ii lh are generated, mp = and
},...,{

1+
=

ii hhi xxQ , pi ,...,1= .
Step 2. This compaction step reduces the number of sets in the cover. A
random position j is generated between 2 and p and the reunion of 1−jQ and

jQ is done and take 1−= pp . The reunion of the sets continues until the
desired number of sets until mp ⋅≤ 4/3 .

5.2 Performance report
The aim of the experimental investigation was to determine the

distribution of the difference between the number of workstations computed
by the algorithm and the corresponding lower bound defined as

)/(CTceilm_inf tot= .. The test data contained in LUTZ1_coverS.xls,
ARC111_coverS.xls and SCHOLL_coverS.xls that can be found in [13].

OCTAV BRUDARU, DIANA POPOVICI and CINTIA COPACEANU 126

For each value of the cycle time, repeated runs of the hybrid genetic
algorithm are performed. For the solutions obtained in this way, the following
situations are extracted:
(i) The characteristics of the best solution corresponding to the recalculation
of the cycle time to the value of the maximal time of a workstation (C_calc)
from the best solution given by the algorithm in 10 executions.
(ii) The characteristics of the solution with minimum number of workstations
(m_calc), given by the algorithm in 10 runs.
(iii) The characteristics of the best solution given by the algorithm in 10 runs
related to the product between C_calc and m_calc (m·C - the capacity supply
of the line.
(iv) The characteristics of the best solution given by the algorithm in 10
executions related to the smoothing index (smooth_index).
(v) The characteristics of the best solution given by the algorithm in 10
executions related to the fitness (fit - the fitness being calculated with C_calc
and m_calc).
(vi) The characteristics of the best solution given by the algorithm in 10
executions related to the balancing index (balance_index), given by T/m·C.

Now, consider the LUTZ1_coverS.xls problem with 32 tasks ([13]). The
graph of precedence constraints and the execution times of tasks are given in
Fig. 2. The instances involve 6 different values for the cycle times. For

2357=C and the lower bound m_inf = 6, the structure of the best solution
produced by the hybrid GA is illustrated in Table 3.

258

238428352388858

196

328

1400

382

324

616

352

544

458

202

544

694

262

214

456

512

408

646

196

276

352

520

458

500

100

678

Fig. 2 - The digraph of the instance in LUTZ1_coverS.xls

In the last column of the Table 3, the cover sets including the current
workstation are indicated.

Table 3 - Structure of best solution for LUTZ1_coverS.xls with 2357=C
Work-station Wi Assembly flow in Wi T(Wi) Sets including Wi

W1 4, 3 1920.00 Q2
W2 1, 5, 2, 6, 9 1928.00 Q2

ASSEMBLY LINES BALANCINNG WITH COMPATIBILITY CONSTRAINTS 127

W3 8, 7, 11, 12, 10 1852.00 Q1
W4 13, 15, 14, 17, 19 2148.00 Q1
W5 16, 18, 20, 21, 22 2148.00 Q3
W6 25, 26, 24, 27 2128.00 Q3, Q4
W7 28, 23, 29, 30, 31, 32 2016.00 Q5

The cover sets obtained with the procedure described in section 3.1 for
2357=C are presented in Table 4.

Table 4 - The cover sets for LUTZ1_coverS.xls, 2357=C
Sets Tasks
Q1 7, 8, 9, 11, 12, 13, 14, 10, 15, 17,

19, 16, 18, 20
Q2 4, 3, 1, 5, 2, 6, 7, 8, 9
Q3 15, 17, 19, 16, 18, 20, 21, 22, 25,

26, 24, 27
Q4 21, 22, 25, 26, 24, 27, 23, 28, 29
Q5 24, 27, 23, 28, 29, 30, 31, 32

For 2357=C , the parameters used in the algorithm execution and the
values of the target values obtained after 10 runs of the algorithm are
presented in Table 5. This table includes: the lower bound calculated on the
number of workstations (m_inf); the best known value (m_best) for no
compatibility constraints; pm – mutation probability; s – is the size of the
population front the crossover is performed on; and the number of iterations
up to the convergence detection (it_conv). The last column in Table 5 shows
the values of the mutation probability after the detecting of the stagnation and
the subsequent attempt to avoid this stagnation by increasing mutation
probability. Column it_ conv gives the number of iteration when the first
stagnation was detected, so algorithm actually stopped after more 20
generations. This table offers the distribution of m_calc-m_best in the last two
rows.
Table 5 - Data and target values of LUTZ1_coverS.xls instance for 2357=C

Graph_code No.
of
tasks

LUTZ1_coverS.xls 32
C/Target values m_inf

m_
best

pm fc tol inject
y/n

mutH
y/n

2357 6 6 0.1 0.65 0.0006 y y
Cases C_ m_ m·C smooth fit balance it_ pm

OCTAV BRUDARU, DIANA POPOVICI and CINTIA COPACEANU 128

calc calc ind ind conv
(i) Sol. with C_calc 2148 7 15036 355.79 2047.36 0.94 120 0.20
(ii) Sol. with
m_calc 2148 7 15036 355.79 2047.36 0.94 120 0.20

(iii) Sol. with m·C 2148 7 15036 355.79 2047.36 0.94 120 0.20
(iv) Sol. with
smooth_ind 2148 7 15036 348.37 1944.8 0.94 228 0.30

(v) Sol. with fit 2148 7 15036 348.37 1944.8 0.94 228 0.30
(vi) Sol. with
balance_ind 2148 7 15036 355.79 2047.36 0.94 120 0.20

Distribution
m_calc-m_best 0 1 >=2

Rel_freq. 0.2 0.7 0.1
The number of workstations computed by the algorithm without

compatibility constraints is denoted by m′ . The relative frequencies of the
values m_calc - m_inf and m_calc-m’ are shown in Table 6 and correspond to
the six values of the cycle time, namely 1583,1780,2035,2374,2848,3560, for
each value 10 runs being executed. The values of the relative frequency range
between 0 and 2. The most frequent value is 1. The pie graph of this
estimation is shown in Fig. 3. The distribution m*-m’ from second line in
Table 6 indicates that in 85% of cases, the solution given by the GA without
compatibility constraints is the same with the best solution. The comparison
between these values indicates that the hybrid GA with compatibility
constraints gives good results.

Table 6 - Distribution of m*-m0 and m*-m’ for LUTZ1_coverS.xls,
C =1583, 1780, 2035, 2374, 2848, 3560
Relative frequency 0 1 >=2

m_calc - m_inf 0.84 0.1 0.06
m_calc - m’ 0.85 0.15 0

Distribution of m_calc - m_inf

2
15%

1
85%

0
0%

0

1

2

Fig. 3 - Distribution of m*-m0 for LUTZ1_coverS.xls

ASSEMBLY LINES BALANCINNG WITH COMPATIBILITY CONSTRAINTS 129

From the obvious inequality 'm_calc - m_infm_calc - m ≤ it results that
the real performance is better than the estimation above presented.

For all the six values of the cycle time, the minimal, average and maximal
values of smoothing index, balancing index, and fitness are computed. These
values are presented in Table 7.

Table 7 - Values of the performance indexes and the cycle times for
LUTZ1_coverS.xls]

C 1583 1780 2035 2374 2848 3560
m0 min. 10 9 8 7 6 5
Smoothing
index

min. 141.76 179.49 209.73 259.7 348.37 483.71
av. 156.51 278.73 214.80 265.41 353.25 492.54
max. 271.05 303.23 219.86 279.55 355.88 518.89

Balancing
index

min. 0.84 0.87 0.92 0.90 0.93 0.86
av. 0.91 0.88 0.94 0.94 0.937 0.92
max. 0.92 0.92 0.94 0.95 0.94 0.94

Fitness min. 1123.40 1309.31455.291580.421944.802367.03
av. 1288.822392.421511.511709.582028.572435.37
max. 2432.602729.961543.481760.702059.012473.08

The typical variation of fitness, smoothing index and balancing index
during the evolution of the considered example for 2374=C is shown in Fig.
4 (a)-(c), respectively.

Variation of the fitness

0
2000
4000
6000

1 37 73 109 145 181 217 253
evolution stages

fitness

(a)

Variation of the smoothness index

0
200
400
600

1 31 61 91 121 151 181 211 241 271
evolution stages

smooth_i
nd

(b)

OCTAV BRUDARU, DIANA POPOVICI and CINTIA COPACEANU 130

Variation of the balancing index

0,70

0,80

0,90

1,00

1 30 59 88 117 146 175 204 233 262
evoltion stages

balance_in
d

(c)
Fig. 4 - Variations of the fitness, smoothing and balancing indexes

The experimental tests using ALB instances with compatibility constraints
obtained from ARC111_coverS.xls problem instance and the 297-task
SCHOLL_coverS.xls problem ([13]) and the results obtained to corresponding
simple ALB problems (without compatibility constraints) showed that the
hybrid GA with compatibility constraints gives good results for medium and
large size instances.

VI. CONCLUSIONS

In this paper, the ALB problem with compatibility constraints, a model
requiring the compatibility of each solution to a given cover of the set of
tasks, was treated. For solving this problem, an order based GA combined
with a greedy technique had been designed. Computational experiments
showed that the procedure is effective in finding good solutions. The
performance comparison with the GA ignoring the compatibility constraints
proved that the proposed approach is very promising.

The inclusion of the compatibility constraints into a successful
evolutionary approach allows the solving of more complex practical problems.
The proposed method is a general framework for treating practical
applications in which different restrictions such as skill levels, task separation
and left/right sided tasks are required.

References
[1] Scholl, A., Balancing and sequencing of assembly lines, 2nd ed.,
Physica-Verlag, Heidelberg, 1999
[2] Brudaru, O., Copaceanu, C., Valmar, B., Assembly line balancing
paradigm: Achievements and new trends, in: New Trends in Computer
Engineering. Technical University ’’Gh. Asachi” Iasi, Polirom Press, Iasi,
187-218, 2003

ASSEMBLY LINES BALANCINNG WITH COMPATIBILITY CONSTRAINTS 131

[3] Johnson, R. V., A branch and bound algorithm for assembly line
balancing problems with formulation irregularities, Management Science,
29, 1309-1324, (1983)
[4] Park, K., Park, S., Kim, W., A heuristic for an assembly line balancing
problem with incompatibilities, range, and partial precedence
constraints, Computers Ind. Eng, 32 (2), 321-332, (1997)
[5] Brudaru, O., Assembly line balancing with compatibility constraints,
Econ. Comput. Econ. Cybern. Stud. Res. 27, No.1-4, 59-65 (1993)
[6] Brudaru, O., Copaceanu, C., Popovici, D., A new hybrid genetic
algorithm to “I”- assembly line balancing problem, to appear in Bul. Inst.
Polit. Iaşi, S. Matematica- Mecanica teoretica- Fizica, tom. LVI(LX), 1,
(2010)
[7] Brudaru, O, Fuzzy compatibility constraints in assembly line
balancing, in Z i m m e r m a n n, H. J. (ed.): Proceedings of EUFIT’98–6th
European Congress on Intelligent Techniques & Soft Computing. 3, Verlag
Meinz, 1651-1655, (1998)
[8] Brudaru, O., A genetic algorithm for assembly line balancing with
compatibility constraints using a control mechanism based on
information energy, EUFIT’99 - 7th European Congress on Intelligent
Techniques and Soft Computing, Aachen, Germany, Sept. 13-16, (1999)
[9] Brudaru, O. et al., A mutation operator preserving the topological
sorting. Part I, Bul. Inst. Polit. Iaşi, XLIX(LIII), 3/4, S. Textile. Pielărie, 98-
100, (2003).
[10] Brudaru,O. et al., A mutation operator preserving the topological
sorting. Part II, Bul. Inst. Polit. Iaşi, L(LIV), 1/2, S. Textile. Pielărie, 115-
124, (2004).
[11] http://www.assembly-line-balancing.de/files/uploads/SALBP data sets.zip
[12] http://www.misp.tuiasi.ro/obrudaru/line_balancing/SALB.rar
[13] http://www.misp.tuiasi.ro/obrudaru/line_balancing/CALBs.rar

OCTAV BRUDARU
Institute of Computer Science, Romanian Academy, Jassy Subsidiary
“Gh. Asachi” Technical University Jassy, Department of Management and
Production Systems Engineering
e-mail: brudaru@tuiasi.ro
DIANA POPOVICI
Institute of Computer Science, Romanian Academy, Jassy Subsidiary
CINTIA COPACEANU
 “Gh. Asachi” Technical University Jassy, Department of Management and
Production Systems Engineering

OCTAV BRUDARU, DIANA POPOVICI and CINTIA COPACEANU 132

