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  Abstract. The paper presents a hybrid genetic algorithm for deterministic 
assembly line balancing (ALB) problem with a single model and an additional 
constraint, which requires that the workstations are compatible with a given 
cover of the assembly tasks. The performance criteria are the minimizing of 
the idle time and the smoothing index. The algorithm includes a special 
procedure to generate the cover sets and a special mutation operator 
preserving the topological order. It is also combined with an efficient greedy 
procedure proper to the problem. All genetic operators are applied with 
dynamic probabilities that favour the creating and preserving of good 
constructive blocks. The experimental investigation proves the ability of the 
hybrid method to find good solutions to this type of balancing problem. 

 
I. INTRODUCTION 

The assembly line balancing (ALB) involves the assignment of various 
tasks of an assembly process to workstations, so as to optimise an objective 
function while the precedence constraints imposed on the set of tasks are 
satisfied and the execution time of each workstation does not exceed the cycle 
time. This problem belongs to the NP-hard class of combinatorial 
optimisation. Different variants of the ALB problem and solving techniques 
can be found in [1], [2]. 

In many practical situations, more complicated constraints caused by 
different technological factors may exist. The ALB problem considered in [3] 
includes a preplanned imbalance and assigns the tasks to particular types of 
workstations. A distinction of the set of tasks according to the process design 
in ”fixed” tasks and ”float” tasks is considered in [4]. 
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This paper considers the deterministic ALB problem with compatibility 
constraints, assuming that the value of the cycle is predefined and the 
objective is to minimize both the number of the workstations and the 
smoothing index. An order-based genetic algorithm (GA) is presented for 
solving this problem. It is hybridised with a greedy method proper for the 
problem [5]. In section 2, the statement of the problem is presented. Section 3 
outlines the greedy method for assembly line balancing with compatibility 
constraints.  Section 4 explains the components of the GA, including the 
grafting of the greedy method. The results of experimental investigation are 
given in section 5. The paper ends with some final conclusions. 
 

II. PROBLEM STATEMENT 
The mathematical formulation of the deterministic ALB with compatibility 

constraints (shortly ALBC)  can be stated as it follows ([6], [7]). Let be 
},...,2,1{ nV =  the set of the tasks of an assembly process. The acyclic digraph 

),( AVG =  is associated to the precedence restrictions in task execution. If 
Ayx ∈),( , then the execution of task y  can begin after the task x  is finished. 

The positive real number it  is the execution time of task i , Vi∈ . Let us 
denote by C  the pre-specified value of the cycle time and suppose that 

Cit ≤)( , ni ,...,1= . Let be },...,{ 1 pQQQ =  a cover of i.e. VQi ⊆ , pi ,...,1=  and 

pQQV ∪∪= ...1 . Let S  be the set of all partitions },...,{ 1 mWWW =  of V , 
which satisfies the following conditions: 

(1) if Ayx ∈),( , rWx∈ , sWy∈  sr ≤⇒  ; 
(2) CxtWT

jWx
j ≤= ∑

∈
)()( , mj ,...,1=  ; 

(3)  },...,1{)()(  },...,1{)( pjkmj ∈∃∈∀  so that )( jkj QW ⊆ . 
Each member of S  is called a solution to the ALBC problem. The solution 

with a minimum number of workstations m  is an optimal solution. The 
condition (3) reflects the compatibility constraints. Since the classical ALB 
problem is NP-hard, the ALBC problem is at its turn NP-hard. 

The concept of assembly line balancing problem with compatibility 
constraints is introduced in [5] as a tool for handling different technological 
restrictions and it is obtained from the originally formulated problem by 
adding the condition that the partition of the set of tasks into stations is 
compatible with a given cover of this set. In [5] it is shown how five 
modifications to the original problem can be treated in a rigorous and unitary 
manner as compatibility constraints: requirement of each station to contain a 
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limited number of types of equipments, requirement of tasks to be assigned to 
particular types of stations, the execution of some tasks in only a left (right)-
of-line station, the association of tasks according with tasks skill level, and the 
separation of some tasks. A dynamic programming approach is proposed for 
solving ALBC problem, but even if it guarantees the solution optimality, the 
computing time needed for solving real life problem instances is prohibitive. 

An effective tool for solving large ALBC problem instances is described in 
the next section. Moreover, the proposed GA can simultaneously treat many 
compatibility constraints addressed to different covers of the set of tasks. 
 
III. GREEDY METHOD FOR LINE BALANCING WITH COMPATIBILITY CONSTRAINTS 

The idea of the greedy algorithm is to create a solution },...,{ 1 mWWW =  by 
assigning tasks in a serial manner such as 1+jW  is created after jW , 

1,...,1 −= mj . The creation of workstations jW  is performed by indicating an 
optimizing measure that establishes the order of tasks that candidate to fill the 
current workstation. So, a list L  of assignable tasks is created. This list 
contains unassigned tasks that have no predecessors or whose predecessors 
have already been assigned to the workstations under construction. List L  is 
sorted in decreasing order of the processing times then by the number of sets 
of the cover containing the current task. The tasks in L  are considered for the 
assignment in the resulted order. The algorithm starts by the initialization of 
workstation 1W  with the first task in list L that, at this moment, contains tasks 
without predecessors. If jW  is  the current workstation then the first task  *y  
in L  so  that (i)  it fits in the idle time of jW   and (ii)  kj QyW ⊆∪ *}{  for 
some },....,1{ pk ∈  is added to jW  and list L  is updated. If such a task does 
not exist, then a new workstation 1+jW  is created. The process continues until 
the list  L  becomes empty and this happens if the digraph G  is acyclic. If 
G is reduced to or contains a Hamiltonian path then this procedure becomes 
that used to compute the fitness of a chromosome in the genetic algorithm 
described in the next section. In this case, list L  contains exactly one task at 
every time when the current workstation is under completion. 
 
IV. HYBRID GENETIC ALGORITHM FOR ALB WITH COMPATIBILITY CONSTRAINTS 

In this section the main components of the proposed hybrid GA are 
presented. 
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Solution representation. The individuals in the populations are represented 
as permutations of V , ),...,( 1 nxxx =  that sort V  in topological order. Each 
chromosome represents a feasible assembly flow. This approach is a 
constructive one, the solution structure being calculated during the fitness 
evaluation and it is not stored during the evolution. In this way, the GA 
intrinsically operates with sets of solutions corresponding to the current 
chromosome instead of working with individual solutions. From this set of 
solutions that can be build on the corresponding assembly flow, the best one 
only gives the fitness value of the chromosome. 

Initial population. The initial population is generated with the classical 
topological sorting algorithm that is adapted for randomly selecting the 
vertices forming the components of the returned topological sorting. The 
solution produced by greedy method described in the previous section is 
injected in the initial population. The population size as an empirically 
determined function of the number n  of tasks is given in Table 1. 

Table 1 - Population size as a function of task number n 
n 8-30 31-60 61-100 101-200 201-300 301-> 

pop_size 40 53 66 106 130 200 
Fitness function. Consider a chromosome ),...,( 1 nxxx =   and the solution 

},...,{ 1 mWW constructed on this assembly flow. The procedure for computing 
the workstations corresponding to a given chromosome ),...,( 1 nxxx =  has the 
following steps.  
Step 1. 1=m , ∅=1W  
Step 2. for ni ,..,1=  do: 
 if ( CxWT im ≤∪ }){( )  and ( him QxW ⊆∪ }{  for some },...,1{ ph∈ ) 

then }{ imm xWW ∪=  
else 1+= mm , }{ im xW = . 

This procedure ensures all data the fitness computation needs.  Using this 
solution },...,{ 1 mWW the fitness value for x  is defined by the formula: 

( )( )
2

1

1

2
21

1)()( ⎥
⎦

⎤
⎢
⎣

⎡
−⋅+−⋅⋅= ∑

=

m

j
jWTC

m
wTCmwxfit , 

where m  is the number of workstations and ∑=
n

itot tT
1

 is the total execution 

time. The first part of this function expresses the total idle time of the 
assembly line, whilst the second part is the smoothing index, that measures the 



ASSEMBLY LINES BALANCINNG WITH COMPATIBILITY CONSTRAINTS 123

equality of the work distribution between workstations. The factor 1w  linearly 
varies from 9.0max =w  to 2.0min =w   when the number t  of the evolution 
stages goes from 1 to maxt , where maxt  is the maximum number of  stages, 
whilst 12 1 ww −= . 
Example. Let consider the digraph given in Fig. 1. The task times and the 
value of the cycle time are indicated in Table 2.  
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Fig. 1. The digraph of precedence restrictions 

Table 2. The processing times of the tasks 
Task 1 2 3 4 5 6 7 8 9 10 11 12 C
Time 4 5 2 2 3 4 2 1 2 2 1 0.5 10

Suppose that  }10,7,6,9,8,5,4,3,2,1{1 =Q  and are }12,11,10,7,6,9{2 =Q the cover 
sets and  consider the topological sorting given by the chromosome 

)12,11,10,7,6,9,8,5,4,3,2,1(=x . By applying the previous procedure it results that 
3=m , 11 }2,1{ QW ⊂= , 9)( 1 =WT ,  12 }9,8,5,4,3{ QW ⊂= , 10)( 2 =WT , 

23 }12,11,10,7,6{ QW ⊂= , 5.9)( 3 =WT and 5.28=totT . Finally, it is obtained that 

( ) 21
2/122

21 646.05.13/)5.01()5.28103()( wwwwxfit +=++−⋅= . 
Mutation. The mutation is applied to the entire population and each 

individual supports mutation with the same probability mπ . Once an individual 
is selected for mutation the basic mutation step is recursively applied ρ  times. 
The value of multiplicity ρ  depends on the number of chromosomes and the 
number of the current iteration and is defined by 

⎩
⎨
⎧

≤+
>++

=
0*,1

0*),*(
)(

bta
btabtaceil

tρ  

where a = (1- n/8)/(0.9∗ maxt  - 1),  b = n/8 - (1 - n/8)/(0.9∗ maxt  - 1) and 
}/integermin{)( yxyxceil ≤= . Appropriate values for pm are between 0.1 

and 0.2. A mutation operator that preserves topological sorting is used. 
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Suppose that ),...,,( 21 nvvvv = is a randomly selected chromosome. The basic 
mutation step tries to move a task hv  between the margins allowed by the 
precedence constraints. So, the vertex hv , },...,1{ nh∈ is randomly selected 
and let us denote by lv  the rightmost predecessor of hv  and by rv  the leftmost 
successor of hv . The mutation is successful either 1−< hl  or 1+> hr . If it is 
not, a next mutation attempt is made. If lhhr −>− , then the task hv  is 
moved to the position 1−r , and the sequence 11,..., −+ rh vv  shifts leftwards one 
position. If hrlh −≥− , then the task hv  is moved to the position 1+l  and 
the sequence shifts rightwards. By moving the task hv  to the furthest position, 
the Hamming distance between the initial chromosome and its mutant is 
maximized, favoring a better variability of individuals. The performance of 
this operator is investigated in [9] and [10]. 

Crossover. For each crossover, two different parents are randomly selected 
from the matting pool that consists in the best  %s individuals of the 
population, where 6040 ≤≤ s . The crossover probability is cπ .  Both parents 
are cut into a random number of parts r , where TCnr /*2 ≤≤ . The first 
(second) offspring takes the first part from the first (second) parent and then 
the parts of both parents are alternated so that each task appears just once. 
This crossover operator ensures that the offsprings are topological sorted if so 
were their parents. 

Hypermutation. As mentioned before, the first way of hybridisation is to 
put the solution produced by the greedy method into the initial population.  In 
order to improve the performance of the GA, the greedy method is grafted on 
a mutation type operator. The result is a hypermutation operator that acts  with 
the probability Hπ  (usually, 08.005,0 ≤≤ Hπ ). Two indexes 1j  and 2j   of 
workstations with 5/0 12 mjj ≤−<  are randomly chosen in the solution 
corresponding to the current chromosome. The greedy method is then applied 
to the ALBC instance corresponding to the tasks within this segment. The 
returned sequence of tasks replaces the former one in the chromosome.  

Population management. The evolution is organized in stages. During the 
current stage, mutation, crossover and hypermutation produce new individuals 
that compete with current population for the next population. The survival 
selection is deterministic and elitist. The population passes from one evolution 
stage to the next stage until a stopping condition is reached.  Denote by *

kfit  
the best fitness value at the end of stage k -th evolution and let tol be a 
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prescribed tolerance threshold, If tolfitfitfit kkk ≤− −
**

1
* /)(  along a prescribed 

number sn of successive stages (usually, between 5 and 10), then this situation 
is assimilated with stagnation and the probability of the simple mutation is 
increasing with 02.0=ms . If the fitness of the best individual continues to 
stagnate after this reinforcement of the mutation, for the next sn*2  stages, 
then it is considered that the best solution was reached and the algorithm 
stops. Another ending criterion is to achieve the maximum number of 
iterations, maxt . 

 
V. EXPERIMENTAL RESULTS 

In order to prove the efficiency of the hybrid GA, an experimental 
investigation was carried out on classical test problems. 

5.1 Generating of the cover sets 
 In the first phase of the experiment, some difficult problem instances have 

been produced using the test problems presented in [10] and [11] for ALB 
problem. The following procedure was applied. 
Step 1. An instance of an ALB problem without compatibility constraints is 
considered. The hybrid GA developed in [6] is applied on this instance and  
from the best found assembly flow ),...,( 1 nxxx =  the corresponding 
solution },...,{ 1 mWW   is obtained. The cover sets pQQ ,...,1  are generated with 
the next steps: 

1.1 For },..,1{ mi∈ , let  il  and 1+il  be  the limits of the workstation iW  a, 
i.e. },...,,{

11 ++=
iii llli xxxW ; 

1.2 Two random numbers ii lh ≤  and 11 ++ ≥ ii lh  are generated, mp =  and 
},...,{

1+
=

ii hhi xxQ , pi ,...,1= . 
Step 2. This compaction step reduces the number of sets in the cover. A 
random position j  is generated between 2 and p and the reunion of 1−jQ  and  

jQ  is done and take 1−= pp . The reunion of the sets continues until the 
desired number of sets until mp ⋅≤ 4/3  . 

5.2 Performance report 
The aim of the experimental investigation was to determine the 

distribution of the difference between the number of workstations computed 
by the algorithm and the corresponding lower bound defined as 

)/( CTceilm_inf tot= .. The test data contained in LUTZ1_coverS.xls, 
ARC111_coverS.xls and SCHOLL_coverS.xls that can be found in [13].  



OCTAV BRUDARU, DIANA POPOVICI and CINTIA COPACEANU 126 

For each value of the cycle time, repeated runs of the hybrid genetic 
algorithm are performed. For the solutions obtained in this way, the following 
situations are extracted: 
(i) The characteristics of the best solution corresponding to the recalculation 
of the cycle time to the value of the maximal time of a workstation (C_calc) 
from the best solution given by the algorithm in 10 executions. 
(ii) The characteristics of the solution with minimum number of workstations 
(m_calc), given by the algorithm in 10 runs. 
(iii) The characteristics of the best solution given by the algorithm in 10 runs 
related to the product between C_calc and m_calc (m·C - the capacity supply 
of the line. 
(iv) The characteristics of the best solution given by the algorithm in 10 
executions related to the smoothing index (smooth_index). 
(v) The characteristics of the best solution given by the algorithm in 10 
executions related to the fitness (fit - the fitness being calculated with C_calc 
and m_calc). 
(vi) The characteristics of the best solution given by the algorithm in 10 
executions related to the balancing index (balance_index), given by T/m·C. 

Now, consider the LUTZ1_coverS.xls problem with 32 tasks ([13]). The 
graph of precedence constraints and the execution times of tasks are given in 
Fig. 2. The instances involve 6 different values for the cycle times. For 

2357=C  and the lower bound m_inf = 6, the structure of the best solution 
produced by the hybrid GA is illustrated in Table 3.  
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Fig. 2 - The digraph of the instance in LUTZ1_coverS.xls 

In the last column of the Table 3, the cover sets including the current 
workstation are indicated.  

Table 3 - Structure of best solution for LUTZ1_coverS.xls with 2357=C  
Work-station Wi Assembly flow in Wi T(Wi) Sets including Wi 

W1 4, 3 1920.00 Q2 
W2 1, 5, 2, 6, 9 1928.00 Q2 
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W3 8, 7, 11, 12, 10 1852.00 Q1 
W4 13, 15, 14, 17, 19 2148.00 Q1 
W5 16, 18, 20, 21, 22 2148.00 Q3 
W6 25, 26, 24, 27 2128.00 Q3, Q4 
W7 28, 23, 29, 30, 31, 32 2016.00 Q5 

The cover sets obtained with the procedure described in section 3.1 for 
2357=C  are presented in Table 4. 

Table 4 - The cover sets for LUTZ1_coverS.xls, 2357=C  
Sets Tasks  
Q1 7, 8, 9, 11, 12, 13, 14, 10, 15, 17, 

19, 16, 18, 20 
Q2 4, 3, 1, 5, 2, 6, 7, 8, 9 
Q3 15, 17, 19, 16, 18, 20, 21, 22, 25, 

26, 24, 27 
Q4 21, 22, 25, 26, 24, 27, 23, 28, 29 
Q5 24, 27, 23, 28, 29, 30, 31, 32 

For 2357=C , the parameters used in the algorithm execution and the 
values of the target values obtained after 10 runs of the algorithm are 
presented in Table 5. This table includes: the lower bound calculated on the 
number of workstations (m_inf); the best known value (m_best) for no 
compatibility constraints; pm – mutation probability; s  – is the size of the 
population front the crossover is performed on; and the number of iterations 
up to the convergence detection (it_conv). The last column in Table 5 shows 
the values of the mutation probability after the detecting of the stagnation and 
the subsequent attempt to avoid this stagnation by increasing mutation 
probability. Column it_ conv gives the number of iteration when the first 
stagnation was detected, so algorithm actually stopped after more 20 
generations. This table offers the distribution of m_calc-m_best in the last two 
rows.  
Table 5 - Data and target values of LUTZ1_coverS.xls instance for 2357=C  

Graph_code No. 
of 
tasks

       

LUTZ1_coverS.xls 32        
C/Target values m_inf

 
m_
best

pm fc tol inject 
y/n 

mutH 
y/n 

 

2357 6 6 0.1 0.65 0.0006 y y  
Cases C_ m_ m·C smooth fit balance it_ pm 
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calc calc ind ind conv 
(i) Sol. with C_calc 2148 7 15036 355.79 2047.36 0.94 120 0.20
(ii) Sol. with 
m_calc 2148 7 15036 355.79 2047.36 0.94 120 0.20

(iii) Sol. with m·C 2148 7 15036 355.79 2047.36 0.94 120 0.20
(iv) Sol. with 
smooth_ind 2148 7 15036 348.37 1944.8 0.94 228 0.30

(v) Sol. with fit  2148 7 15036 348.37 1944.8 0.94 228 0.30
(vi) Sol. with 
balance_ind 2148 7 15036 355.79 2047.36 0.94 120 0.20

Distribution 
m_calc-m_best 0 1 >=2      

Rel_freq. 0.2 0.7 0.1      
The number of workstations computed by the algorithm without 

compatibility constraints is denoted by m′ . The relative frequencies of the 
values m_calc - m_inf and m_calc-m’ are shown in Table 6 and correspond to 
the six values of the cycle time, namely 1583,1780,2035,2374,2848,3560, for 
each value  10 runs being executed. The values of the relative frequency range 
between 0 and 2. The most frequent value is 1. The pie graph of this 
estimation is shown in Fig. 3. The distribution m*-m’ from second line in 
Table 6 indicates that in 85% of cases, the solution given by the GA without 
compatibility constraints is the same with the best solution. The comparison 
between these values indicates that the hybrid GA with compatibility 
constraints gives good results. 

Table 6 - Distribution of m*-m0 and m*-m’ for LUTZ1_coverS.xls, 
C =1583, 1780, 2035, 2374, 2848, 3560 
Relative frequency 0 1 >=2

m_calc - m_inf 0.84 0.1 0.06
m_calc - m’ 0.85 0.15 0 

Distribution of m_calc - m_inf

2
15%

1
85%

0
0%

0

1

2

 
Fig. 3 - Distribution of m*-m0 for LUTZ1_coverS.xls 
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From the obvious inequality 'm_calc - m_infm_calc - m ≤  it results that 
the real performance is better than the estimation above presented. 

For all the six values of the cycle time, the minimal, average and maximal 
values of smoothing index, balancing index, and fitness are computed. These 
values are presented in Table 7. 

Table 7 - Values of the performance indexes and the cycle times for 
LUTZ1_coverS.xls] 

C 1583 1780 2035 2374 2848 3560 
m0 min. 10 9 8 7 6 5 
Smoothing 
index 

min. 141.76 179.49 209.73 259.7 348.37 483.71
av. 156.51 278.73 214.80 265.41 353.25 492.54
max. 271.05 303.23 219.86 279.55 355.88 518.89

Balancing 
index 

min. 0.84 0.87 0.92 0.90 0.93 0.86
av. 0.91 0.88 0.94 0.94 0.937 0.92
max. 0.92 0.92 0.94 0.95 0.94 0.94

Fitness min. 1123.40 1309.31455.291580.421944.802367.03
av. 1288.822392.421511.511709.582028.572435.37
max. 2432.602729.961543.481760.702059.012473.08

The typical variation of fitness, smoothing index and balancing index 
during the evolution of the considered example for 2374=C  is shown in Fig. 
4 (a)-(c), respectively. 

Variation of the fitness

0
2000
4000
6000

1 37 73 109 145 181 217 253
evolution stages

fitness

(a) 

Variation of the smoothness index

0
200
400
600

1 31 61 91 121 151 181 211 241 271
evolution stages

smooth_i
nd

(b) 
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Variation of the balancing index

0,70

0,80

0,90

1,00

1 30 59 88 117 146 175 204 233 262
evoltion stages

balance_in
d

(c) 
Fig. 4 - Variations of the fitness, smoothing and balancing indexes 

The experimental tests using ALB instances with compatibility constraints 
obtained from ARC111_coverS.xls problem instance and the 297-task 
SCHOLL_coverS.xls problem ([13]) and the results obtained to corresponding 
simple ALB problems (without compatibility constraints) showed that the 
hybrid GA with compatibility constraints gives good results for medium and 
large size instances. 

 
VI. CONCLUSIONS 

In this paper, the ALB problem with compatibility constraints, a model 
requiring the compatibility of each solution to a given cover of the set of 
tasks, was treated. For solving this problem, an order based GA combined 
with a greedy technique had been designed. Computational experiments 
showed that the procedure is effective in finding good solutions. The 
performance comparison with the GA ignoring the compatibility constraints 
proved that the proposed approach is very promising. 

The inclusion of the compatibility constraints into a successful 
evolutionary approach allows the solving of more complex practical problems. 
The proposed method is a general framework for treating practical 
applications in which different restrictions such as skill levels, task separation 
and left/right sided tasks are required. 
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