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OPTIMIZING DISTRIBUTION NETWORKS WITH NESTED 

GENETIC ALGORITHMS 
 

O. BRUDARU and B. VALMAR 
   
Abstract.   This paper deals with the optimizing of distribution networks 
with a central depots and a prescribed number of intermediate depots that 
supply groups of clients. A two levels metaheuristic is described for solving 
it. On the first level, a genetic algorithm used for finding the feasible group of 
consumers and the corresponding intermediate depots, like in the p-median 
problem. For such a partitioning of the clients, the interior provisioning 
circuits are obtained by invoking a hybrid genetic algorithm, and this task 
represents the second level of the metaheuristic. This second level completes 
the partial solutions from the first level and computes the fitness function of 
the genetic algorithm on the first level. The performance of the metaheuristic 
containing the two nested genetic algorithms is experimentally evaluated.  
 

I.   INTRODUCTION 
This paper proposes a new solving technique for optimizing 

distribution networks (ODN). In this problem, a central depot and a set of 
consumers are given. The set of consumers is to be partitioned into a given 
number of groups. Within each group, a consumer receives its demand from 
an intermediate depot. The intermediate depots are selected from a given 
subset of consumer’s locations. The sum of demands of consumers forming a 
group does not exceed the capacity of the vehicle assigned to that group. 
Within each group, the transportation is done by using a Hamiltonian circuit 
passing trough all the members of the group and starting/ending from/at the 
respective intermediate depots.  
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There are two possibilities to supply the intermediate depots from a 
central depot: independently, using several transportation means or using a 
single vehicle that passes successively through each intermediate depot.     
The transportation cost depends on the carried load and the unitary costs that 
are associated with the connections between depots/consumers.  The total cost 
associated to a partitioning of consumers is the sum of all intermediate costs, 
including the cost for provisioning the intermediate depots. The problem is to 
find a partitioning of the consumers and the corresponding supplying routings 
so that the total transportation cost is minimized.  

In [23] it is studied a variant of the vehicle routing problem with time 
window constraints and the vehicle capacity constraints for which a two stage 
algorithm is proposed. In the first stage the algorithm maximizes the number 
of customers served using an ejection pool for temporarily storing the clients 
that are not (yet) supplied. During the second stages, one attempts to minimize 
the total travel distance using a hill-climbing algorithm.  The algorithms used 
in [36] for vehicle routing problem are artificial intelligent algorithms such as 
simulating annealing and tabu search. It is proposed a new cooling scheme 
leading to a first simulated annealing application for vehicle routing problem, 
and tabu search with both recency and frequency measures. In [35] a 
comprehensive empirical study is presented on the effects of genetic 
operations on the population diversity of the genetic algorithms solving 
vehicle routing problem and a universal adaptive control function is proposed 
to maintain the population diversity. A genetic algorithm [24] for vehicle 
routing is presented in [32]. It uses a global customer clustering method that 
uses an adaptive search strategy to assign vehicles customers. A local post-
optimization method is applied to produce results superior to those obtained 
by competing heuristic search methods. In [33] a hybrid search strategy that 
combines genetic algorithms, simulates annealing and tabu search for vehicle 
routing with time windows is described. In this hybrid, a global search made 
by genetic algorithm produces an initial solution to the problem. This solution 
is improved successively by a customer interchange method guided by tabu 
search combined with simulated annealing that are known as efficient local 
neighborhood strategies. 
  A two levels metaheuristic is described for solving it. On the first 
level, a genetic algorithm used for finding the feasible group of consumers 
and the corresponding intermediate depots, like in the p-median problem. For 
such a partitioning of the clients, the interior provisioning circuits are obtained 
by invoking a hybrid genetic algorithm, and this task represents the second 
level of the metaheuristic. This second level completes the partial solutions 
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from the first level and computes the fitness function of the genetic algorithm 
on the first level. The performance of the metaheuristic containing the two 
nested genetic algorithms is experimentally evaluated.  
  Section 2 describes a mathematical model of the problem. The 
subproblems invoked in the solving of ODN problem are described and their 
solving techniques are outlined in section 3. The metaheuristic for solving the 
main variant of ODN problem is described in section 4. The results of the 
experimental evaluation of the metaheuristic are presented in section 5. Last 
section summarizes the work. 
 

II.  PROBLEM FORMULATION 
Consider a set of n consumers denoted by },...,2,1{ n  and a central depot 

named "0" . Let ),( AVG =  be an oriented graph where { }nV ,...,2,1,0=  and the set 
of arcs A  containing all pairs ),( vu , Vvu ∈,  for which u  is directly connected 
to v . Suppose that cVV ⊆'  is the set of locations that can become intermediate 
depots and denote by p  the prescribed number of intermediate depots. Denote 
by )(id  the demand of consumer i , ni ,...,1= . 
  Let m  be the number of available vehicles and denote by )(),...,1( mcc  
their corresponding capacities. Consider that },...,{ 1 nPPP =  is a partition of 

}0{\V  and },...,1{},...,1{: mpg →  is the function that associates the vehicle )(ig  
with group iP , pi ,...,1= . Also, consider the injective function '},...,1{: Vpr → , 
where )(ir  is the intermediate depot associated with group iP , iPir ∈)( , 

pi ,...,1= . 
  The first condition requires that 

∑
∈

≤=
jPh

j jgchdPD ))(()()( , pj ,...,1= . (1) 

As in section 4.1, denote by ),(cos jit  the unitary cost of transportation from i  
to j , Vji ∈, . Denote by )(hδ  the weight of the empty vehicle h , mh ,...,1= . 
Similarly, the cost of transporting load q  from i  to j  with vehicle h  is 

),(cost))((),;( jihqjiqc ⋅+= δ .  
Let ( )jj jrjgPC π),(),(;  be the minimum cost of provisioning group jP , with 
truck )( jg , starting from )( jr  and returning to )( jr  on a Hamiltonian circuit 

jπ  passing through jP  like in the model of TDT problem formulated in 
section 4.1. During this transportation, the consumers in )}({\ jrPj  are 
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provisioned, whilst the consumer corresponding to )( jr  is supplied in a 
previous stage. These specifications are illustrated in Fig. 1 (for 3=p ).  
  Two options are available for carrying the cumulated demands 

)(),...,( 1 pPDPD  from "0"  to the intermediate depots )(),...,1( prr .  
Radial connecting network. The local depots are independently 

supplied with p  vehicles )(),...,1( pTT , having their own weight )(),...,1( pRR , 
respectively. 

0

central
depotP3

D(P3)

r(2)

r(1)

r(3)

D(P1)

D(P2)

 
Fig. 1. Distribution network (p=3) 

    The vehicle assigned to group jP  has enough capacity to transport the 
entire demand )( jPD  of the whole group jP  at once. This scheme is shown in 
Fig. 2. 
  The cost to carry the loads from "0"  to the intermediate depots is given 
by 

( ) ( ) ( )[ ]∑ =
⋅+⋅+=

p

j j jrjRjrjRPDrgPTI
1

)1( 0),(cost)()(,0cost)()(),;(  (2) 

0

R(3)+D(P3)

R(3)

R(1)+D(P1)

R(1)

R(2)+D(P2)

R(2) r(2)

r(1)

r(3)

 
Fig. 2. Reaching the intermediate depots )1(r , )2(r )3(r  by a radial network 

( 3=p ). 
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  Circular connecting network. This scheme considers a permutation 
},...,{ 1 pααα =  of the intermediate depots indicating to reach them in the order 
)(),...,( 1 prr αα . Let D  be the total demand )(...)1( nddD ++=  and denote by R  

the own weight of the vehicle transporting the load D . The cost to supply the 
intermediate depots is  

( )∑ ∑=

−

=− ⎥⎦
⎤

⎢⎣
⎡ −+⋅=

p

j

j

h hjj rDDRrrrgPTI
1

1

11
)2( ))(()(),(cost),;( ααα  (3) 

where 0)()( 10 == +prr αα . 
     This scheme is illustrated for 3=p  in Fig. 3, where the order to reach 
the depots is )3(r , )1(r , )2(r . 

The problem of optimizing the distribution networks (ODN) has two 
variants: 

ODN1: Find a partition },...,{ 1 pPP of }0{\V , an assignment g  of 
vehicles, an assignment r  of intermediate depots and the routing jπ  within 
group jP , pj ,...,1=  so that the total cost 

( )∑ =
+=

p

j jj jrjgPCTIrgPT
1

)1()1( ),(),(;),,;( ππ  (4) 

is minimized. 
ODN2: Find a partition },...,{ 1 pPP of }0{\V , an assignment g  of 

vehicles, an assignment r of intermediate depots, the routing jπ  of group jP , 
pj ,...,1=  and a routing of the intermediate depots α  so that 

( )∑ =
+=

p

j jj jrjgPCTIrgPT
1

)2()2( ),(),(;),,,;( παπ  (5) 

is minimized. 

+D(P3)R+D(P1)

R+D(P1)

+D(P2)

+D(P2)

R+D(P2)

R

0

r(2)

r(1)

r(3)

 
Fig. 3. Circular network like in TDT problem for supplying intermediate 

depots ( 3=p , ))2(),1(),3(( rrr=α . 
Each variant can be extended by supposing that each consumer has an 

offer )(id , ni ,...,1= . When a vehicle reaches consumer i , it unloads the cargo 
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)(id  and loads )(id . So, the current load diminishes with )(id  and increases 
with )(id  and the resulted values must be supported by the capacity of that 
vehicle. Since in practice the introducing of such extension do not create 
unfeasible solutions because usually )()( idid < , this extension is maintained 
only for the sake of completeness. The proposed method and its 
implementation actually ignore this extension. 
      It is worth mentioning that the classical vehicle routing problem is a 
particular case of ODN problem in the sense that the first is obtained from 
ODN problem by taking 1=p , 0)1( =r  and the cost of moving the load q  from 
i  to j  simply equal to ),(cost ji  (the transportation cost does not depend on the 
useful or residual transported load). 
 

III.   TWO SUBPROBLEMS 
  In this section two important subproblems appearing in the solving of 
ODN problem are outlined, namely district partitioning(p-median) problem 
and time dependent  transportation (TDT) problem. 
 
3.1.  District partitioning problem 

District partitioning problem considers a set of facility locations from 
which one selects p special locations called centers. Around these centers one 
constitutes a given number of groups. Each location has its own weight whilst 
a cost is associated with a direct connection from a location to another. The 
cost associated with a center is the sum of costs of transferring the weight of a 
member of the group to its center, i.e. that weight multiplied by the cost of the 
connection from the facility to the center. The total cost is the sum of costs of 
all centers. If the group size is not restricted then the problem is called 
uncapacited. The problem is to find the centers and the groups built around 
them so that the total cost is minimized. It is known as p -median problem, 
where p  is the prescribed member of groups. 

As shown in [21], this optimization problem is NP-hard for two or 
more dimensions, when either the Euclidian or the rectilinear distance 
measure is used and it is polynomialy solvable in one dimension. As 
mentioned in [29], the problem is NP-hard on general graphs with arbitrary p . 
In [18] and [22] it is stated that polynomial time algorithms exist for arbitrary 
p  and the graph is a tree or a general network if p  is fixed. Nevertheless, for 

fixed p  the problem is not computationally easy. 
A lot of techniques [29] in the class of local search algorithms are 

given in the literature: greedy local search [31], [34], [28], tabu search [30], 



           OPTIMIZING DISTRIBUTION NETWORKS WITH NESTED GENETIC ALGORITHMS 139

simulated annealing [10], variable neighborhood search meta-heuristic in [13] 
and [19], a greedy randomized adaptive search procedure [27], boolean 
programming approaches in  [2] and [1], genetic algorithms [16], [20], [25], 
[14], [17], [11], [4]. A hybrid evolutionary algorithm is described in [3]. In [7] 
a new hybrid genetic algorithm is proposed. It combines the approach in [12] 
with heuristic method [26] having good reported performance.  

In the ODN problem the role of p-median subproblem is to efficiently 
construct the set of p centers and the groups of clients assigned to the 
candidates. The description of the hybrid genetic algorithm that evolves the 
set of p centers and the corresponding partitioning can be found in [7].  The 
distinction consist in the fact that  the fitness function is mainly valued by the 
costs of transportation of p circuits, which are delivered by solving p instances 
of the transportation problem of the type described in the next section. 
 
3.2.   Time dependent transportation problem 

In the time dependent transportation problem, a vehicle has to supply a 
set of consumers with known demands. It starts from a unique warehouse load 
with the whole demand, passes exactly once through each client delivering the 
corresponding demand and returns at the starting point. The transportation 
cost between two locations depends on the unitary cost between them and the 
weight of the transported load plus the weight of the empty vehicle. The 
problem is to find a Hamiltonian circuit that minimizes the total transportation 
cost. This problem generalizes the well-known traveling salesman and it is on 
its turn NP-hard. Since the cost of traversing the edge ),( jie =  depends on its 
position in the path this problems will be called time-dependent transportation 
(TDT) problem. This problem presents its own interest but it is contained as a 
critical subproblem in different variants of the vehicle routing problem [15]. 
In the second case, an efficient way to solve this problem is very important 
especially when it is invoked many times for computing the fitness function of 
a genetic algorithm that is used for solving the main problem. A pure genetic 
algorithm for this problem is described in [9]. In [6] it the grafting of a 
heuristic method inspired by a pseudo-dynamic programming approach [5] 
and a genetic algorithm are described. The hybrid method resulted by 
combining a genetic algorithm and a branch and bound method for solving 
TDT is described in [8]. This hybrid genetic algorithm is used in the present 
approach for computing the cost of a partitioning coming from the p-median 
subproblem. 
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4.   METAHEURISTIC FOR RADIAL DISTRIBUTION NETWORK 
In this section metaheuristic method is described proposed to solve the 

radial provisioning of the intermediate centers. Since the first/second level of 
metaheuristic is basically very similar to the hybrid genetic algorithm for p -
median and TDT problem, respectively, only the specific differences are 
discussed. 

 
4.1.  Metaheuristic's first  level 

Its main function is to establish the intermediate depots that correspond 
to centers in p -median problem and to establish the group of consumers 
around them. The structure of group jP  is described by the list 

),...,);(( 1
j

n
j

j j
vvjr=λ , where { }j

n
j

j j
vvjrP ,...,);( 1=  and jn  is the number of 

consumers around the intermediate depots )( jr . For ODN problem the 
members of jP  must the specified because this time their order is important 
and is obtained by solving an instance of TDT problem.  A chromosome is 
essentially the concatenation pλλλ oo ...1=  of the list describing the clusters of 
clients. The individuals for the initial population are generated like for p -
median problem by selecting randomly the intermediate depots among the 
elements of set 'V .  This function r  is defined for a new individual. 

In order to define function g  for a new individual, the following rule is 
applied. It is supposed that the available vehicles are sorted in descending 
order of their capacity and the total available capacity exceeds the total 
demand. From this list, one takes the leftmost unassigned vehicle v , randomly 
select an intermediate depot )( jr  that does not have a vehicle, and assign v  to 

)( jr . Therefore, both function r  and g  are defined for current chromosome. 
Then, a feasible assignment of consumers to the depots )(),...,1( prr  is 

accomplished by applying the following procedure: 
Heuristic for client assignment 

0. initialize ∅=jP , pj ,...,1= ; 
i. for each consumer )}(),...,1({\ prrVi∈  do: 
 i.i. construct the permutation ),...,( 1 pξξξ =  of intermediate depots so 

that  
),(cost...),(cost),(cost 21 iii pξξξ ≤≤≤ ; 

 i.ii. determine the smallest },...,1{ pj =  for which 
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))(()()( jgcidhd
jPh

≤+∑
∈

 and   add i  to jP . 

The above heuristic is very similar to the rule that constructs a solution 
of the p -median problem for a given set of centers. Step (ii) ensures that the 
capacity of a vehicle serving a certain depot is not exceeded. 

If a circular scheme is used to supply the intermediate depots, the 
permutation α  of depots is added as prefix to the current chromosome. This 
part of the chromosome requires a special treatment. As soon as groups 

pPP ,...,1  are obtained, the subproblem of finding a good order to supply the 
groups for minimizing )2(TI  defined by (3) is an instance of TDT. This can be 
easily solved by invoking the hybrid genetic algorithm because np << . For 
small values of p  ( 52 ≤≤ p ), )2(TI  can be minimized by enumerating all the 
permutations of },...,1{ p . Therefore, no major differences between the variants 
of ODN problem exist. 

It is worth mentioning that the including of the whole structure of 
groups in the chromosome structure is motivated only by the use of some 
genetics operators that operate small changes between groups in the final 
stages of the evolution. Experiments have shown that, actually adopting a 
shorter chromosome and a larger population size can compensate the lack of 
this type of fine tuning. Further, the chromosome contains only the 
intermediate depots and information about g  function. So, the genetic 
algorithm implementing the first level of the metaheuristic remains a 
constructive one. 

The best found routing solutions corresponding to the groups of clients 
are temporarily stored in a file only for the new chromosomes produced in 
current evolution stage. These solutions are permanently stored only for the 
best solution. This prevents the eventual difficulty to find the best routing 
solutions again for the best individuals. 

The storing of the routing in the groups forming the solution could be 
avoided by computing of the fitness of the best chromosome again but 
sometimes these solutions to TDT cannot be found again because the hybrid 
genetic algorithm for TDT is not deterministic. 
 
4.2. Metaheuristic’s second level 

For a given chromosome, one obtains the groups of clusters pPP ,...,1  
constituted around the depots )(),...,1( prr , respectively, by using the heuristic 
for client assignment described above. For each },...,1{ pj ∈ , jP  represents an 
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instance of TDT in which the role of "0"  is played by the depot )( jr . Whilst 
the first part of the total cost in (1) or (2) can be computed with the available 
information, the second part in (1) and (2) does not. This task is accomplished 
by the hybrid genetic algorithm for solving TDT described in [8]. The better 
this algorithm works the more precise is the returned value of (2) or (3) is. The 
value of (2) or (3) is the fitness function value for the current chromosome. 
For each chromosome, p  TDT instances are to be solved with the hybrid 
genetic algorithm.  

Experiments show that the exact values of the fitness function are not 
really necessary, but a correct enough hierarchy of individuals with regard the 
their performance does. Consequently, in order to reduce the computing time 
it is enough to let the hybrid genetic algorithm for TDT work with no more 
than 60% of the number of iterations needed to obtain the most accurate 
results. 
 

V.  EXPERIMENTAL RESULTS 
   The first objective of the experimental investigation was to test the 
ability of the metaheuristic for finding known optimal solutions. A set of 
artificial instances like that depicted in Fig. 4 was produced. The demands of 
consumers in each cluster decreases along the current circuit shown by 
circular arrow within each group. The unitary cost are proportional to 
Euclidian distance between two points, whilst 

))(,0(cost...))2(,0(cost))1(,0(cost prrr <<<  and ))((...))2(())1(( prDrDrD >>> . 
  Each circuit is formed by the points of convex polygon with equal 
sides. Only the optimal solution is drawn in Fig. 4.  

r(1)

P1
P2

P3

r(2) 0

r(3)

 
Fig. 4. Example of artificial with known optimal solution. 

   A set of 10 regular structures with random values of p  between 2 and 
10 was generated, each group having a random number of clients in the range 
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4-20. The demands within each group vary in arithmetic progression. The 
starting values are greater as the distance from the corresponding intermediate 
points to "0"  is smaller. For each such structure a number of 20 runs were 
executed and for each run the ratio )1(* /TT was computed, where *T  is the 
optimal cost of the corresponding instance and )1(T  is defined by (4). The 
obtained distribution is shown in Tab. 1. 

Tab 1. Distribution, average and standard deviation of T*/T(1) 

T*/T(1) <0.82 [0.82,0.8
8) 

[0.88,0.
92) 

[0.92,0.
96) [0.96,1] 

rel. freq. 0.02985
07 

0.06567
16 

0.12835
82 

0.25671
64 

0.51940
3 

average
=

0.94620
9 

std.dev.
=

0.17923
36     

  The resulted average is 0.946.  The graph of this distribution is shown 
in Fig. 5. The conclusion is that the method can detect the optimal solutions 
efficiently. 
  The second objective is to get an idea on the stability of the method. 
The value of the standard deviation obtained for the above mentioned sample 
is 0.179 and this shows that the method gives good results systematically. 
   Concerning the computational effort, the average of the number of 
iterations made until the step condition became true is up to 1200, whilst the 
required computing time was about 4 minutes for ACPI Multiprocessor PC 
with two Intel (R) Core (TM) 2 Duo CPU T7250 @ 2.00 GHz. 

Distribution of T*/T

0,128

0,519

0,258

0,066
0,029

0,8

0,86

0,9

0,94

0,98

 
Fig. 5. Distribution of T*/T 

The second experiment focuses on the evaluating the performance 
when the metaheuristic acts on some benchmarks dedicated to vehicle routing 
problems and adapted for ODN problem. 

The instances have been downloaded from the address [37]. These 
VRP instances supported the following adaptations: 
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(i) the coordinates of the locations were used to compute unitary cost 
proportional to the Euclidian distances; 
(ii) the weight of the empty vehicle represents about 60%-80% of the total 
demand divided by p ; 
(iii) the demand values are the original ones; 
(iv) the number of vehicles equals 2+p . 
   Three instances with 36=n  and 5=p , 53=n  with 7=p  and 70=n  
with 10=p  were selected. Population size was set to 60 individuals. The 
mutation and crossover probabilities were 0.1 and 0.5 respectively. As stop 
condition the stabilization of the poorest performance individual for three 
successive generations was used. Ten runs were executed for each instance. 
The results are summarized in Tab. 2-4. 

The last two columns in these tables represent the values of best fitness 
value obtained in 10 runs ( minc ) divided by the value of the best fitness 
obtained in the current run ( crtc ). The average value of this ratio is about 0.86 
for the instance with 36 consumers, whilst the standard deviation has a small 
value, namely about 0.072. Small values of the standard deviation of this 
indicator were obtained for all tested instances. This proves a very good 
stability of the method.  

As can be seen in Tab. 3, for 53=n  and 7=p , the average of crtcc /min  
is 0.819 whilst the corresponding standard deviation is 0,093. In this case, the 
final value of the population size was set to 60 adult chromosomes. The 
results in Tab. 4 correspond to a final population of 80 individuals. The 
standard deviation is a bit higher than the value obtained for 36=n  and 5=p . 
In the last example, the stochastic feature of the metaheuristic is more evident 
as can be seen from the higher value of standard deviation, namely 0.104. 

Tab. 2. Experimental results for 36=n  and 5=p . 
run current cost crtc  # iter. time (sec) time/iter. crtcc /min  

1 68149 500 580 1.160 0.830
2 65352 750 1000 1.333 0.865
3 71667 540 610 1.129 0.789
4 65474 1050 1020 0.971 0.864
5 71065 290 720 2.482 0.796
6 69882 190 390 2.052 0.809
7 66163 360 610 1.694 0.855
8 56586 420 1120 2.666 1.000
9 56929 340 970 2.852 0.993

       10 69287 390 1410 3.615 0.816
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average 66055.4 483 843 1.995 0.862
minc  56586
maxc  71667

std.dev. 0.072
Tab. 3. Experimental results for 53=n  and 7=p . 

run current cost
crtc  # iter. time 

(sec) time/iter. crtcc /min  

1 92130 310 1450 4.677 0.769 
2 97620 350 1790 5.114 0.726 
3 72538 360 1550 4.305 0.977 
4 95599 420 1890 4.500 0.741 
5 70927 590 1720 2.915 1.000 
6 80875 370 2150 5.810 0.876 
7 89540 380 1730 4.552 0.792 
8 93594 420 2140 5.095 0.757 
9 93000 1220 3360 2.754 0.762 
10 89388 260 1490 5.730 0.793 

average 87521.1 468 1927 4.545 0.819 
minc  70927     
maxc  97620     

std.dev.     0.093 
 

Tab. 4. Experimental results for 70=n  and 10=p . 

run 
current cost

crtc  # iter. time 
(sec) time/iter. crtcc /min  

1 337299 220 940 4.272 0.703 
2 376041 320 1070 3.343 0.631 
3 286636 230 960 4.173 0.8276 
4 272404 370 1300 3.513 0.871 
5 333360 390 1660 4.256 0.711 
6 282451 490 1200 2.448 0.8408 
7 291123 490 1890 3.857 0.815 
8 306859 400 1460 3.65 0.773 
9 237315 440 2150 4.886 1.000 

10 355237 440 1440 3.272 0.668 
average 307872.5 379 1407 3.767 0.784 
minc  237315     
maxc  376041     

std.dev.     0.104 
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Fig. 6 shows the variation of standard deviation of the relative 
performance indicator as a function of the number of consumers. The 
trendline indicates a very good resemblance with a logarithmic model. 

As a conclusion, the proposed metaheuristic incorporating two genetic 
algorithms, one for p -median and other for the time dependent transportation 
problem has good performance, even in the actual hypostasis where it does 
not incorporate the best variants of these basic components. Moreover, it 
constitutes a good objective of a distributed implementation. These extensions 
are left for future investigations. 

Standard deviation of the best costs vs problem size

y = 0.0295Ln(x) + 0.0722

0
0.02
0.04
0.06
0.08

0.1
0.12

36 53 70clients

st
d.

de
v.

std.dev.

Log. (std.dev.)

 
Fig. 6. Standard deviation of best cost indicator as a function of the number of 

consumers. 
 

VI.  CONCLUSIONS AND FURTHER RESEARCH 
This chapter presented a new metaheuristic for optimizing distribution 

networks. 
A distributed implementation of the time intensive metaheuristic for 

optimizing distribution network, is of great interest because the high level 
genetic algorithm forming this method invokes the genetic algorithm for TDT 
problem many times for each new candidate partition. Extending this 
segregative genetic algorithm to pickup-and-delivery problem is of real 
interest. Also, grafting appropriate heuristics for TSP on this segregative 
genetic algorithm could transform it into a new stronger solving tool for this 
particular problem. 
 

References 
[1] Avella, P., Sassano, A., Vasilev, I., Computational study of large-scale 
p -median problems, Math. Program., Ser. A 109, pp. 89-114, 2007. 

[2] Beltran, C., Tadonki, C., Vial, J.-Ph., Solving the p-Median Problem 
with a Semi-Lagrangian Relaxation, September 21, 2005. 



           OPTIMIZING DISTRIBUTION NETWORKS WITH NESTED GENETIC ALGORITHMS 147

[3] Borgulya, I., A hybrid evolutionary algorithm for the p -median 
problem, GECCO’05, June 25-29, Washington, DC, USA, 2005. 
[4] Bozkaya, B., Zhang, J., and Erkut, E., An efficient genetic algorithm for 
the p-median problem, Z. Drezner and H. Hamacher editors, Facility 
Location: Applications and Theory, pp. 179–205. Berlin: Springer, 2002. 
[5] Brudaru, O., An Efficient Heuristic Method for the Finding of a 
Minimal Hamiltonian Circuit in Connection with a Transport Problem, 
Bul. I. P. Iasi, tom XXVII (XXXI) f. 1-2, s1 Matematica, 1981, pp. 61-64. 
[6] Brudaru, O. and Vîlcu, A., Genetic Algorithm with Accelerating Hybrid 
Components for Affine Cost Hamiltonian Circuits, ICPR-16, 16th 
International Conference on Production Research, 30 July-3 August, 2001, 
Prague. 
[7] Brudaru, O., Valmar, B., A Hybrid Genetic Algorithm for p-median 
problem, 8th International 2004, Research/Expert Conference: Trends in the 
Development of Machinery and Associated Technology, TMT Neum, Bosnia 
and Herzegovina, 15-19 sept. 2004, pp.875-878. 
[8] Brudaru, O., Valmar, B., Hybrid genetic-algorithm / branch & bound 
technique to solve a time-dependent transportation problem, Proc. of  6th 
Eurosim Congress on Modelling and Simulation,  B. Zupancic, R. Karba, S. 
Blazic (eds.) Ljubljana,  Slovenia, Sept.  9-13,  2007 , vol. 2, pp. 1-7 
[9] Brudaru, O., Vîlcu, A., Genetic algorithm for a transportation problem 
with variable load along hamiltonian circuits, 10th International DAAAM 
Symposium "Intelligent Manufacturing & Automation: Past - Present - 
Future", Oct. 21-23 1999, Vienna, Austria. 
[10] Chiyoshi, F., Galvano, D., A statistical analysis of simulated annealing 
applied to the p -median problems, Annals of Operations Research, 96, pp. 
61-74, 2000. 
[11] Chiou, Y. and Lan, L. W., Genetic clustering algorithms, European 
Journal of Operational, Research, 135(2):413–427, 2001. 
[12] Correa, E. S., Steiner, M.T.A., Freitas, A.A., Carnieri, C., A genetic 
algorithm for solving a capacitated p-median problem, LE Spector and E 
Goodman et al, editors, Morgan Kaufmann, Procedings of 2001 Genetic and 
Evolutionary Computation Conference (GECCO-2001), pp. 1268-1275, San 
Fracisco, USA, July, 2001. 
[13] Daskin, M. S., Network and discrete location: models, algorithm and 
application, John Wiley and Sons, Inc., NY, 1995.  
[14] Dibble, C., Densham, P.J., Generating interesting alternatives in GIS 
and SDSS using genetic algorithms, GIS/LIS symposium, University of 
Nebraska, Lincoln, 1993. 



O. BRUDARU and B. VALMAR 148 

[15] Domschke, W., Logistik: Rundreisen und Touren (Bd.2), 2, Aufl., 
Oldenbourg, Munchen, 1989 
[16] Dvorett, J., Compatibility-based genetic algorithm: A new aproach to 
the P -median problem, Department of Industrial Engineering and 
Management Sciences Northwestern University Evanston, IL 60208, June 
1999. 
[17] Erkut, E., Bozkaya, B., Zhang, J., An effective genetic algorithm for 
the p -median problem, (In Press.), 2001. 
[18] Garey, M.R., Johnson, D.S., Computer and Intractability: A guide to 
the theory of NP-completeness, W.H. Freeman & Co., San Francisco, 1979. 
[19] Hansen, P., Jaumard, B., Cluster analysis and mathematical 
programming, Mathematical Programming, 79, pp. 191-215, 1997. 
[20] Hosage, C.M., Goodchild, M.F., Discrete space location-allocation 
solution from genetic algorithms, Annals of Operational Research, 6, pp. 35-
46, 1986. 
[21] Jakson, L. E., Rouskas, G. N., Stallman M. F.M., The directional p-
median problem with applications to traffic quantization and 
multiprocessor scheduling, Jackson L. (ed), Rouskas G.Doctoral Thesis, 
http://portal.acm.org/citation.cfm?id=1023151.  
[22] Kariv, O., Hakimi, S. L., An algorithmic approach to network location 
problem-II, The p-medians, SIAM Journal on Applied Mathematics 37(3), 
pp. 539-560, 1979. 
[23] Lim, A., Zang, X., A Two-Stage Heuristic for the Vehicle Routing 
Problem with Time Windows and a Limited Number of Vehicles, Proc. Of 
the 38th Hawaii Intern. Conf. On System Sciences, 2005. 
[24] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution 
Program, 2nd ed., Springer Verlag, Berl,in, 1994. 
[25] Moreno-Perez, J.A., Moreno-Vega, J.M., Annealing in p -median 
problems, Talk at the Canadian Operational Research Society Conference, 
Montreal, 1994. 
[26] Pizzolato, Nelio Domingues, A heuristic for large-size p-median 
location problems with application to school location, Annals of Op. 
Research vol.50 , pp. 473-485, 1994 
[27] Resende, M. G. C., Werneck R.. F.,  A GRASP with path-relinking for 
the p-median problem, Sept., 2002. 
[28] Resende M.G.C., Werneck, R.F., On the implementation of a swap-
based local search procedure for the p -median problems, In: Ladner, R.E. 
(ed.), Proceedings of the 5th Workshop on Algorithm Engineering and 
Experiments (ALENEX’03), pp. 119-127, 2003. 



           OPTIMIZING DISTRIBUTION NETWORKS WITH NESTED GENETIC ALGORITHMS 149

[29] Reese, J., Methods for Solving the p-Median Problem: An Annotated 
Bibliography,http://ramanujan.math.trinity.edu/tumath/research/reports/report
96.pdf, accessed Feb., 2009 
[30] Rolland, E., Schilling, D.A., Current, J.R., An efficient tabu search 
procedure for the p -median problems, EJOR, 96, pp. 329-342, 1996. 
[31] Teitz, M.B., Bart, P., Heuristic methods for estimating the generalized 
vertex median of a weighted graph, Operations Research, 16, pp. 955-961, 
1968. 
[32] Thangiah, S.R., Vehicle Routing Problem with Time Windows using 
Genetic Algorithms, Practical Handbook of Genetic Algorithms - New 
Frontiers, vol. II, L. Chambers (ed.),  CRC Press, Boca Raton, pp. 253. 
[33] Thangiah, S.R., A Hybrid Genetic Algorithms, Simulated Amealing 
Tabu Search Heuristic for Vehicle Routing Problem with Time Windows, 
Practical Handbook of Genetic Algorithms - Complex Coding Systems, vol. 
III, L. Chambers (ed.),  CRC Press, Boca Raton, pp. 347. 
[34] Whitaker, R.A., A fast algorithm for the greedy interchange for large-
scale clustering and median location problems, INFORS, 21, pp. 95-108, 
1983. 
[35] Zhu, K.Q., Population Diversity in Genetic Algorithm for Vehicle 
Routing Problem with Time Windows, Dept. of Comp. Scy., National 
University of Singapore, 2004. 
[36] Zhu, K.Q., Tan, K.C., Lee, L.H., Heuristic for Vehicle Routing 
Problem with Time Windows, National University of Singapore, 1999. 
[37] http://neo.lcc.uma.es/radi-aeb/WebVRP/data/instances/Augerat/A-
VRP.zip, accessed Jan. 2007. 
 
 
O. Brudaru* **, B. Valmar** 
*Institute of Computer Science, Romanian Academy, Iaşi Subsidiary, 
** “Gh. Asachi” Technical University Iaşi, Department of Management and 
Production Systems Engineering, Iasi, Romania 
e-mail: brudaru@tuiasi.ro 

 



O. BRUDARU and B. VALMAR 150 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


