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THE MAXMIN ALGORITHM FOR THE MAXIMUM
FLOW

ELEONOR CIUREA AND MIHAI - STEFAN IOLU

Abstract. In this paper we study maximum flow algorithms by
using a new approach.

1. INTRODUCTION

The theory of flows is one of the most important parts of Combina-
torial Optimization.

The computation of a maximum flow in a graph has been an impor-
tant and well studied problem, both in the field of computer science
and operations research. Many efficient algorithms have been devel-
oped to solve this problem, see [1], [9], [10], [11], [12], [13] and [15].

The computation of a minimum flow in a network has been investi-
gated by the authors in [2], [3], [4], [5], [6], [7] and [8].

The brief outline of the paper is as follows: in Section 2 we discuss
some basic notions and results used in the rest of the paper. Section 3
deals with a new approach for solving of the maximum flow problem
in networks. In Section 4 we present an example for this approach.
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In the next presentation we assume familiarity with preflow algo-
rithms and we omit many details, since they are straightforward mod-
ifications of known results. The reader interested in further details
is urged to consult the book [1] for maximum flow problem and the
paper [7] for minimum flow problem.

2. TERMINOLOGY AND PRELIMINARIES

In this section we discuss some basic notions and results used in the
rest of the paper.

We consider a capacitated network G = (N, A, [, ¢, s,t) with a non-
negative capacity c(x,y) and with a nonnegative lower bounds I(z, y)
associated with each arc (z,y) € A. We distinguish two special nodes
in the network G: a source node s and a sink node t. We further as-
sume, without loss of generality, that the network contains no parallel
edges.

For a given pair of not necessarily disjoint subsets X, Y of the nodes
set N of a network GG we use the notation:

(X,Y) ={(z,y)l(z,y) e Az e X,y Y}
and for a given function f on arcs set A we use the notation:
) = 3 fay)
(X.Y)

A flow is a function f : A — R, satisfying the following conditions:

(1a) f(z,N)— f(N,z) = 0: a:;s,t
—v, T=1
(1b) Wz, y) < f(z,y) < clz,y),¥(z,y) € 4,

for some v > 0. We refer to v as the value of the flow f.

The mazimum (minimum) flow problem is to determine a flow f for
which v is maximized (minimized).

A cut is a partition of the nodes set N into two subsets S and T
= N — S; we represent this cut using notation [S,T]. We refer to a
cut [S,T] asan s —¢ cut if s € S and t € T. We refer to an arc
(x,y) with z € S and y € T as a forward arc of the cut and an arc
(z,y) with x € T and y € S as a backward arc of the cut. Let (S,T)
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denote the set of forward arcs in the cut and let (7, S) denote the set
of backward arcs.

For the maximum flow problem, we define the capacity ¢[S, T of a
s—tcut [S,T] as:

2) 218, T) = (S, T) — (T, S)

and for the minimum flow problem, we define the capacity ¢[S,T] of
as—tcut [S,T] as

(3) S, T) = 1(S,T) — (T, S)

We refer to an s — ¢ cut whose capacity ¢[9, 7] is the minimum
(¢S, T] is the maximum) among all s — ¢ cuts as a minimum (maxi-
mum) cut.

The maximum (minimum) flow problem in a network G =
(N, A,l ¢ s,t) can be solved in two phases:

(P1) establish a feasible flow f, if it exists;

(P2) from a given feasible flow f, estabhsh the maximum (mini-

mum) flow f (f)

Theorem 1. Let G=(N,A,l,c,s,t) be a network, [S,T] a s-t cut and f
a feasible flow with value v. Then

(4a) v=f[5,T]=f(5.T) - f(T,9)
and therefore, in particular,
(4b) 205, T) < v < 7S, 7]

Theorem 2. Let G = (N, A, 1, ¢, s,t) be a network, [S,T] a minimum
s —1t cut and [S T] a mazimum s —t cut. We denote the values of a
maximum flow f and minimum flow f by v and v respectively. Then

(ha) v=7c[5,T]
and
(5b) o =75, T]
A preflow is a function f: A — R, that satisfies (1b) and
(6a) f(N,z)— f(x,N) >0,V € N — s,t
for maximum flow problem and
(6b) flz,N)— f(N,z) <0,V € N —s,t

for minimum flow problem.
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For any preflow f we define the excess, respectively deficit of node
T as

(Ta) e(r)=f(N,xz) — f(z,N),Yx € N
respectively
(7b) e(x) = f(z,N)— f(N,x),Yxr € N

for maximum respectively minimum flow problem.

We refer to a node z with e(z) = 0(e(z) = 0) as balanced. A preflow
f satisfying the condition €(z) = 0(e(x) = 0),Vx € N — s,t is a flow.
Thus, a flow is a particular case of preflow.

For the maximum (minimum) flow problem, the residual capac-
ity r(x,y) (r(xz,y)) of any arc (z,y) € A, with respect to a given
flow/preflow f, is given by 7(z,y) = c(z,y) — f(z,y) + f(y,z) = l(y, z)
(M, y) = cly,z) — fly,x) + f(z,y) — l(z,y)). By convention, if
(x,y) € A and (y,x) ¢ A then we add arc (y,z) to the set of arcs
A and we set [(y,z) = 0 and ¢(y,x) = 0.

The network G = (N, A) (G = (N, A)) consisting only of the arcs
with positive residual capacity is referred to as the residual network
(with respect to the flow/preflow f).

In the residual network G = (N, 121\), the distance function is a func-

tion d : N — N and we say that a distance function is wvalid if it
satisfies the following conditions:

~

(8a) d(s) =0
and
(8b) dly) < d(z) +1,¥(z,y) € A

~

We refer to d(z) as the distance label of node x and to the arc
(z,y) € A as an admissible arc if of(y) = cj(x) +1; otherwise it is inad-
missible. We refer to a directe path from node s to node ¢ consisting
entirely of admissible arcs as an admissible path. We say that the dis-
tance labels are exact if for each node z, d(z) equals the length of the
sAhortest directed path from node s to node z in the residual network
G. We refer to a path in G from the source node s to the sink node
t as a decreasing path if it consists only of arcs with positive residual
capacity. Clearly, there is an one to one correspondence between set
of decreasing paths in G and the set of decreasing directed paths from

stotin G.
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We define the layered network G = (N, A ,7) as follows: the nodes
set IV is partitioned into layers Ny, ..., Ni, where layer N; contains
the nodes = whose exact distance labels equals i, so that d(z) = 1.
Furthermore, for each arc (z,y) in the layered network, z € N; and
y € N;i1 for some ¢. We say that f’ is a blocking flow if the layered
network G’ contains no decreasing directed path.

Any decreasing directed path algorithm terminates with optimal
residual capacities. From these residual capacities 7(x,y) we can de-
termine a minimum flow by the following expression

(9) f(x,y) = Uz, y) + maz{r(z, y) — c(y, ©) + Uy, z), 0}
We can determine the maximum flow by using the residual capaci-
ties 7(z,y) in the following manner:

(10) f(fL‘, y) = Z(I, y) + maw{O, C(l‘, y) - F(:L’, y) - l(xa y)}
In the literature, for the maximum flow problem there are two ap-
proaches:
(1) using increasing path algorithms (see table 1);
(2) using preflow algorithms (see table 2).

Algorithm Running
time

1 | Generic augmenting path | O(nmC)
Ford-Fulkerson labelling | O(nmC)
algorithm
3 | Gabow capacity scaling O(nmlogc)
4 | Ahuja-Orlin maximum ca- | O(nmlogc)
pacity scaling
5 | Edmons-Karp of the short- | O(nm?)
est path
6 | Ahuja-Orlin of the shortest | O(n?m)
path
7 | Dinic algorithm of layered | O(n?m)
network
8 | Ahuja-Orlin of the layered | O(n?m)

network

TABLE 1. The running time for increasing paths algorithms
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Algorithm Running
time
1 | Generic preflow O(n’m)
2 | FIFO preflow O(n3)
3 | Highest label preflow O(n*m'/?)
4 | Deficit scaling O(nm +
n2loge)

TABLE 2. The running time for preflow algorithms

In the literature there are three approaches for solving the minimum
flow problem:

(1) using decreasing path algorithms;
(2) using preflow algorithms;
(3) by establishing a maximum flow from node ¢ to node s in net-

work G (see [7]).

The same transformation, that we made to generic augmenting path
algorithm in order to obtain generic decreasing path algorithm, can
be made to any of the other algorithm from table 1. The same ideea
can be applied to the algorithms from table 2. The complexities of
these algorithms are the same as those presented in table 1 and table
2.

In section 3 we present a new approach for solving the maximum
flow problem.

3. THE MAXMIN ALGORITHM

We can solve the maximum flow problem by determining a minimum
flow from the sink node to the source node in the residual network G.
This approach is based on the following idea: the aim of the maximum
flow problem is to send as much flow as possible from the source node
to the sink node, that is opposite to the aim of the minimum flow
problem. The algorithm that we will present computes a maximum
flow in the following manner: knowing a feasible flow, we determine a
maximum flow from the source node to the sink node by establishing
a minimum flow in the residual network G from the sink node ¢ to
the source node s. For determining a minimum flow from the sink to
the source, we can use any minimum flow algorithm, including preflow
algorithms. The maxmin algorithm is the following:
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Algorithm MAXMIN;

BEGIN
let f be a feasible flow in network G;
determine the residual negyork G;
establish a minimum flow f from ¢ to s
L in éﬁ
f=/[f is a maximum flow from the source

node s to the sink node ¢;
END.

Theorem 3. The mazmin algorithm computes correctly a maximum

flow.

Let J? be the flow at the end of the algorithm. Therefore, f is a
minimum flow from sink node ¢ to the source node s. In view of the
Decreasing Path rllheorem, there is no directed path from ¢ to s in the
residual network G. This implies that there is a ¢t — s cut [T, S] with

(11) r(y,z) = 0,¥(y,z) € (T, 5)
Equivalently,

~ -~

In view of the condition (1b), this implies that

-~

(13a) f(z,y) = c(z,y),¥(z,y) € (S,T)

and

(13b) fly, ) =1(y.),Y(y,2) € (T,S)
Equivalently,

1y @y =) - fey)+ e - i) =0,

V(z,y) € (5,T)

Since [T,S]is at—s cut, [S,T] is a s —t cut. We obtain the residual
network G which contains no directed path from the source node s to
the sink node t. In view of the Augmenting Path Theorem, f = f is
a maximum flow from s to ¢ in the network G.

Theorem 4. The complezity of the maxmin algorithm is the complex-
ity of the flow algorithm used for determining a feasible flow and for
establishing a minimum flow from t to s.

The proof of this theorem is obvious.
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4. EXAMPLE
We will study the network in figure 1 which has a feasible flow.

O [ (xry)rf (xry) ’ C(er)
X

LL5

FIGURE 1. Initial network

The corresponding residual network G = (N, A,7) is presented in
figure 2.

@ A(x,y)

FIGURE 2. Initial residual network

By applying a decreasing path algorithm we can obtain three de-
creasing paths from t =6 to s = 1.

The first directed path determined is 136,1 = (6,4,2,1), ?(13671) =1
The resulting residual network G is presented in figure 3.

The second directed path determined is 13671 =(6,5,3,1), ?(ﬁm) =
1. The new residual network is presented is presented in figure 4.

The third directed path is ﬁg,l = (6,5,3,2,1), ?(ﬁ&l) = 1. The
new residual network G is presented in figure 5.
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F(x,))

F1GURE 3. Residual network after the first decreasing path

F(x,)

F1GURE 4. Residual network after the second path

We obtain the residual network presented in figure 5 which doesn’t
contain any decreasing path from ¢t =6 to s = 1.

By determining the minimum flow from ¢ = 6 to s = 1 we obtain a
maximum flow f from s = 1 to ¢ = 6 in the network G = (N, A, [, f, ¢)
which we present in figure 6.
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FiGURE 5. Residual network with no decreasing paths
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