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OMEGA AND RELATED POLYNOMIALS IN NANOSTRUCTURES 

 
MIRCEA V. DIUDEA 

 
Abstract. Omega polynomial was proposed by Diudea (Omega 
Polynomial, Carpath. J. Math., 2006, 22, 43-47) to count opposite, 
topologically parallel, edges in graphs, particularly to describe the polyhedral 
nanostructures.  

Basic definitions are given and clear relations with other three related 
polynomials are discussed. These relations are supported by close formulas 
and appropriate examples. 
 Close formulas for the calculation of Omega and its relative 
polynomials and derived single numbers, in several classes of nanostructures 
are given. 

 
1.  INTRODUCTION 

A counting polynomial can be written as ( ) ( ) kP x m k xk= ⋅∑ , with the 
exponents showing the extent of partitions p(G), )()( GPGp =∪  of a graph 
property P(G) while the coefficients ( )m k  are related to the number of 
partitions of extent k. 
Hosoya     [1, 2] was the first who introduced the counting polynomials in the 
Mathematical Chemistry literature: the Z-polynomial (counting the sets of 
independent edge) and Wiener polynomial (latter called Hosoya polynomial3,4 
which counts the distances in the graph). This author also proposed the sextet 
polynomial  [5, 6] to  count the resonant rings in a benzenoid molecule. Other 
counting polynomials are the independence polynomial [7-9], domino [10] 
star [11] , and clique [12] polynomials. More about polynomials the reader can 
find in [13]. 
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Some distance-related properties can be expressed in the polynomial 
form, with coefficients calculable from the layer and shell matrices.[14-17]  
These matrices are built up according to the vertex distance partitions of a 
graph, as provided by the TOPOCLUJ software package [18].The most 
important, in this approach, is the evaluation of the Hosoya H(x) polynomial 
coefficients from the layer of counting LC matrix. The aim of this paper is to 
give a unified approach to these polynomials and derived invariants.  

 
2.  DEFINITIONS 

Let G=(V(G),E(G)) be a connected graph, with the vertex set V(G) and 
edge set E(G). Two edges e=(u,v) and  f=(x,y)  of G are called codistant 
(briefly: e co f ) if the notation can be selected such that [19]   

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =  ,        (1) 
where d is the usual shortest-path distance function. The above relation co is 
reflexive (e co e) and symmetric (e co f) for any edge e of G but in general is 
not transitive. 
A graph is called a co-graph if the relation co is also transitive and thus an 
equivalence relation. 
 Let });({:)( ecofGEfeC ∈=  be the set of edges in G that are 
codistant to )(GEe∈ . The set C(e) can be obtained by an orthogonal edge-
cutting procedure: take  a straight line segment, orthogonal to the edge e, and 
intersect it and all other edges (of a polygonal plane graph) parallel to e. The 
set of these intersections is called an orthogonal cut (oc for short) of G, with 
respect to e.  

If G is a co-graph then its orthogonal cuts kCCC ,...,, 21  form a partition 
of E(G):   1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ = ∅ ≠ . 

A subgraph H⊆ G is called isometric, if ( , ) ( , )H Gd u v d u v= , for any 
( , )u v H∈ ; it is convex if any shortest path in G between vertices of H 
belongs to H. The n-cube nQ is the graph whose vertices are all binary strings 
of length n, two strings being adjacent if they differ in exactly one position.20 
The distance function in the n-cube is the Hamming distance: the distance 
between two vertices of nQ  is equal to the number of positions in which they 
differ. A hypercube can also be expressed as the Cartesian product: 

21KQ n
in =Π= .  
For any edge e=(u,v) of a connected graph G let nuv denote the set of 

vertices lying closer to u than to v: { }( ) | ( , ) ( , )uvn w V G d w u d w v= ∈ < . It 
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follows that { }( ) | ( , ) ( , ) 1uvn w V G d w v d w u= ∈ = + . The sets (and subgraphs) 
induced by these vertices, nuv and nvu, are called semicubes of G; the 
semicubes are opposite and disjoint ones. 21,22 

A graph G is bipartite if and only if, for any edge of G, the opposite 
semicubes define a partition of G: ( )uv vun n v V G+ = = .  

The relation co is related to ~ (Djoković23) and Θ  (Winkler24) 
relations: [25]  in a connected bipartite graph, co = ~ = Θ . For two edges 
e=(u,v) and  f=(x,y)  of G the theta relation is defined as: eΘ f if 

),(),(),(),( xvdyudyvdxud +≠+ .  
A connected graph G is a co-graph if and only if it is a partial cube, 

and all its semicubes are convex; relation /co Θ is then transitive [22]. 
Two edges e and f of a plane graph G are in relation opposite, e op f, if 

they are opposite edges of an inner face of G. Then e co f holds by the 
assumption that faces are isometric. The relation co is defined in the whole 
graph while op is defined only in faces/rings (see below), thus being included 
in relation co. Note that John et al.[19, 26]  implicitly used the “op” relation in 
defining the Cluj-Ilmenau index CI.  

Relation op will partition the edges set of G into opposite edge strips 
ops, as follows. (i) Any two subsequent edges of an ops are in op relation; (ii) 
Any three subsequent edges of such a strip belong to adjacent faces; (iii) In a 
plane graph, the inner dual of an ops is a path, an open or a closed one 
(however, in 3D networks, the ring/face interchanging will provide ops which 
are no more paths); (iv) The ops is taken as maximum possible, irrespective of 
the starting edge. The choice about the maximum size of face/ring, and the 
face/ring mode counting, will decide the length of the strip.  

The Ω-polynomial [27] is defined on the ground of opposite edge 
strips 1 2, ,..., kS S S in the graph:  

( ) kS
kx xΩ = ∑       (2) 

Similarly, a Θ -polynomial [21] can be defined on the co-distant edge sets Ck: 
| |( ) kC

k
x xΘ =∑        (3) 

If the graph is a co-graph or a partial cube, the edge equidistance (see 
below) will be accounted for by only relation (1), regarding the parallel edges. 
In such graphs, the following is true 
Proposition 1: In a co-graph/partial cube, the sets of co-distant edges 
superimpose over the opposite edge strips and the equality k kC S=  holds for 
any integer k.  
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Denoting by m(s), or simply m, the number of opposite edge strips of 
cardinality/length s=|S|, then we can write [21], [22], [29-30]:  

( ) s
s

x m xΩ = ⋅∑          (4)

 ( ) s
s

x ms xΘ = ⋅∑          (5) 

( ) e s
s

x ms x −Π = ⋅∑       (6) 

( ) e s
s

Sd x m x −= ⋅∑       (7) 

In the above relations, ( )xΩ  and ( )xΘ count equidistant edges in G 
while ( )xΠ  and ( )Sd x  count non-equidistant edges. The Omega and 
Sadhana polynomials count each edge once while the other two count the 
corresponding sets for each edge, so that the polynomial coefficients are 
multiplied by s.  

The first derivative (in x=1) can be taken as a graph invariant or 
topological index: 

(1) ( )
s
m s e E G′Ω = ⋅ = =∑               (8) 

2(1) ( )
s
m s Gθ′Θ = ⋅ =∑          (9) 

(1) ( ) ( )
s
ms e s G′Π = ⋅ − = Π∑           (10) 

(1) ( ) ( )
s

Sd m e s Sd G′ = ⋅ − =∑      (11) 
An index, called Cluj-Ilmenau [19] CI(G), was defined on ( )xΩ : 

2( ) [ (1)] [ (1) (1)]{ }CI G ′ ′ ′′= Ω − Ω +Ω                 (12) 
Two edges e=(u,v) and  f=(x,y)  of a graph G are called equidistant e 

eqd f if the two ends of one edge show the same distance to those of the other 
edge. However, the distance between edges can be defined in several modes. 

(a) The equidistance of (topologically) parallel edges, as defined by eq 
(1); since co is a particular case of eqd relation, a relation to account 
for the perpendicular edges in G, is to be added (Diudea [21, 28] ) to 
the relation (1): 

( , ) ( , ) ( , ) ( , )d u x d u y d v x d v y= = =     (13) 
(b) The distance from a vertex z to an edge ( , )e u v=  is taken as the 

minimum distance (Ashrafi [28]) between the given point and the two 
endpoints of e: 

( , ) min{ ( , ), ( , )}d z e d z u d z v=      (14) 
Then, the edge e=(u,v) and  f=(x,y)  are in relation e eqd f if: 

( , ) ( , ) and ( , ) ( , )d x e d y e d u f d v f= =     (15) 
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Relations (1)&(13) are stronger than relations (14)&(15): in bipartite 
graphs they superimpose to each other but not in general graphs (see below).  

The problem of equidistance of vertices was firstly put by Gutman when 
defined the Szeged index [31] SZ(G) of which calculation leaves out the 
equidistant vertices. Similarly, the Khadikar’s PI(G) (Padmakar-Ivan) index 
[32] does not count the equidistant edges. According to Ashrafi’s notations 
[33], PI(G) can be written as:  

[ ]
( )

( ) (1) ( , ) ( , ) ( , )e e
e E G

PI G PI n e u n e v m u v
∈

′= = + −∑             (16)
 

where n(e,u) is the number of edges lying closer to the vertex u than to the 
vertex and m(u,v) is the number of equidistant edges from u and v. This index 
can be calculated as the first derivative, in x=1, of the polynomial defined by 
Ashrafi [33]  as: 

( , ) ( , )

( )
( ) n e u n e v

e
e E G

PI x x +

∈
= ∑                  (17) 

 
3.  PROPERTIES OF COUNTING POLYNOMIALS AND DERIVED INDICES 

As stated in Proposition 1, in co-graphs/partial cubes, the sets of co-
distant edges superimpose over the opposite edge strips and the equality 

k kC S=  holds for any integer k. It follows that in co-graphs s takes the 
same value in Omega and its related polynomials (relations (4) to (7)). 
  Proposition 2. In co-graphs/partial cubes, the equality ( ) ( )CI G G= Π  
holds.  

This can be demonstrated by expanding definition (12), CI calculation 
leading to ( )GΠ [21, 22]: 

( )2
2 2( ) ( 1) ( )

s s s s
CI G m s m s m s s e m s G⎡ ⎤= ⋅ − ⋅ + ⋅ ⋅ − = − ⋅ =Π⎣ ⎦∑ ∑ ∑ ∑ (18) 

Relation (25/18) is valid only in the hypothesis k kC S= , which provides the 
same value for the exponent s and this is achieved only in co-graphs/partial 
cubes.  

A graph, of which ( )xΘ  can be written exactly in the terms of ( )xΩ , 
according to the pair of relations {(4)&(5)}, will precisely show the equality 

( ) ( )CI G G= Π  according to (25). This equality can, however, appear even the 
pair relations {(4)&(5)} are not related. The relatedness of the two 
polynomials (and identity ( ) ( )CI G G= Π ) is provided rather by the equality of 
cardinalities  k kS C=  than by the corresponding sets 
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superposition{ } { }k kS C≡ , the condition {(4)&(5)} being thus necessary but not 
sufficient in order a graph to be declared co-graph/partial cube. Finally, the 
transitivity of ops/ocs must be proven.  

A question about a simple and rapid criterion/condition to be used in 
order to decide if a given bipartite graph is a co-graph (or a partial cube) can 
be raised. Unfortunately, no such a condition is known and, in fact, such a 
condition would be a big breakthrough in the area of metric graph theory. In 
the papers [34, 35], two algorithms of the complexity O(mn) for recognizing 
co-graphs have been developed, where n is the order and m the size of a given 
graph. (Note that in a co-graph, m=O(n log n).) Recently Eppstein [36], using 
some sophisticated computational tricks, reduced the complexity to O(n2). In 
some special cases the complexity can be further reduced, see [37], but in 
general a (close to) linear criterion does not seem realistic.  

In graphs, other than co-graphs or partial cubes, however i kS C≠  and 
the pair relations ((4)&(5)) are no more related. As a consequence, in general 
graphs, ( ) ( )CI G G≠ Π . This appears because the edge equidistance eqd 
relation includes both the parallel (co and op relations) and perpendicular 
(tetrahedron’s) edges conditions. 

In bipartite graphs, the only equality that holds is: ( ) ( )eG PI GΠ = , 
which, however, does not hold in general graphs. Since any partial cube is 
also a bipartite graph, then we can expand the previous double equality to the 
triple one 

 ( ) ( ) ( )eCI G G PI G= Π =      (19)  
a relation which is true only in partial cubes/co-graphs. In the opposite, in 
general graphs, the following inequality holds 
 ( ) ( ) ( )eCI G G PI G≠ Π ≠      (20) 

Now let us reformulate relation (10) function of (8) and (9) to write: 
2 2 2(1) [ (1)] (1) ( ) ( ){ }

s
e m s G PI G′ ′ ′Π = − ⋅ = Ω −Θ = Π =∑ (21) 

The first part of relation (21) and the last part of (18) as well, represent the 
formula proposed by John et al. [26] to calculate the Khadikar’s Padmakar-
Ivan PI(G) topological index  [32] (which counts the non-equidistant edges) in 
bipartite graphs. This index equals CI(G) index only in co-graphs/partial 
cubes (see (19)). 

Returning to the main definitions (relations (4) to (7) and (8) to (11)), 
we can find the relatedness of the discussed descriptors: 

2 2(1) (1) ( (1)) e′ ′ ′Θ +Π = Ω =                  (22) 
(1) (1) (1) e′Θ = Π = Ω =        (23) 
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( ) ( )(1) (1) (1) 1 (1) 1Sd e′ ′= Ω Ω − = Ω −             (24) 
From (24), it appears that the first derivative (in x=1) of Sadhana polynomial 
is the product of the number of edges e=|E(G)| and the number of strips 

(1)Ω less one. 
By definition, an ops starts/ends in either one even face/ring or two 

edges of odd-fold faces/rings; in the first case the ops is a cycle while in the 
second it is a path. In a planar bipartite graph, representing a polyhedron, all 
ops strips are cycles. [38]  

There are graphs with a single ops, of length ( )s e E G= = , which is 
precisely a cycle (called a Hamiltonian ops in ref. [38]). At the opposite side, 
there are graphs with s=1, namely graphs with either odd rings or with no 
rings, i.e., tree graphs. For such graphs, minimal and maximal value, 
respectively, of CI is calculated: 

min
( ) 1 e

CIx xΩ = ⋅ ; 2
min ( ( 1)) 0CI e e e e= − + − =   (25) 

max
1( )CIx e xΩ = ⋅ ; 2

max ( 0) ( 1)CI e e e e= − + = −   (26) 
Among the graphs on v vertices, CImin is provided by the complete 

bipartite graphs K2,v-2 (with e=2(v-2)) while CImax is given by the complete 
graphs Kv, (with e=v(v-1)/2)): 

min 2, 2( ) 0vCI CI K −= =       (27) 
2

max ( ) (1/ 4) ( 1)( 2)vCI CI K v v v v= = − − −    (28) 
 

4. EXAMPLES 
The examples below will present the most interesting structures, from 

the point of view of the studied descriptors, considered here to bring 
complementary information on the graph topology, thus often all these 
descriptors are calculated. 

 
4.1.  Degeneracy of ( )CI G and ( )GΠ .  

There exist plane bipartite graphs, which are co-graphs and for which 
( ) ( )CI G G= Π . This is the case of acenes and phenacenes, which are polyhex 

molecular structures. For these classes of structures and others, like 
phenylenes, spiranes, pyrenes and coronenes, analytical formulas, for 
calculating Omega and related polynomials, were presented in references [21], 
[39].  

In tree graphs, Omega polynomial is either not defined or it simply 
counts the non-equidistant edges as self-equidistant ones, being included in 
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the term of exponent s=1. In such graphs, ( ) ( ) ( 1)( 2)CI G G v v= Π = − − (a 
result known from Khadikar [40] – see also (26)) and the Omega and Theta 
polynomials show the same expression; the tree graphs behave as partial 
cubes. 

There are distinct bipartite graphs, such as (4,4) tori in Table 1, with 
degenerate both ( )xΩ polynomial and index CI(G) (rows 1 and 2, in italics), 
for which ( )xΠ  and ( )xΘ  are distinct. Next, there are bipartite graphs which 
shows degenerate { ( )GΠ & ( )GΘ } index values but distinct { ( )xΠ & ( )xΘ } 
polynomials (as the tori in Table 1, rows 1 and 3). Finally, there are non-
bipartite graphs which show the equality ( ) ( )CI G G= Π , as the true co-graphs 
(e.g., the torus in the forth row of Table 1. 

 

Table 1. Polynomials in (4,4) tori: bipartite graphs for which ( ) ( )CI G G≠ Π  
(rows 1 to 3) and a non-bipartite graph showing ( ) ( )CI G G= Π  (row 4). 

 Torus ( )xΩ  ( )xΠ  ( )xΘ  
 (4,4)  CI(G)  ( )GΠ  ( )GΘ

1 TWH2D[6,10] 6x10+2x30 12000 60x96+60x102 11880 60x18+60x24 2520 
2 TWH6D[6,10] 6x10+2x30 12000 60x92+60x94 11160 60x26+60x28 3240 
3 TWV2D[6,10] 10x6+2x30 12240 60x94+60x104 11880 60x16+60x26 2520 
4 TWV3D[6,10] 10x6+3x20 12840 60x100+60x114 12840 60x6+60x20 1560 

 

There are cases for which the equality ( ) ( )CI G G= Π  is true despite the 
pair relations ((4)&(5)) are not related. Indeed, the coefficients in the pair 
{ ( )xΘ ; ( )xΠ } correspond to the product m.s (as in ( )xΩ ), but the exponents 
differ from those in ( )xΩ , however the above equality holds. We consider 
this case as an accidental equality or a degeneracy of index values. The first 
two examples given in Figure 1 and Table 2 support the above statements. 

 
T(6,3)H[8,12] 
v=96; e=144 

T((4,8),3)V[8,20] 
v=160; e=144 

T((5,7),3)H[8,12] 
v=96; e=144 

Figure 1. Tori calculated in Table 1 
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Table 2. Polynomials in bipartite and non-bipartite tori 
T(6,3)H[8,12]; v=96; e=144; bipartite 

Polynomial Index 
4 24( ) 12 +4Ω x x x=  ( ) 18240CI G =  

120 140( ) 4 +12Sd x x x=  ( ) 2160Sd G =  

8 22( ) 48 +96x x xΘ =  ( ) 2496GΘ =  
122 136( ) 96 +48x x xΠ =  ( ) 18240GΠ =  
122 136( ) 96 +48ePI x x x=  (1) 18240ePI ′ =  

T((4,8),3)V[8,20]; v=160; e=144; bipartite 
Polynomial Index 

8 10 40( ) 10 +8 +2Ω x x x x=  ( ) 52960CI G =  

200 230 232( ) 2 +8 +10Sd x x x x=  Sd(G) = 4560 
16 20 22( ) 80 +80 +80x x x xΘ =  ( ) 4640GΘ =  
218 220 224( ) 80 +80 +80x x x xΠ =  ( ) 52960GΠ =  

218 220 224( ) 80 +80 +80ePI x x x x=  (1) 52960ePI ′ =  
T((5,7),3)H[8,12]; v=96; e=144; non-bipartite 

Polynomial Index 
1( ) 144Ω x x=  ( ) 20592CI G =  

143( ) 144Sd x x=  ( ) 20592 ( )Sd G CI G= =  

6 8 10 11( ) 48 +36 36 24x x x x xΘ = + +  ( ) 1200GΘ =  
133 134 136 138( ) 24 +36 +36 48x x x x xΠ = +  ( ) 19536GΠ =  
75 102 103 108 130 132 134( ) 24 12 24 12 12 36 24ePI x x x x x x x x= + + + + + + (1) 16320ePI ′ =  

 

A third example in Figure 1 and Table 2 is a non-bipartite torus, 
covered by odd faces, in a ((5,7)3) tessellation. It is included here to illustrate 
the triple inequality ( ) ( ) ( )eCI G G PI G≠ Π ≠ and an extreme case of ( )Ω x , 
with a single term, of exponent 1 (see relation (26)). 

 
4.2.  Planar 3D bipartite, non co-graphs.  
  There are bipartite 3D graphs for which ( ) ( )CI G G≠ Π . This is the 
case of the cage in Figure 3b which is bipartite but represents a non-isometric 
subgraph of a partial cube, which is the cubic lattice in Figure 2a: the red 
edges are not co-distant to each other, despite they both belong to the same 
ops, thus ( ) ( )CI G G≠ Π . Conversely, Figure 2a represents precisely a partial 
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cube (in our terms, a co-graph) and their ops represent orthogonal cuts oc; as 
a consequence ( ) ( )CI G G= Π .  

To the list of 3D bipartite graphs which are non co-graphs and obey 
the inequality ( ) ( )CI G G≠ Π we add the toroidal lattices of even faces. Only 
exceptional tori show ( ) ( )CI G G= Π values (Tables 1 and 2). 
(a) (b) 

 
9( ) 6 ; (1) 54x xΩ = Ω = ; 2430CI = ; (R[4]) 

9( ) 54x xΘ = ;  (1) 486′Θ =  
45( ) 54x xΠ = ; (1) 2430′Π =  

54 9 45( ) 6 6Sd x x x−= = ; (1) 270Sd ′ =  
45( ) 54ePI x x= ; (1) 2430ePI =  

 

8( ) 6 ; (1) 48; 1920x x CI′Ω = Ω = = (f4) 
8 10( ) 24 24x x xΘ = + ;  (1) 432′Θ =  

38 40( ) 24 24x x xΠ = + ; (1) 1872′Π =  
48 8 40( ) 6 6Sd x x x−= = ; (1) 240Sd ′ =  
38 40( ) 24 24ePI x x x= + ; (1) 1872ePI ′ =  

non-isometric subgraph (see edges in red) 
Figure 2. 3D Bipartite graphs which are (left) or are not (right) co-graphs/partial 

cubes 
 

4.3. Non-partial cubes showing ( ) ( )CI G G= Π  
The structures in Figure 3 behave as co-graphs/partial cubes, namely 

the equality ( ) ( )CI G G= Π holds. The units designed by the sequence of map 
operations [41-45] Opx(Q(C)) are representations of the celebrate Dyck graph 
[46], built up on only octagonal faces/rings. The networks [47, 48]constructed 
by these units show no more co-graph/partial cube behavior, in the opposite to 
the pcu cubic network (see below). 

 
Op(Q(C)_56; R[8]=18;  

6 8( ) 4 6 ; (1) 72; 4656x x x e CI′Ω = + Ω = = =  

 
Op2a(Q(C))_56; R[8]=18;  

8( ) 9 ; (1) 72; 4608x x e CI′Ω = Ω = = =
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66 64( ) 24 48 ; (1) 4656x x x ′Π = + Π =   
6 8( ) 24 48 ; (1) 528x x x ′Θ = + Θ =  
66 64( ) 4 6 ; (1) 648Sd x x x Sd ′= + =  

66 64( ) 24 48 ; (1) 4656e ePI x x x PI ′= + =  

 
64( ) 72 ; (1) 4608x x ′Π = Π =   
8( ) 72 ; (1) 576x x ′Θ = Θ =  
64( ) 9 ; (1) 576Sd x x Sd ′= =  

64( ) 72 ; (1) 4608e ePI x x PI ′= =  
Figure 3. Non-cubes which are co-graphs 

 
4.4. Formulas for counting polynomials in pcu cubic lattice 

Formulas for the evaluation of the discussed counting polynomials in 
the pcu cubic lattice, of dimensions (a,b,c) are presented in Table 3. Examples 
of application of these formulas are also included.   

Table 3. Formulas for edge counting polynomials in pcu cubic C(a,b,c) 
network21 

 Type Polynomial (edge counting) 
1 ops 

 
 

( 1)( 1) ( 1)( 1) ( 1)( 1)(C( , , ), ) b c a c a ba b c x a x b x c x+ + + + + +Ω = ⋅ + ⋅ + ⋅  
2( 1)( 1) ( 1)(C( , , ), ) 2 a c aa a c x a x c x+ + +Ω = ⋅ + ⋅  

2( 1)(C( , , ), ) 3 aa a a x a x +Ω = ⋅  
2( ( ),1) 3 ( 1)C a e a a′Ω = = +  

2 2( ( ),1) 3 ( 1) ( 2)C a a a a′′Ω = + +  
4( ( )) 3 (3 1)( 1)CI C a a a a= − +  

3( ( )) ( 1)v C a a= + ;  2( ( )) ( 1)s C a a= +  
2 non-ops 

 
2( 1) (3 1)( ( ), ) 3e s a aSd C a x m x a x− + −= ⋅ = ⋅  

( ( ),1) / ( ( ),1) (3 1)Sd C a C a a′ ′Ω = −  

( ( ),1) / ( ( ),1) ( ) / ( / ) 1Sd C a C a m e s ms e s′ ′Ω = − = −  

/ 3e s a=  

3 non-equi- 
distance 

22 ( 1) (3 1)( ( )) ( ( ), ) 3 ( 1)e s a a
eC a PI C a x ms x a a x− + −Π = = ⋅ = + ⋅  

4( ( ),1) ( ( ),1) ( ) 3 (3 1)( 1) ( ( ))eC a PI C a e e s a a a CI C a′′Π = = − = − + =  

4 equi-
distance 

22 ( 1)( ( ), ) 3 ( 1)s aC k x ms x a a x +Θ = ⋅ = + ⋅  

4( ( ),1) 3 ( 1)C a a a′Θ = +  

( ( ),1) / ( ( ),1) (3 1)C a C a a′Π Θ = −  



MIRCEA V. DIUDEA 208 

5  3| ( ) | ( 1)v V G a= = + ;
2| ( ) | 3 ( 1)e E G a a= = +  

6 Examples  

 a=4 
25( ) 12 ; (1) 300; 82500x x CI′Ω = Ω = =  

275( ) 12 ; (1) 3300Sd x x Sd ′= =  

275( ) 300 ; (1) 82500x x ′Π = Π =  

25( ) 300 ; (1) 7500x x ′Θ = Θ =  

 a=5 
36( ) 15 ; (1) 540; 272160x x CI′Ω = Ω = =  

504( ) 15 ; (1) 7560Sd x x Sd ′= =  

504( ) 540 ; (1) 272160x x ′Π = Π =  

36( ) 540 ; (1) 19440x x ′Θ = Θ =  

 

Note that, in [39] ( )xΠ was denoted by N ( )xΩ . The polynomial 
calculations were done by the software programs developed at TOPO Group 
Cluj: Omega Counter [49] and Nano Studio [50]. 
 Omega polynomial found applications in the topological description of 
complex nanostructures with polyhedral covering [51-56]. In tubular/toroidal 
structures this polynomial accounts for the spirality and ring distribution. The 
coefficient at exponent s=1 has found to have good ability in predicting the 
heat of formation and strain energy in small fullerenes or the resonance energy 
in planar benzenoids [39], [57], [58]. 
 

CONCLUSIONS 
Omega polynomial was designed to count the opposite topologically 

parallel edges in graphs, particularly to describe the polyhedral nanostructures. 
In three years, (2006-2009) 35 papers have been published or sent for 
publication by TOPO Group Cluj and other papers by abroad scientists, 
Omega polynomial already getting a scientific success. In this paper, its 
behavior and relatedness with other counting polynomials, in partial cubes and 
other graphs, is described. Appropriate examples were given. 
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