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THE CENTENNIAL OF CONVERGENCE
IN MEASURE

LIVIU C. FLORESCU

Abstract. In this work we recall the classical definitions and results
about the topology of convergence in measure, but we also present
some recent ones.

1. Introduction

Convergence in measure or convergence in probability was encoun-
tered already in the papers of Borel and Lebesgue, but it was not
until 1909 that Riesz (see [18]) introduced it as an independent kind
of convergence of a sequence of measurable functions.

Suppose that (Ω,A, µ) is a finite positive measure space, (un)n∈N is
a real valued measurable sequence on Ω and that u is a measurable
function, also. It is happens that lim

n→∞
µ(|un − u| ≥ ε) = 0, for any

positive number ε, we say that the sequence (un)n∈N converges in
measure to u.

In his memoir from 1909, Riesz discovered that from every sequence
of measurable functions which converges in measure one can select
an almost everywhere convergent subsequence; from this he obtained
that, in order for a measurable sequence (un)n∈N to be convergent in
measure, it is necessary and sufficient that the relation lim

m,n→∞
µ(|um−

un| ≥ ε) = 0 hold for any ε > 0.
————————————–
Keywords and phrases: convergence in measure, Fréchet metric,
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In [11] Fréchet introduced the following metric for convergence in
measure:

(u, v) 7→ d(u, v) = inf{ε + µ(|u− v| ≥ ε) : ε > 0}.
Relating to the previous result of Riesz, d is a complete metric on
the space of measurable functions. Fréchet showed that the almost
everywhere convergence cannot be defined by a metric (it is not even
a topological convergence). Other metrics on the same space were
introduced by Ky Fan and by Hoffmann-Jørgensen (see [14]).

Fréchet gave in [12] a necessary and sufficient condition for a set
of measurable functions on [0, 1] to be compact under the metric d of
convergence in measure. The generalization to an arbitrary measure
space is due to Šmulian ([20]).

It is Vitali who proved that the convergence in measure play an im-
portant role for characterizing the strong convergence in L1(µ). Ex-
actly, if (un)n∈N is a sequence of integrable functions and if u is a
measurable function then u is integrable and (un)n∈N is strongly con-
vergent to u in L1(µ) if and only if (un)n∈N is uniformly integrable and
convergent in measure to u (see [3, 7]). Having in mind the Dunford-
Pettis criterion which characterizes the weak compactness in L1(µ),
the Vitali’s result say that (un)n∈N converges strongly to u if and only
if it converges in measure and weakly to u (see Th. IV.8.12 from [7]).

Many mathematicians generalized the concept of convergence in
measure to the case of functions valued in a separable metric space
(see [1, 4, 5, 6, 21]) and, with the help of Hoffmann-Jørgensen’s char-
acterization, to a generally topological case.

Assume that S is a topological space; we say that a sequence (un)n∈N
of measurable functions from Ω to S is convergent in measure to the
measurable function u : Ω → S if, for any bounded continuous map-
ping f : S → R,

‖f(un)− f(u)‖1 =

∫

Ω

|f(un)− f(u)|dµ → 0, i.e. f(un)
‖·‖1−−−−−→

L1(µ)
f(u).

If S is a metrizable space and d is a metric compatible with the topol-
ogy of S this is equivalent with µ(d(un, u) ≥ ε) −→ 0, for any ε > 0,
therefore with the classical convergence in measure of (un)n∈N to u.

Surprisingly, for a separable metric space S, the convergence in
measure on S is preserved if we replace the strong convergence on
L1(µ) with the weak convergence (i.e. f(un)

w−−−−−→
L1(µ)

f(u), for every



THE CENTENNIAL OF CONVERGENCE IN MEASURE 223

bounded continuous mapping f : S → R). But this last convergence
is not induced by a complete uniformity (see [8]).

In the case where S is a metrizable Suslin space (particularly, if S is
a Polish space), Dudley showed that (un)n∈N is convergent in measure
to u : Ω → S if and only if

sup
‖f‖BL≤1

∣∣∣∣
∫

A

[f(un)− f(u)] dµ

∣∣∣∣ −→ 0, for every A ∈ A,

where

‖f‖BL = ‖f‖∞ + ‖f‖L = sup
x∈S

|f(x)|+ sup
d(x,y)6=0

|f(x)− f(y)|
d(x, y)

,

and d is a metric compatible on S.
Let U be the uniformity on the set of measurable functions for which

a sub-base is {UA,ε : A ∈ A, ε > 0}, where

UA,ε = {(u, v) : sup
‖f‖BL≤1

∣∣∣∣
∫

A

[f(u)− f(v)] dµ

∣∣∣∣ < ε}.

U is a no-complete uniformity compatible with the topology of con-
vergence in measure. A completion of the space of all measurable
functions by rapport of U is the space of Young measures on S (see
[2, 9] for Young measures).

2. Definitions. General properties

Let (Ω,A, µ) be a positive finite measure space; a set N ⊆ Ω is a
µ–null set if there exists B ∈ A such that N ⊆ B and µ(B) = 0.

The Lebesgue extension of (Ω,A, µ) is the measure space (Ω,A1, µ1)
whereA1 = {A∪N : A ∈ A, N is a µ–null set} and µ1(A∪N) = µ(A),
for all A ∈ A and all µ–null set N .

The measure µ is complete if A = A1 and µ = µ1; in this paper we
suppose this situation.

2.1. Definition. Let (S, τS) be a topological space; a function u :
Ω → S is µ–measurable, or simple measurable, if u−1(D) ∈ A, for
very D ∈ τS; A ⊆ S is µ–measurable iff the characteristic function χ

A
is µ–measurable (i.e. A ∈ A).

Let M(S) be the set of all µ–measurable functions on Ω to S. This
set can be partitioned into equivalence classes; two functions belong-
ing to the same equivalence class if they coincide µ-almost everywhere
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(with except of a µ–null set). We note by M(S) the set of all equiv-
alence classes and we identify any µ–measurable function of M(S)
with the corresponding equivalence class of M(S) and with all µ–
measurable functions on Ω to S that belong to this equivalence class.

Particularly, if S is a separable metric space, then u is measurable
whenever u−1(B) ∈ A, for all open ball B ⊆ S. If S = R then
u : Ω → R is measurable whenever u−1(Aa) ∈ A, for all a ∈ R, where
Aa may have one of the following forms: (a, +∞), [a, +∞), (−∞, a) or
(−∞, a].

2.2. Theorem (see [21], 1.4.20). Let S be a topological space and let
u : Ω → S; if u is µ–measurable then f ◦ u is µ–measurable, for every
continuous mapping f : S → R.

Conversely, if S is a metric space and f ◦ u is µ–measurable, for
every continuous mapping f : S → R then u is µ–measurable.

2.3. Theorem. Let w = (u, v) : Ω → S × T be a mapping of Ω into
a product of topological spaces S and T . If w is µ–measurable then so
are u : Ω → S and v : Ω → T .

Conversely, if u and v are measurable and every open set in S × T
is a countable union of open sets D×G, where D is open in S and G
is open in T , then w is µ-measurable.

Proof. If w is µ–measurable then, from theorem 2.2, composing w
with the projections of S × T on S or T , we obtain that both u and
v are measurable.

Conversely, if u and v are measurable, then, for any open sets D, G
in S, T respectively, we have w−1(D ×G) = u−1(D)× v−1(G). Hence
w−1(D ×G) is µ–measurable.

The measurability of w−1(U), for any open set U ⊆ S × T , follows
from the assumption made on the topology of S × T . ¥

2.4. Remarks. (i) If S and T are two separable metric spaces then
w = (u, v) : Ω → S × T is µ–measurable if and only if u and v are
µ–measurable.

(ii) If (S, d) is a separable metric space and u, v : Ω → S are two
µ–measurable mappings then d(u, v) : Ω → R+, t 7→ d(u(t), v(t)), is a
µ–measurable mapping. Indeed, from (i), w = (u, v) : Ω → S × S is a
µ–measurable mapping and, from the theorem 2.2, d ◦ w = d(u, v) is
µ–measurable.
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(iii) We recall Nedoma’s pathology: if A is a σ–algebra on a set S
with card(S) > card(R), then the diagonal set {(x, x) : x ∈ S} is not
a member of the product σ–algebra A⊗A. In this case, a metric d on
the S is not a measurable mapping if we equip S × S with the product
σ–algebra A⊗A, where A is the Borel σ–algebra on (S, d); for more
details see 21.8, page 550, from [19] and [13].

We remark that, in this case, S cannot be equiped with a metric
d that makes S separable (if (S, d) is a separable metric space then
card(S) ≤ card(R)).

Now we define the convergence in measure on M(S). This notion
was introduced in 1909 by F. Riesz ([18]) in the case S = R:
“Soient f1(x), f2(x), · · · , f(x) des fonctions mesurables, définies
sur l’ensemble E; ε étant une quantité positive quelconque, nous
désignerons par m(n, ε) la mesure de l’ensemble [|f(x) − fn(x)| > ε];
alors nous dirons que la suite [fn(x)] tend en mesure vers la fonction
f(x) si, quelque petite que soit la quantité ε, on a limn=∞ m(n, ε) = 0.”

2.5. Definition. Let (Ω,A, µ) be a positive finite measure space,
let (S, d) be a separable metric space, let (un)n ⊆ M(S) and let u ∈
M(S); we say that (un)n converges in measure to u, and write

un
µ−→ u, if, for every ε > 0,

lim
n→∞

µ ({t ∈ Ω : d(un(t), u(t)) ≥ ε}) = 0.

(un)n is Cauchy in measure if, for every ε > 0,

lim
m,n→∞

µ ({t ∈ Ω : d(um(t), un(t)) ≥ ε}) = 0.

Usually, we will note {t ∈ Ω : d(u(t), v(t)) ≥ ε} by (d(u, v) ≥ ε).
So (un)n converges in measure to u ((un)n is Cauchy in measure) if,

for every ε > 0, limn→∞ µ(d(un, u) ≥ ε) = 0 (limm,n→∞ µ(d(um, un) ≥
ε) = 0).

Even in the case of a non-separable metric space (S, d) and of non-
measurable functions we still say that (un)n ⊆ SΩ converges in mea-
sure to u ∈ SΩ (respectively, (un)n is Cauchy in measure) if, for
every ε > 0,

lim
n→∞

µ∗(d(un, u) ≥ ε) = 0

( lim
m,n→∞

µ∗(d(um, un) ≥ ε) = 0).
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In the above relations µ∗ : P(Ω) → R+ is the outer measure associated
to µ:

µ∗(A) = inf{µ(B) : A ⊆ B, B ∈ A}.
Note that µ∗(A) = µ(A) if A ∈ A.

Because of Nedoma’s pathology (see (iii) of remark 2.4, generally,
the set (d(un, u) ≥ ε) /∈ A and we must replace the measure with the
outer measure.

In the 2.14 we will extend the convergence in measure to the general
topological case.

2.6. Theorem (Riesz, 1909 - for the real-valued measurable map-
pings).

Let (un)n be a sequence of arbitrary mappings defined on Ω with
values in the metric space (S, d).

1). If (un)n converges in measure to u : Ω → S then there exists a
subsequence (u′n)n of (un)n that converges to u µ–almost uniformly (i.
e., for each ε > 0, there is a set Aε ⊆ Ω with µ∗(Aε) < ε so that (u′n)n

converges to u uniformly on Ω \ Aε); (u′n)n converges also µ–almost
everywhere to u.

2). If (un)n converges to u µ–almost uniformly then (un)n converges
in measure and µ–almost everywhere to u.

3). If (S, d) is a complete metric space and if (un)n is Cauchy in
measure then there exist a function u : Ω → S and a subsequence
(u′n)n of (un)n µ–almost uniformly convergent to u.

4). If (S, d) is complete metric space then (un)n is convergent in
measure if and only if (un)n is Cauchy in measure.

Proof. 1). We suppose that, for any ε > 0, limn µ∗(d(un, u) > ε) =
0; then we can find a subsequence (u′n)n of (un)n such that

µ∗
(

d(u′n, u) ≥ 1

2n

)
<

1

2n
, for every n ∈ N.

Let An =
∞⋃

i=n

(
d(u′i, u) >

1

2i

)
and A =

∞⋂
n=1

An; then, for every n ∈ N,

µ∗(An+1) < 1
2n and µ∗(A) = 0. For every p ∈ N, (u′n)n is convergent

to u uniformly on Ω \ Ap and (u′n)n is pointwise convergent to u on
Ω \ A.

2). For every θ > 0 there exists Aθ ⊆ Ω such that µ∗(Aθ) < θ and
(un)n converges to u uniformly on Ω \ Aθ. For every ε > 0, let now
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n0 ∈ N such that d(un(t), u(t)) ≤ ε, for every n ≥ n0 and for any
t ∈ Ω \ Aθ. Therefore (d(un, u) > ε) ⊆ Aθ and so (un)n is convergent
in measure to u.

If p ∈ N∗, θ = 1
p

and if Ap is such that µ∗(Ap) < 1
p

and un
u−−−→

Ω\Ap

u

then A =
⋂∞

p=1 Ap is a µ–null set and un(t) → u(t), for every t ∈ Ω\A.

3). If (un)n is Cauchy in measure then, as it is noted above, we can
find a subsequence (u′n)n of (un)n such that, for every n ∈ N,

µ∗
(

d(u′n+1, u
′
n) >

1

2n

)
<

1

2n
.

For any p ∈ N, let us note Ap =
∞⋃
i=p

(
d(u′i+1, u

′
i) >

1

2i

)
and A =

∞⋂
p=1

Ap.

Then µ∗(Ap) < 1
2p−1 , µ

∗(A) = 0 and, for every t ∈ Ω \ A, (u′n(t))n is
a Cauchy sequence in the complete metric space (S, d). Fix a point

x0 ∈ S and then define u : Ω → S, u(t) =

{
limn u′n(t) , t ∈ Ω \ A,

x0 , t ∈ A.
Then (u′n)n converges to u µ–almost uniformly.
4). Obviously, every sequence convergent in measure is Cauchy in

measure.
Conversely, if (un)n is Cauchy in measure then, from 3), there exist

a function u and a subsequence (u′n)n of (un)n µ–almost uniformly
convergent to u; from 2) (u′n)n converges in measure to u.

For any ε > 0 and for every n ∈ N,

µ∗(d(un, u) > ε) ≤ µ∗(d(un, u
′
n) > ε) + µ∗(d(u′n, u) > ε)

and so (un)n is convergent in measure to u. ¥

2.7. Theorem (see theorem 4.2.2 from [6]). If (S, d) is a metric
space and if (un)n ⊆ M(S) converges to u µ–almost everywhere then
u ∈M(S).

Proof. Let D be an open set in (S, d); if u−1(D) = ∅ then u−1(D) ∈
A.
Suppose now that u−1(D) 6= ∅.
For every m ∈ N∗ let Fm = {y ∈ D : S(y, 1

m
) ⊆ D}, where S(y, 1

m
) =

{z ∈ S : d(y, z) < 1
m
}. Fm is a closed set, for every m ∈ N∗. Indeed, if

(yp)p ⊆ Fm and yp → y then, for every z ∈ S(y, 1
m

), d(y, z) < 1
m

; there

exists p ∈ N such that d(yp, z) < 1
m

so z ∈ S(yp,
1
m

) ⊆ D. It follows
that S(y, 1

m
) ⊆ D, hence y ∈ Fm.
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Now let A be the µ–null set {t ∈ Ω : un(t) 9 u(t)}; then

(∗) u−1(D) \ A =
⋃

m∈N∗

⋃

n∈N

⋂

k≥n

u−1
k (Fm) \ A.

Indeed, for every t ∈ u−1(D) \ A, u(t) ∈ D and un(t) → u(t).There
exist m ∈ N∗ such that u(t) ∈ Fm and there is n ∈ N∗ such
that d(uk(t), u(t)) < 1

2m
, for every k ≥ n. For every y ∈

S(uk(t),
1

2m
), d(y, u(t)) ≤ d(y, uk(t)) + d(uk(t), u(t)) < 1

m
. There-

fore S(uk(t),
1

2m
) ⊆ S(u(t), 1

m
) ⊆ D, so that uk(t) ∈ F2m. Hence

t ∈ u−1
k (F2m), for every k ≥ n.

Conversely, for every t ∈ ⋃
m∈N∗

⋃
n∈N

⋂
k≥n u−1

k (Fm)\A, there exist
m,n ∈ N∗ such that, for every k ≥ n, uk(t) ∈ Fm and uk(t) → u(t).
As Fm is a closed set, u(t) ∈ Fm ⊆ D. So, t ∈ u−1(D) \ A.
Now, as (un) ⊆ M(S) and Fm are closed sets,⋃

m∈N∗
⋃

n∈N
⋂

k≥n u−1
k (Fm) ∈ A and, from (∗), u−1(D) is a µ–

measurable set, for every D ∈ τS. ¥

2.8. Remarks. (i) From the above theorem, in the theorem 2.6,
u ∈M(S) whenever (un)n ⊆M(S).

(ii) Generally, for a topological space S, the result in the previous
theorem is not valid (see the proposition 4.2.3 from [6]).

2.9. Theorem. Let (S, d) be a metric space; a sequence (un)n is con-
vergent in measure to u if and only if every subsequence (u′n)n of (un)n

has a subsubsequence (u′′n)n convergent to u µ–almost everywhere.

Proof. Every subsequence (u′n)n of a sequence (un)n convergent in
measure to u is convergent in measure to u. From 1) of theorem 2.6 ,
(u′n)n has a subsequence (u′′n)n convergent µ–almost everywhere to u.

Conversely, if (un)n does not converge in measure to u, then there
exist an ε > 0 and a subsequence (u′n)n such that µ∗(d(u′n, u) > ε) ≥ ε,
for every n ∈ N; but this subsequence cannot have a subsubsequence
µ–almost everywhere convergent to u. ¥

2.10. Proposition. Let S and T be metric spaces and let (un)n ⊆ SΩ

be a sequence convergent in measure to u : Ω → S. If f : S → T is a
continuous mapping then (f(un))n ⊆ TΩ is convergent in measure to
f(u).
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Proof. Every subsequence (u′n)n of (un)n has a subsubsequence
(u′′n)n convergent to u µ–almost everywhere. Then (f(u′′n))n is µ–
almost everywhere convergent to f(u). Therefore, from the theorem
2.9, (f(un))n is convergent in measure to f(u). ¥

2.11. Corollary. Let S, T, V be three metric space and let (un)n ⊆
SΩ convergent in measure to u ∈ SΩ and (vn)n ⊆ TΩ convergent in
measure to v ∈ TΩ. If h : S × T → V is a mapping continuous on the
product metric space S × T then (h(un, vn))n ⊆ V Ω is convergent in
measure to h(u, v).

From the characterization given in the theorem 2.9 the notion of
convergence in measure depends only on the topology of S and is
independent of the choice of metric d. Fréchet showed that the con-
vergence almost everywhere is not a topological one, even on the sub-
space M(S) ⊆ SΩ. For this reason the characterization presented in
the theorem 2.9 is not a convenient tool to extend the convergence in
measure from metric spaces to general topological spaces.

The following theorem presents some topological alternatives of def-
inition 2.5 for convergence in measure.

2.12. Theorem (Hoffmann-Jørgensen, 1996 - see [14]). Let (S, d)
be a separable metric space, let (un)n ⊆ M(S) and u ∈ M(S); the
following statements are equivalents:

(i) un
µ−→ u.

(ii)
∫
Ω

Φ(un, u)dµ → 0, for every bounded continuous mapping
Φ : S × S → [0, +∞) with Φ(x, x) = 0, for every x ∈ S.

(iii)
∫
Ω
|f(un)− f(u)|dµ → 0, for every f ∈ Cb(S).

(iv)
∫

A
f(un)dµ → ∫

A
f(u)dµ, for every A ∈ A and every f ∈ Cb(S).

(v) µ((un, u) ∈ F ) → 0, for every closed set F ⊆ S × S with
µ((u, u) ∈ F ) = 0.

Proof. From (ii) of remark 2.4, the mapping t 7→ (un(t), u(t)) is
measurable and so ((un, u) ∈ F ) ∈ A.

(i) =⇒ (ii) Let Φ : S × S → [0, +∞) be a bounded continuous

mapping with Φ(x, x) = 0, for every x ∈ S. For every subsequence
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(u′n)n of (un)n there exists a subsubsequence (u′′n)n convergent to u
µ–almost everywhere (see the theorem 2.9); so (Φ(u′′n, u))n converges
µ-a.e. to 0. From theorem of bounded convergence

∫
Ω

Φ(u′′n, u)dµ → 0.

So, every subsequence of
(∫

Ω
Φ(un, u)dµ

)
n
⊆ R has a subsubsequence

convergent to 0; then
∫

Ω
Φ(un, u)dµ → 0.

(ii) =⇒ (iii) For every f ∈ Cb(S), the mapping Φ : S × S →
[0, +∞), defined by Φ(x, y) = |f(x)− f(y)|, is a bounded continuous
function on S × S and Φ(x, x) = 0, for every x ∈ S. Therefore∫
Ω
|f(un)− f(u)|dµ → 0.

(iii) =⇒ (iv) This implication is obvious if we remark that (iii)

says that (f(un))n is strongly convergent to f(u) while (iv) that it is
weakly convergent to f(u) in L1(µ).

(iv) =⇒ (i) a). First, we suppose that (S, d) is a compact metric

space; so Cb(S) = C(S). With the uniform convergence norm, ‖ · ‖∞,
C(S) is a separable Banach space.

The mapping ϕ : Ω → C(S) defined by ϕ(t) = d(u(t), ·), for every
t ∈ Ω, is a measurable function (ϕ = d(·, ·)◦u and we use the theorem
2.2). Moreover

‖ϕ‖1 =

∫

Ω

‖ϕ(t)‖∞dµ(t) =

∫

Ω

sup
x∈S

d(u(t), x)dµ(t) ≤ K · µ(Ω) < +∞,

where K = supx,y∈S d(x, y).
Hence ϕ ∈ L1(µ,C(S)). As the subspace of all µ–simple functions is

dense in L1(µ,C(S)), for every ε > 0, there exists θ : Ω → C(S), θ(t) =∑p
k=1 χ

Ak
(t) · fk such that

(1) ‖ϕ− θ‖1 =

∫

Ω

sup
x∈S

|ϕ(t)(x)− θ(t)(x)|dµ(t) <
ε

4

(in the representation of θ, {A1, · · · , Ap} ⊆ A is a partition of Ω and
{f1, · · · , fp} ⊆ C(S)).

From (iv),
∑p

k=1

∫
Ak

fk(un)dµ → ∑p
k=1

∫
Ak

fk(u)dµ and so, there
exists n0 ∈ N such that, for every n ≥ n0,

(2)

∣∣∣∣∣
p∑

k=1

∫

Ak

fk(un)dµ−
p∑

k=1

∫

Ak

fk(u)dµ

∣∣∣∣∣ <
ε

2
.
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Now, from (2) and (1)
∫

Ω

d(u(t), un(t))dµ(t) ≤
∫

Ω

|d(u, un)−
p∑

k=1

χ
Ak
· fk(un)|dµ+

+

∣∣∣∣∣
p∑

k=1

∫

Ak

fk(un)dµ−
p∑

k=1

∫

Ak

fk(u)dµ

∣∣∣∣∣+
∣∣∣∣∣

p∑

k=1

∫

Ak

fk(u)dµ−
∫

Ω

d(u, u)dµ

∣∣∣∣∣ ≤

≤
∫

Ω

sup
x∈S

|d(u(t), x)− θ(t)(x)| dµ(t) +
ε

2
+

∫

Ω

|θ(t)(u)− ϕ(t)(u)|dµ <

<
ε

4
+

ε

2
+

∫

Ω

sup
x∈S

|ϕ(t)(x)− θ(t)(x)|dµ < ε, for every n ≥ n0.

Therefore
∫

Ω
d(u(t), un(t))dµ(t) → 0.

But, for every ε > 0,∫

Ω

d(u(t), un(t))dµ(t) ≥
∫

(d(u,un)>ε)

d(u, un)dµ ≥ ε · µ(d(u, un) > ε)

and so µ(d(u, un) > ε) → 0, for every ε > 0. Hence un
µ−→ u.

b). Let now S be a separable metric space and let j : S → [0, 1]N be

the natural embedding of S in the Hilbert cube; we note by S̄ = j(S),
the metric compactification of S and let d̄ be a compatible metric on S̄.
We define the mapping J : M(S) →M(S̄) by J(u) = j ◦ u ∈ M(S̄)
(for the measurability of J see theorem 2.2 ). We remark that J is an

injective function and that un
µ−→ u in M(S) iff J(un)

µ−→ J(u) in
M(S̄) (we can use the subsequence characterization from the theorem
2.9).

The J is an homeomorphism between M(S) and J(M(S)) ⊆
M(S̄).

For every f̄ ∈ Cb(S̄) we define f : S → R letting f = f̄ ◦ j. Then
f ∈ Cb(S) and therefore∫

Ω

|f̄(j(un))− f̄(j(u))|dµ =

∫

Ω

|f(un)− f(u)|dµ → 0.

From a), j ◦ un = J(un)
µ−→ j ◦ u = J(u) and so un

µ−→ u.

(ii) =⇒ (v) For every F = F̄ ⊆ S × S with µ((u, u) ∈ F ) = 0 and

for every a > 0 we note by F a = {(x, y) ∈ S×S : e((x, y), F ) < a} the
open e–ball of radius a and center F , where e = d× d is the product
metric on S×S; F a is an open set in S×S and so there is a continuous
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function Φa from S × S to [0, 1] such that Φa(x, y) = 1 if (x, y) ∈ F
and Φa(x, y) = 0 for (x, y) ∈ (S × S) \ F a.
We define now Φ : S×S :→ R+, Φ(x, y) = |Φa(x, y)−Φa(x, x)|. Then
Φ is a bounded continuous mapping on S × S with Φ(x, x) = 0, for
every x ∈ S.
From (ii),

∫
Ω

Φ(un, u)dµ → 0. Now, Φa(x, y) ≤ Φ(x, y) + Φa(x, x) and
then

(3) lim sup
n

∫

Ω

ΦA(un, u)dµ ≤ lim
n

∫

Ω

Φ(un, u)dµ +

∫

Ω

Φa(u, u)dµ.

But ∫

Ω

Φa(u, u)dµ =

∫

((u,u)∈F a)

Φa(u, u)dµ ≤ µ((u, u) ∈ F a)

and we rewrite (3)

(4) lim sup
n

∫

Ω

Φa(un, u)dµ ≤ µ((u, u) ∈ F a).

On the other hand,∫

Ω

Φa(un, u)dµ =

∫

((un,u)∈F a)

Φa(un, u)dµ ≥

≥
∫

((un,u)∈F )

Φa(un, u)dµ = µ((un, u) ∈ F )

and, from (4), we obtain

(5) lim sup
n

µ((un, u) ∈ F ) ≤ µ((u, u) ∈ F a), for every a > 0.

lim
a↓0

µ((u, u) ∈ F a) = µ((u, u) ∈ F ) = 0 and, from (5), lim
n

µ((un, u) ∈
F ) = 0.

(v) =⇒ (ii) For every bounded continuous mapping Φ : S × S →
[0, +∞) with Φ(x, x) = 0 and for every p ∈ N∗, Fp = Φ−1[1

p
, +∞) is a

closed set in S × S and µ((u, u) ∈ Fp) = µ(∅) = 0. From (v),

(6) µ((un, u) ∈ Fp) = µ

(
Φ(un, u) ≥ 1

p

)
→ 0.

On the other hand,
(7)∫

Ω

Φ(un, u)dµ =

∫

(Φ(un,u)< 1
p
)

Φ(un, u)dµ +

∫

(Φ(un,u)≥ 1
p
)

Φ(un, u)dµ ≤
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≤ 1

p
· µ(Ω) + M · µ

(
Φ(un, u) ≥ 1

p

)
,

where M is such that Φ(x, y) ≤ M , for every (x, y) ∈ S × S.
From (6) and (7)

lim sup
n

∫

Ω

Φ(un, u)dµ ≤ 1

p
· µ(Ω), for every p ∈ N∗

and therefore limn

∫
Ω

Φ(un, u)dµ = 0. ¥

2.13. Remark. The equivalence (iii) ⇐⇒ (iv) shows that the strong
convergence of (f(un))n in L1(µ) is equivalent with the weak conver-
gence, for every f ∈ Cb(S). We remark that

sup
A∈A

∣∣∣∣
∫

A

[f(un)− f(u)] dµ

∣∣∣∣ ≤
∫

Ω

|f(un)− f(u)|dµ ≤

≤ 2 · sup
A∈A

∣∣∣∣
∫

A

[f(un)− f(u)] dµ

∣∣∣∣ .

So (iii) is equivalent with
∫

A
f(un)dµ → ∫

A
f(u)dµ, uniformly with

A ∈ A. From (iv) this is equivalent with
∫

A
f(un)dµ → ∫

A
f(u)dµ,

pointwise with A ∈ A.

Previous theorem allows us to extend in a topological sense the
definition of convergence in measure to topological spaces.

2.14. Definition. Let S be a topological space; a sequence (un)n ⊆
M(S) converges in measure to u ∈M(S) if∫

Ω

|f(un)− f(u)|dµ → 0, for every f ∈ Cb(S),

i.e. if f(un)
‖·‖1−−−→

L1(µ)
f(u), for every f ∈ Cb(S).

3. Metrics on M(S)

In [11] M. Fréchet introduced a metric compatible with the topology
of convergence in measure on M(R). Other metrics were introduced
by Ky Fan.

3.1. Theorem (see th. 9.2.2 of [6]). Let (S, d) be a separable metric
space and let α : M(S)×M(S) → R+ defined by

α(u, v) = inf{ε > 0 : µ(d(u, v) > ε) ≤ ε}.
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Then:
(i) 0 ≤ α(u, v) ≤ µ(Ω) and µ(d(u, v) > α(u, v)) ≤ α(u, v).

(In the other words the infimum in definition of α(u, v) is attained.)
(ii) α is a metric on M(S).

(iii) un
µ−−−→

M(S)
u ⇔ α(un, u) → 0 and

(un)n is Cauchy in measure in M(S) ⇔ (un) is α–Cauchy.

Proof. (i) Let us remark that, if µ(d(u, v) > ε) ≤ ε and if ε < η,
then µ(d(u, v) > η) ≤ η.

If we suppose that α(u, v) > µ(Ω) then µ(d(u, v) > µ(Ω)) > µ(Ω)
what is absurd.

Let now εk ↓ α(u, v) such that µ(d(u, v) > εk) ≤ εk. Then, for every
j ≤ k, µ(d(u, v) > εk) ≤ εj. Letting k → +∞ in the last inequality,
µ(d(u, v) > α(u, v)) ≤ εj, for all j and so µ(d(u, v) > α(u, v)) ≤
α(u, v).

(ii) α is symmetric and nonnegative.
α(u, v) = 0 if and only if d(u, v) = 0 µ–almost everywhere so that

iff u = v µ–a.e.
Let now u, v, w ∈ M(S); for every a > α(u,w) + α(v, w) there exist

b > α(u, w) and c > α(v, w) such that a = b + c. Let ε < b and
η < c such that µ(d(u, w) > ε) ≤ ε and µ(d(v, w) > η) ≤ η. As
d(u, v) ≤ d(u,w) + d(v, w), (d(u,w) ≤ ε) ∩ (d(v, w) ≤ η) ⊆ (d(u, v) ≤
ε + η) or (d(u, v) > ε + η) ⊆ (d(u,w) > ε) ∪ (d(v, w) > η) from where
µ(d(u, v) > ε + η) ≤ ε + η. Therefore α(u, v) < ε + η < b + c = a so
that α(u, v) ≤ α(u,w) + α(v, w).

Therefore α is a metric on M(S).

(iii) If un
µ−→ u (respectively, (un)n is Cauchy in measure) then,

for every ε > 0, there is n0 ∈ N such that µ(d(un, u) > ε) < ε, for
any n ≥ n0 (respectively, µ(d(um, un) > ε) < ε, for every m,n ≥ n0)
so that α(un, u) ≤ ε, for every n ≥ n0 (α(um, un) ≤ ε, for every
m,n ≥ n0).

Therefore α(un, u) → 0 (α(um, un) → 0).
Conversely, if α(un, u) → 0 (respectively, α(um, un) → 0) then, for

every η > 0 there is n0 ∈ N such that α(un, u) < η, for any n ≥ n0

(α(um, un) < η, for every m,n ≥ n0).
So µ(d(un, u) > η) ≤ η, for any n ≥ n0 (µ(d(um, un) > η) ≤ η, for

every m,n ≥ n0) and therefore un
µ−→ u ((un)n is Cauchy in measure).

¥
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3.2. Corollary. If (S, d) is a separable complete metric space then
(M(S), α) is a complete metric space.

The proof follows immediately from the previous theorem and (iv)
of theorem 2.6.

3.3. Theorem. Let (S, d) be a separable metric space and let β, γ :
M(S)×M(S) → R+ defined, for every u, v ∈ M(S), by

β(u, v) =

∫

Ω

d(u, v)

1 + d(u, v)
dµ.

γ(u, v) = inf{ε + µ(d(u, v) > ε) : ε > 0}.
Then

(i) β and γ are metrics on M(S).

(ii)
1

1 + µ(Ω)
· α2 ≤ β ≤ (1 + µ(Ω)) · α and α ≤ γ ≤ 2 · α.

Proof. (i) β and γ are both nonnegative and symmetric.
β(u, v) = 0 iff d(u, v) = 0, µ–a.e., hence iff u = v µ-a.e.
If γ(u, v) = 0 then there exists a sequence (εn)n ⊆ (0, +∞) such

that εn + µ(d(u, v) > εn) < 1
n
, for every n ∈ N∗. Therefore εn < 1

n

so that µ(d(u, v) > 1
n
) < 1

n
so that µ(d(u, v) 6= 0) = 0, from where

u = v, µ–a.e.
Let now u, v, w ∈ M(S); from d(u, v) ≤ d(u,w) + d(v, w) we obtain

d(u, v)

1 + d(u, v)
≤ d(u,w) + d(v, w)

1 + d(u, w) + d(v, w)
≤ d(u,w)

1 + d(u,w)
+

d(v, w)

1 + d(v, w)
.

By integrating on Ω, β(u, v) ≤ β(u,w) + β(v, w).
For every a > γ(u,w)+γ(v, w) let b > γ(u,w) and c > γ(v, w) such

that a = b + c and then let ε, η > 0 such that ε + µ(d(u, v) > ε) < b
and η + µ(d(u, v) > η) < c. As in the proof of (ii) from theorem 3.1,
µ(d(u, v) > ε + η) ≤ µ(d(u,w) > ε) + µ(d(v, w) > η) from where
γ(u, v) ≤ ε + η + µ(d(u, v) > ε + η) ≤ b + c = a and we obtain the
triangle inequality for γ.

(ii) For every u, v ∈ M(S) and for any a > α(u, v), µ(d(u, v) > a) <
a.

β(u, v) =

∫

(d(u,v)>a)

d(u, v)

1 + d(u, v)
dµ +

∫

(d(u,v)≤a)

d(u, v)

1 + d(u, v)
dµ ≤

≤ µ(d(u, v) > a) +
a

1 + a
· µ(Ω) < a + a · µ(Ω)
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so that
1

1 + µ(Ω)
·β(u, v) < a. Therefore β(u, v) ≤ (1+µ(Ω)) ·α(u, v).

For every a < α(u, v), µ(d(u, v) > a) < a. Hence

β(u, v) ≥
∫

(d(u,v)>a)

d(u, v)

1 + d(u, v)
dµ ≥ a

1 + a
· µ(d(u, v) > a) >

>
a2

1 + a
>

a2

1 + α(u, v)
>

a2

1 + µ(Ω)

so that
√

[1 + µ(Ω)] · β(u, v) > a. Therefore
1

1 + µ(Ω)
· α2(u, v) ≥

β(u, v).
For every a > γ(u, v) there is ε > 0 such that ε+µ(d(u, v) > ε) < a

from where ε < a and µ(d(u, v) > a) ≤ µ(d(u, v) > ε) < a and so
α(u, v) ≤ a. Therefore α(u, v) ≤ γ(u, v).

For every a > α(u, v), µ(d(u, v) > a) < a therefore γ(u, v) ≤ a +
µ(d(u, v) > a) < 2a and so γ(u, v) ≤ 2 · α(u, v). ¥

3.4. Corollary.
(i) If S is a separable metric space then α, β and γ are uniformly

equivalent metrics on M(S).
(ii) If S is a complete separable metric space then

(M(S), α), (M(S), β) and (M(S), γ) are complete metric spaces.

3.5. Remark. α and β are called the Ky Fan metrics and γ is the
metric introduced by Fréchet in [11].

In the particular case where Ω = [0, 1] and S = R, Fréchet charac-
terizes the relatively compact subsets of (M(S), γ). In the case where
S is a complete separable metric space, due to condition (ii) of the
corollary 3.4, a subset A ⊆ (M(S), γ) will be relatively compact if
and only if it is totally bounded. Using this remark it is proved in
[7] the following characterization of compactness in the topology of
convergence in measure.

3.6. Theorem (see IV.11.1 of [7]). Let (S, ‖·‖) be a separable Banach
space; a subset A ⊆ M(S) is relatively compact in measure if and only
if, for every ε > 0 there exist a constant K > 0 and a measurable
partition {E1, · · · , En} of Ω such that:

1). µ(‖f‖ ≥ K) < ε, for every f ∈ A.
2). sups,t∈Ei\Ef

‖f(s)− f(t)‖ < ε, for every f ∈ A and for any

i = 1, · · · , n, where Ef = (‖f‖ ≥ K).
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3.7. Remark. The previous theorem was proved first by Fréchet in
the case Ω = [0, 1] and S = R (see [12]). The generalization to an
arbitrary measure space is due to Šmulian ([20]).

3.8. Remark. Let (S, d) be a separable metric space; for every
f ∈ Cb(S) we define df : M(S)×M(S) → R+ by df (u, v) = ‖f(u)−
f(v)‖1 =

∫
Ω
|f(u) − f(v)|dµ, for every u, v ∈ M(S). Then {df : f ∈

Cb(S)} is a family of pseudometrics on M(S); from (iii) of the theorem
2.12, this family generates the topology of convergence in measure on
M(S).

From the (iv) of 2.12, the same topology is generated by the family
of pseudometrics {dA,f : A ∈ A, f ∈ Cb(S)}, where dA,f : M(S) ×
M(S) → R+, dA,f (u, v) =

∣∣∣∣
∫

A

[f(u)− f(v)]dµ

∣∣∣∣.
In the particular case of a locally compact space another family of

pseudometrics generating the topology of convergence in measure is
{dA,f : A ∈ A, f ∈ C0(S)} where C0(S) is the set of all real continuous
mappings on S vanishing at infinity. In [8] we show that the uniformity
generated by this family is not complete.

Let (S, d) be a separable metric space; for every f : S → R let

‖f‖∞ = supx∈S |f(x)| ∈ R+ and ‖f‖L = supx 6=y

|f(x)− f(y)|
d(x, y)

∈ R+.

We note by BL(S, d) the Banach space of all functions f : S → R for
which ‖f‖BL = ‖f‖L + ‖f‖∞ < +∞. We remark that BL(S, d) ⊆
Cb(S).

3.9. Theorem (see theorem 6 and 8 in [4] and proposition 3.3.4
from [9]). Let (un)n ⊆ M(S) and let u ∈ M(S); the following two
statements are equivalent:

(i)
∫

A
f(un)dµ → ∫

A
f(u)dµ, for every A ∈ A and every f ∈ Cb(S).

(ii) sup‖f‖BL≤1

∣∣∣∣
∫

A

[f(un)− f(u)]dµ

∣∣∣∣ → 0, for every A ∈ A.

3.10. Remark. From the previous theorem and (iv) of theorem 2.12

we can deduce that un
µ−→ u in M(S) if and only if, for every A ∈ A,

dA(un, u) → 0, where dA(u, v) = sup‖f‖BL≤1

∣∣∣∣
∫

A

[f(un)− f(u)]dµ

∣∣∣∣.
So, the topology of convergence in measure is generated also by the

family of pseudometrics {dA : A ∈ A}.
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