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NEW HYBRID GENETIC ALGORITHM WITH ADAPTIVE 

OPERATORS AND VARIABILITY TARGET FOR OPTIMIZING 
VARIABLE ORDER IN OBDD  

 

I. FURDU AND O. BRUDARU 
 

Abstract. Reduced Ordered Binary Decision Diagrams are one of the most 
powerful data structure for boolean manipulation on switching functions as 
top process in digital circuits design. The size of ROBDDs is very sensitive to 
the ordering choices of input variables. A new genetic algorithm is described 
for optimizing the variable order. It uses adaptive operators and includes a 
mechanism based on information energy for controlling the variability of the 
population. Experimental investigations of the performance of this genetic 
algorithm are described. 
 

1. INTRODUCTION 
The OBDD size is given by the number of its nonterminal nodes. A smaller 

number of nodes imply a smaller circuit design, whereas a bad ordering can 
lead to an exponential growth in the size of OBDD. 

The existing variable ordering methods [10, 12, 18] include static variable 
ordering techniques and dynamic variable ordering techniques. Most of static 
techniques are used to determine good initial variable orders before 
constructing the OBDD of a function and they are usually based on a breadth-
first or depth-first traversal of a circuit [11, 13] from its outputs to inputs. 
Dynamic techniques are based on a process of improving the variable order 
and the size of an already built OBDD [4, 19, 22]. The Rudell’s sifting 
algorithm and window permutation algorithm [21, 24] are the most popular 
dynamic techniques.  

In experimental studies, it turned out that methods based on genetic 
algorithms yield better results than other techniques. Even the runtime for 
genetic reordering algorithms were brought down to a reasonable level, they 
are still not competitive to deterministic reordering heuristics like window 
permutation or sifting [16].  
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Genetic algorithms in finding the best ordering were first introduced in [7] 
where the main genetic operations are PMX (partially-mapped crossover) and 
mutation. Simulated annealing used in [1] is a related approach. These two 
methods yield better results than other techniques, but they are comparably 
slow (see e.g.[24]) as any other GA based method. In order to speed up the 
computations, other approaches have been suggested [8, 23] which include 
treating of sifting as a genetic operation that replaces crossover techniques or 
advanced tricks for setting the parameters. 

Recent research [5, 6, 9] have shown that parallel or distributed genetic 
algorithms are a feasible way to solve the problem of the best ordering, but the 
cost of fitness evaluation remain an expensive task which affects the global 
cost of solution even such algorithms benefits from asynchronous behavior or 
from the independence of the processes. 

This paper focuses on the purely part of genetic reordering algorithms in 
order to improve the solutions quality. The proposed GA uses three mutation 
operators and three crossover operators that are applied with given probability 
distribution. The sifting heuristic method [22] is grafted on the GA, being 
embedded in a so-called hypermutation operator. Another contribution is a 
formal framework to increase the quality of solutions by using adaptive 
operators and a mechanism based on information energy [20] for controlling 
the population variability. Experimental results prove that using a strategy to 
modify the probabilities of genetic operators according to prescribed 
variability policy and adapting the amount of changes produced by these 
operators to evaluation stages improve OBDD size. Section II treats the 
importance of variable ordering in OBDDs, section III describes the proposed 
hybrid genetic algorithm and the formal framework for adapting operators and 
their application to increase the solutions quality. Section IV presents the 
experimental results and last section summarizes the work. 

 
2. THE IMPORTANCE OF VARIABLE ORDERING IN OBDD 

OBDDs have numerous applications- e.g. in formal verification of digital 
circuits and other finite state systems- have been found and manipulation 
algorithms or BDD derived data types have improved time and memory 
performance [4].  

Let }1,0{,: =→ BBBf mn  be a switching function and л- a total order on a 
fixed set of boolean variables x1, x2, …, xn. An OBDD with respect to order л 
is a single rooted direct acyclic graph that satisfies the following properties 
[3]:  
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a) there are exactly two terminal nodes labeled by boolean constants 0 and 1, 
respectively.  
b) each non-terminal node is labeled by a variable xi, and has two outgoing 
edges, called 0-edge and 1-edge. In each inner node, two subfunctions are 
usually computed according to Shannon decomposition [18].  
c) the order in which the variables appear on a path in the graph is consistent 
with the variable order л. d) further reduction rules could be applied [3] to 
obtain a canonical representation for f, a so-called reduced (R)OBDD. 
Usually, the widely used term OBDD (or simply BDD) refers to a ROBDD. 

In the problem of optimizing the variable order in OBDD’s, a boolean 
function f which describes a digital circuit is represented as a reduced OBDD. 

OBDDs share some bad properties with all kinds of switching functions 
representations: the size of OBDDs strongly depends on the order of input 
variables (figure 1) and can vary from linear to exponential. The process of 
improving the variable ordering in OBDDs is a NP- complete problem [2].  

 
 
 
 
 
 
 

 
 
 
 

                               (a) 4 nodes                      (b) 6 nodes 
Fig. 1. The influence of the variable ordering for f(a,b,c,d)=a·b·c·d with 

order a, b, c, d (a) and order a, c, b, d (b); 0- edges are dashed. 
 

Another critical aspect is related to large amount of memory or computing 
time consumption needed by the algorithm for optimizing the circuit in case of 
certain complex functions. There are a variety of methods to find the optimal 
variable ordering for BDDs but none can fulfill both time and space 
requirements of the circuit.  

The variable reordering problem of OBDDs is a typical combinatorial 
problem with a huge search space of possible solutions. If an OBDD for a 
function f and a variable ordering л is needed, we don’t have an efficient 
procedure to compute the size estimation of OBDD for a certain f, so we have 
to construct the OBDD. This can be efficiently done merely in the case when 

a

c

b

d

c

b

 

1 
 

0 

c 

d

a 

b

 

1 
 

0 



I. FURDU AND O. BRUDARU 

 

244

 

the size of the resulting OBDD is polynomially related to the size of the initial 
OBDD [19]. Hereby, heuristics that choose several candidates for a “good” 
ordering cannot avoid the construction of the OBDDs for their evaluation. 

Fortunately, for most functions in real-life applications, we can found a 
variable order that keeps the size of the corresponding OBDD tractable. 
Hence, for most practical applications, OBDD are efficient for manipulating 
switching functions.  

In this approach, six genetic operators are used: three for mutation and three 
for crossover, which include a variant of the alternative crossover [16]. In 
addition, a GA’s hybridization technique is proposed by using a partial 
application of sifting [22] as a regular hypermutation operator. Adaptive 
operators and a strategy to adjust the probabilities of genetic operators 
according to a variability target in order to improve OBDD size are proposed.  

 
3. A GENETIC ALGORITHM FOR THE VARIABLE ORDERING PROBLEM 

Further, the main components of the proposed GA are summarized.  
The GA’s main directions of improvement the OBDD size are: (i) more 

operators are applied with given probability distribution, three for mutation 
and three for crossover. (ii) sifting technique is grafted on the GA by a 
hypermutation operator and (iii) the use of a control mechanism based on 
information energy [20] in order to adapt the population variability.  

III.1. Solution representation. Each individual represents a specific OBDD 
variable order in permutation form [15] assuming the initial variables input 
order is the natural one. Every gene represents one input variable by an integer 
value in range [1, n], without duplicates, according to the position of the 
variable in the stated order.  

III.2. Initial population. Initial population P is randomly generated. 
Additionally, the individual obtained by applying sifting for identical 
permutation 1, 2, ...n is also included. Population size is empirically indicated 
in table 1.  

n <20 21-200 201-300 301-400 >400 
Popsize 50 60 75 90 120 

Table 1. Population size. 
 

Survival selection. The selection is deterministic and elitist [14]. At the end 
of each stage current population competes with the new individuals and those 
with better fitness survives in the limit of |P| for the next stage.   

Stop condition. Algorithm stops if the variation of the ratio 
tolkkk mmm <−− )(/)]1()([ φφφ , where )(kmφ  is the average of the fitnesses 
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at stage k, tol is a prescribed tolerance, and no further improvement for 
average fitness is observed for a fixed nadd number of iterations. 

III.3. Fitness function. The fitness function computes for each chromosome 
its number of nodes in the corresponding OBDD. Fitness is computed by 
using Nanotrav tool included in CUDD package [24].  

III.4. Mutation.  
Operators. Three mutation operators are used: simple mutation (mutual 

exchange which means the exchange of the positions of two randomly 
selected genes), group mutation- a group of genes is moved from one position 
to another (group length, first and last position- chosen randomly) and 
inversion- in which two cutpoints are randomly selected and the ordering in 
the enclosed segment is reversed.  

Adaptive operators. As the algorithm converges, the disruption needs to be 
small in order to preserve good schemata. In order to apply less disruptive 
mutation we have to control the cutting segment length for each mutation 
type. A big enough cutting segment gives a more different individual, which is 
to prefer in early stages of the algorithm. Thus, the length of the cutting 
segment is controled by a linear decreasing function: it decreases from 1/3 of 
the input length at the first iteration to 1 when the number of iterations riched 
it_max (1). 

1)_(,3/)0(,)( ==+= maxitfnrvarfbattf .                   (1) 
where it_max is an estimation of maximum number of iterations and nrvar = 
input length = chromosome length. 

Selection and application. A randomly chosen individual from population 
bears mutation with probability pm. If a mutation operation is decided, one of 
the three mutation operators is randomly selected according to a given 
probability distribution. This probability distribution remains fixed over the 
whole evolution process. 

III.5. Crossover.  
Operators. The algorithm uses three crossover operators. Partially matched 

crossover (PMX) [14] selects a matching section between two cutpoints and 
uses exchange operations to make first parent’s matching section assimilate 
the second ones. The second is order crossover (OX) in which every element 
between two randomly selected cutpoints is copied from the first parent, and 
the elements outside the cutpoints are filled with the missing genes from the 
other parent, preserving its order [14]. The third crossover operator is a variant 
of alternating crossover [16] but instead of taking one gene alternately from 
each parent (more disruptive), a group of genes is used.  
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Adaptive operators. In order to encourage the growth of the constructive 
blocks, their formation and preservation as the evolution advances, the 
distance between the cutting points is adapted to the number of iterations. The 
length of the cutting segment (matching section for PMX) for all crossover 
types is controled by a linear decreasing function. This length also, will 
decrease with the number of generations from one third of the chromosome 
length at the beginning to 1 when it_max is reached (1). 

Selection and application. The matting pool is given by the first 50% most 
efficient individuals. One individual is chosen for crossover with probability 
pc. Its mate is randomly chosen also from the matting pool. For each pair of 
parents one of the three crossover operators is applied according to a given 
distribution probability which remains constant over the entire evolution.  

III.6. Hypermutation. The main function of hypermutation is to graft 
sifting heuristics on the GA. One arbitrary chosen individual from population 
bears hypermutation with probability pH which remains constant during the 
evolution process. When hypermutation is applied to an individual, two 
randomly cutpoints that forms a segment are chosen. Swap steps are restricted 
to the genes within the segment, the best position that gives the minimum 
number of nodes for one arbitrary chosen gene is keeped, and a new 
individual is generated. An adaptive mechanism is applied for hypermutation, 
too. The length of the segment is also adapted to the number of iterations: it is 
equal to 15% of the chromosome length at iteration 1 and decreases up to 5% 
when it_max is reached.   

III.7. Tuning the genetic operator’s application. 
Another mechanism to improve performance of the proposed GA is to use a 

variability policy in order to find the best strategy for applying genetic 
operators. The variability of population generally decreases as the algorithm 
converges and the interval between the best and the worst fitness shrinks.  

Let P be the current population of m21 x ,...x ,x  chromosomes at the 
beginning of a given evolution stage. For each chromosome its fitness fit(xi), i 
= 1, ... m, is computed. 

Since the first iteration, best and worst fitness are computed for each 
population, after evaluation step: },...1/)(min{ miixfitfm ==  

and },...1/)(max{ miixfitMf == . 
The interval [fm, fM] is divided in p equal lenghts subintervals Ik, where k=1, 

... p, 10/|| Pp ≈ . 
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Let Fk be the number of fitness values which belong to Ik, k=1 ... p and 

||/' PFF kk = . Obviously, 1'
1

=∑
=

p

k
kF . 

The “energy” of the current population [20] is defined as:                                                  

∑=
=

p

k
kc FE

1

2' )( .       (2) 

It gives a measure of population variability. It holds: 1/1 ≤≤ cEP . 
Thus, a small Ec indicates a high variability and this should be associated 

with the beginning of the algorithm evolution and a high Ec indicates a small 
variability recommended being at the end of the run.  

In order to find an appropriate policy to vary the probabilities for operators 
application four types of variability target functions Eob are considered, each 
depending on the number of iterations t (except first): 

 

a.constant:  
]1,/1[ pBEob ∈= .       (3) 

 

b. linear increasing:  
1max)_(,/1)(,)( ==+= itfptEbattE obob .    (4) 

 

c. periodic:  
,|cos|)( 221 AtAAEob +−= ω  ,1/1 12 ≤<≤ AAp    ...3,2=ω .  (5) 

d. exponential periodic:  
|cos|)( / tetE t

ob ω= λ− , with pln2/1=λ .    (6) 
 
 

Let TEE cob /)( −=λ  be an adjustment parameter, where T= 2, 3, ... is also 
a  parameter. Parameter λ adjusts the speed wherewith the target value Eob is 
reached by the current value of the information energy Ec.  

The probabilities for mutation and crossover are adjusted using the 
equations: 

,βλ+=
αλ−=

cc

mm
pp
pp

        (7) 

where ]1,0[, ∈βα .  Those pm and pc values which exceed 0 or 1 are forced 
to 0 or 1, respectively.                                       

  Consider Eob a generic target of variability. The way to adapt pm and pc is 
given by the rules (7): remark that if current energy Ec < Eob, then λ>0 so pc is 
growing and pm is decreasing in order to lower the variability. If current 



I. FURDU AND O. BRUDARU 

 

248

 

energy Ec > Eob, then λ<0 and, as a result, a lower pc and a higher pm are 
obtained, which will increase variability.  

 
4. PERFORMANCE EVALUATION 

In experiments a subset of LGSynth91 benchmarks is used, obtainable from 
[25]. For OBDD manipulation the package used was CUDD [24]. The 
experiments were conducted on a Dual Core system, with 2,4 GHz processors, 
2G RAM available memory and Linux. Number of runs per circuit test was 10 
for each type of experiment. 

IV.1. Setting of parameters. In the first series of experiments, various 
population sizes, stop criteria, parameters values were tested in order to find 
adequate values. Consequently, population size is indicated in table 1. 
Adequates distribution of probability for PMX, AX, OX are 0.2, 0.4 and 0.6 
respectively and for simple mutation, inversion and group mutation are 0.2, 
0.3 and 0.5, respectively. Hypermutation is applied with probability pH= 0.1 
and is not controlled by the target variability mechanism. A recommended 
value for tol is 0.001 and for nadd is 20. Other recommended values for 
parameters: γ=1 for Eob constant; A1=0.9, A2 =0.45 for Eob periodic, ω=3 and 
T=4 for Eob periodic and Eob exponential periodic.  

IV.2. Performance estimation. The second series of experiments were 
conducted in order to find the best policy for variability target. Table 2 shows 
the corresponding values for best ever fitness reported F_best [22, 24] in 
literature, followed by the input and output number of nodes for each 
benchmark. The minimum number of nodes obtained for each benchmark is 
given in column F_min and the variability target policy that produced it in 
column F_type.  

 

Name F_best In Out F_min F_type F_min -F_best (F_min-F_best)/F_best 

apex6 498 135 99 589 periodic 91 0.182731 

C499 25866 41 32 26153 exp_per 287 0.011096 

vda 478 17 39 478 exp_per 0 0 

misex3 478 14 14 478 periodic 0 0 

dalu 689 75 16 714 periodic 25 0.036284 

cordic 42 23 2 42 constant 0 0 

ttt2 107 24 21 107 periodic 0 0 
 

Table 2. Best variability policy. 
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Absolute and relative fitness errors are also given. For ttt2, misex3 and 
cordic benchmarks, where the same minimum was obtained for more 
variability target policies, the best policy was chosen according to the number 
of F_min occurencies (not shown here). The obtained values seem to prove 
that the best variability policy is the periodic (5) one. Certainly, constant and 
linear target variability policies do not improve the performances significantly 
by comparing with periodic and exponential periodic policies. Periodic 
variability target seems to give slightly better results then the exponential 
periodic variability target. A comparison between linear and periodic 
variability target policies for benchmark apex6 is illustrated in figure 2. 
(avg_F = average of fitnesses). 
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Fig. 2. Comparison between Eob linear ((a)-(b)) and Eob periodic ((c)-(d)) 
for apex6 benchmark. 

Table 3 gives the average, standard deviation and unitized risk for absolute 
error distribution F_min-F_best and for each type of target variability. In 
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order to observe which policy performs better, in table 4 same data for relative 
frequencies (F_min-F_best)/F_best are given.  

 

Name apex6 C499 vda misex3 dalu cordic ttt2 

constant 
avg 160.0000 3930.6999 2.8000 13.9000 217.6999 2.1000 3.2000 
σ 27.3464 3730.7937 0.9742 20.3597 36.4336 2.6089 2.2876 

σ/avg 0.1709 0.9491 0.7062 1.4647 0.1673 1.2423 0.7148 

linear 
avg 179.5999 2772.7001 5.3000 16.2000 173.8999 4.4000 1.5000 
σ 51.9529 2620.1159 4.4988 19.7414 83.1630 4.8620 1.4317 

σ/avg 0.2892 0.9449 0.8488 1.2186 0.4782 1.1050 0.9544 

periodic 
avg 123.3000 2681.8999 2.4000 11.7000 161.7000 3.9000 2.5 
σ 25.3566 2519.5214 1.2806 17.9451 65.1408 4.6804 2.5446 

σ/avg 0.2056 0.9394 0.5335 1.5337 0.4028 1.2001 1.0178 

exp_periodic 
avg 134.6000 2205.1000 1.9000 15.2000 145.6000 3.8000 3.1000 
σ 20.2593 1737.8807 1.8676 19.0812 63.0957 3.6848 2.5735 

σ/avg 0.1505 0.7881 0.9829 1.2553 0.4333 0.9696 0.8301 
 

Table 3. Average, standard deviation and unitized risk of F_min-F_best for 
each variability target 

 

Name apex6 C499 vda misex3 dalu cordic ttt2 

constant 
avg 0.3212 0.1033 0.0058 0.0290 0.3103 0.0214 0.0299 
σ 0.05491 0.1522 0.0029 0.0425 0.0430 0.0213 0.0206 

σ/avg 0.1709 1.47296 0.5101 1.4647 0.1387 0.9979 0.6912 

linear 
avg 0.3606 0.1265 0.0110 0.0338 0.2523 0.0119 0.0214 
σ 0.1043 0.1089 0.0094 0.0413 0.1207 0.14263 0.0118 

σ/avg 0.2892 0.8610 0.8488 1.2186 0.4782 11.9816 0.5516 

periodic 
avg 0.2160 0.1398 0.0050 0.0244 0.2346 0.1357 0.0233 
σ 0.0512 0.1254 0.0026 0.0375 0.0945 0.1158 0.0237 

σ/avg 0.2374 0.8967 0.5335 1.5337 0.4028 0.8532 1.0178 

exp_periodic 
avg 0.2702 0.0852 0.0054 0.0014 0.1864 0.1843 0.0289 
σ 0.0228 0.0671 0.0039 0.0386 0.0961 0.1224 0.0240 

σ/avg 0.0844 0.7881 0.7256 1.2150 0.5155 0.6643 0.8301 
 

Table 4. Average, standard deviation and unitized risk of  
(F_min-F_best)/ F_best for each variability target 

 

Table 4 confirms that the periodic and exponential periodic policies are 
better than the others. For the first two benchmarks values in table 3 and 4 fits 
F_type from table 2; for vda periodic variability policy has a slight advantage 
over exponential variability policy. Instead, for the last benchmark, linear 
policy wins as table 3 shows. Overall, a periodic variability target is the best 
candidate in order to optimize genetic operator’s effect. In the following only 
this policy is used. 
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Further, the influence of periodic function parameters A1, A2 (5) is studied. 
Three sets of 10 runs are made (apex). Because periodic function varies 
between A2 and A1, in the first set of runs we lower the upper limit, in the 
second we rise the inferior and in the last both to the average distance between 
them. Table 5 shows that there are no further improvements for F_min, hence, 
the distance between A1, A2 should be kept at maximum.  

 

 
 

 

 
Table 5. Setting parameters for periodic function 

 

In table 6 is presented for each benchmark, for periodic variability target, 
average number of iterations until algorithm stop it_stop, average number of 
fitness evaluations avgF. In order to evaluate the cost of policy application, 
the given values includes the benchmarks for which periodic variability target 
was not the best one. 

{{{{ 

Name Periodic 
it_stop avgF 

apex6 182.2 4212.7 
C499 122.6 3310.6 
vda 62.1 1644.7 

misex3 61.6 1623.4 
dalu 148.1 3250.0 

cordic 89.2 2147.3 
ttt2 71.7 1672.7 

Table 6. Costs for periodic variability target 
 

Costs are also related to structural benchmark complexity in terms of 
computational time. 

Figure 3 illustrates the algorithm behavior with periodic variability target 
and adaptive operators for one benchmark (dalu) run. It can be observed that 
the current energy (2) of the algorithm cannot follow with accuracy the 
objective energy. The process of current energy adaptation to objective energy 
has, however, a normal oscillatory trend. When current energy is down, a 
lower amount of mutation is compensated by a higher rate of crossover 
operations (7). Lower peaks for current energy observed around iterations 
100, 120 are because, for some period, mutation probability is 1. At the end of 
the run a high value for current energy fits the idea that population variability 
is low. Figure 4 presents for this runtest the best best_F and the average 
fitness avg_F according to the number of generations. A very good 
convergence can be observed. 

A1, A2 A1=0.6, 
A2=0.45

A1=0.9, 
A2=0.6 

A1=0.55, 
A2=0.7 

F_min 599 612 607 
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Periodic variability target policy
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Fig. 3. Example of periodic variability target behavior (dalu benchmark). 
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Fig. 4. Best fitness and average fitness convergence for dalu benchmark. 

 

IV.3. The effect of hypermutation. Third set of experiments studies the 
effect of hypermutation within periodic variability target policy. Apex6 
benchmark was selected for tests, as it gives the worst result compared to 
F_best. Hypermutation was applied with different probabilities pH.  Average 
time, minimum number of nodes F_min obtained, the average, standard 
deviation and unitized risk for F_min-F_best are presented in table 7. High 
values of hypermutation probability lead to better fitnesses. Thus, a good 
policy is to apply hypermutation with a high rate. Unfortunately, higher pH 
values lead to a growing computational time as second row in table 7 
indicates. Tests on other benchmarks confirm this result. In order to observe 
the postoptimization effect of hypermutation, we applied hypermutation at the 
end of the runs, for the first best five chromosomes. Half of their genes were 
shifted within a window length equal to the chromosomes length.  
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pH 0.05 0.1 0.15 0.2 0.25 
time 100.240 103.298 131.664 137.405 145.824 

F_min 592 589 574 569 564 
F_min - F_best 94 91 76 71 66 

avg. 152.5 152.1999 134.3000 128.5000 123.3000 
σ 34.3203 31.7000 37.6269 38.2057 25.3566 

σ/avg 0.2250 0.2082 0.2801 0.2973 0.2056 
Table 7. The effect of hypermutation for apex6 circuit with periodic 

variability target policy. 
 

No further improvement was obtained except a single case (pH= 0.05) where 
the gain was of two nodes. 

 In order to illustrate the method behavior, circuit apex6 is considered with 
periodic variability target and the following parameters: A1= 0.45, A2=0.8, 
popsize |P|=50, tol= 0.001, nadd= 20, pm= 0.3, pc=0,4, pH=0.1. Distribution of 
the relative error (F_min-F_best)/F_best is presented in table 8 and the 
associated graph in figure 5.  

 

err. 0.1948 0.228916 0.2681 0.2771 0.3393 
rel.freq 0.4 0.1 0.2 0.1 0.2 

average= 0.2476 std.dev=0.0509 unitized risk=0.2056 
 

Table 8. Average, standard deviation and unitized risk for  
(F_min-F_best)/F_best 

 
 

The resulted average error is 0.2476.  The graph of this distribution is 
shown in figure 5. The second objective is to get an idea on the stability of the 
method. The value of the standard deviation obtained for the above-mentioned 
sample is 0.0509, the unitized risk is 0.2056, and this shows that the method 
gives good results systematically. 

Distribution of relative error
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Fig. 5. Distribution of relative error (F_min-F_best)/F_best 
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5.  FINAL REMARKS 
This paper presents a new hybrid GA for optimize variable ordering in 

OBDDs.  It contains new techniques for adapting and for controlling the 
genetic operators’ behavior based on variability target policies. The hybrid 
GA contains three main improvements: firstly, it uses three mutation operators 
and three crossover operators applied with given probability distributions. 
Secondly, a hypermutation operator grafts the sifting technique on the GA. 
Third, the algorithm contains a control mechanism based on information 
energy for adapting the population variability. In order to evaluate the GA’s 
performance, experiments were made to determine the adequate algorithm’s 
parameters values, to evaluate the best variability target policy and to study 
the effect of hypermutation. Experimental results show that the proposed 
method performs very well [15] and has further development potential. 
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