
"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 19 (2009), No. 2, 241 - 256

NEW HYBRID GENETIC ALGORITHM WITH ADAPTIVE

OPERATORS AND VARIABILITY TARGET FOR OPTIMIZING
VARIABLE ORDER IN OBDD

I. FURDU AND O. BRUDARU

Abstract. Reduced Ordered Binary Decision Diagrams are one of the most
powerful data structure for boolean manipulation on switching functions as
top process in digital circuits design. The size of ROBDDs is very sensitive to
the ordering choices of input variables. A new genetic algorithm is described
for optimizing the variable order. It uses adaptive operators and includes a
mechanism based on information energy for controlling the variability of the
population. Experimental investigations of the performance of this genetic
algorithm are described.

1. INTRODUCTION
The OBDD size is given by the number of its nonterminal nodes. A smaller

number of nodes imply a smaller circuit design, whereas a bad ordering can
lead to an exponential growth in the size of OBDD.

The existing variable ordering methods [10, 12, 18] include static variable
ordering techniques and dynamic variable ordering techniques. Most of static
techniques are used to determine good initial variable orders before
constructing the OBDD of a function and they are usually based on a breadth-
first or depth-first traversal of a circuit [11, 13] from its outputs to inputs.
Dynamic techniques are based on a process of improving the variable order
and the size of an already built OBDD [4, 19, 22]. The Rudell’s sifting
algorithm and window permutation algorithm [21, 24] are the most popular
dynamic techniques.

In experimental studies, it turned out that methods based on genetic
algorithms yield better results than other techniques. Even the runtime for
genetic reordering algorithms were brought down to a reasonable level, they
are still not competitive to deterministic reordering heuristics like window
permutation or sifting [16].

Keywords and phrases: BDD, OBDD Optimisation, GA
(2000) Mathematics Subject Classification: 06E30, 94C10, 68W35

I. FURDU AND O. BRUDARU

242

Genetic algorithms in finding the best ordering were first introduced in [7]
where the main genetic operations are PMX (partially-mapped crossover) and
mutation. Simulated annealing used in [1] is a related approach. These two
methods yield better results than other techniques, but they are comparably
slow (see e.g.[24]) as any other GA based method. In order to speed up the
computations, other approaches have been suggested [8, 23] which include
treating of sifting as a genetic operation that replaces crossover techniques or
advanced tricks for setting the parameters.

Recent research [5, 6, 9] have shown that parallel or distributed genetic
algorithms are a feasible way to solve the problem of the best ordering, but the
cost of fitness evaluation remain an expensive task which affects the global
cost of solution even such algorithms benefits from asynchronous behavior or
from the independence of the processes.

This paper focuses on the purely part of genetic reordering algorithms in
order to improve the solutions quality. The proposed GA uses three mutation
operators and three crossover operators that are applied with given probability
distribution. The sifting heuristic method [22] is grafted on the GA, being
embedded in a so-called hypermutation operator. Another contribution is a
formal framework to increase the quality of solutions by using adaptive
operators and a mechanism based on information energy [20] for controlling
the population variability. Experimental results prove that using a strategy to
modify the probabilities of genetic operators according to prescribed
variability policy and adapting the amount of changes produced by these
operators to evaluation stages improve OBDD size. Section II treats the
importance of variable ordering in OBDDs, section III describes the proposed
hybrid genetic algorithm and the formal framework for adapting operators and
their application to increase the solutions quality. Section IV presents the
experimental results and last section summarizes the work.

2. THE IMPORTANCE OF VARIABLE ORDERING IN OBDD

OBDDs have numerous applications- e.g. in formal verification of digital
circuits and other finite state systems- have been found and manipulation
algorithms or BDD derived data types have improved time and memory
performance [4].

Let }1,0{,: =→ BBBf mn be a switching function and л- a total order on a
fixed set of boolean variables x1, x2, …, xn. An OBDD with respect to order л
is a single rooted direct acyclic graph that satisfies the following properties
[3]:

NEW HYBRID GA WITH ADAPTIVE OPERATORS FOR OPTIMIZING OBDDS

243

a) there are exactly two terminal nodes labeled by boolean constants 0 and 1,
respectively.
b) each non-terminal node is labeled by a variable xi, and has two outgoing
edges, called 0-edge and 1-edge. In each inner node, two subfunctions are
usually computed according to Shannon decomposition [18].
c) the order in which the variables appear on a path in the graph is consistent
with the variable order л. d) further reduction rules could be applied [3] to
obtain a canonical representation for f, a so-called reduced (R)OBDD.
Usually, the widely used term OBDD (or simply BDD) refers to a ROBDD.

In the problem of optimizing the variable order in OBDD’s, a boolean
function f which describes a digital circuit is represented as a reduced OBDD.

OBDDs share some bad properties with all kinds of switching functions
representations: the size of OBDDs strongly depends on the order of input
variables (figure 1) and can vary from linear to exponential. The process of
improving the variable ordering in OBDDs is a NP- complete problem [2].

 (a) 4 nodes (b) 6 nodes
Fig. 1. The influence of the variable ordering for f(a,b,c,d)=a·b·c·d with

order a, b, c, d (a) and order a, c, b, d (b); 0- edges are dashed.

Another critical aspect is related to large amount of memory or computing
time consumption needed by the algorithm for optimizing the circuit in case of
certain complex functions. There are a variety of methods to find the optimal
variable ordering for BDDs but none can fulfill both time and space
requirements of the circuit.

The variable reordering problem of OBDDs is a typical combinatorial
problem with a huge search space of possible solutions. If an OBDD for a
function f and a variable ordering л is needed, we don’t have an efficient
procedure to compute the size estimation of OBDD for a certain f, so we have
to construct the OBDD. This can be efficiently done merely in the case when

a

c

b

d

c

b

1

0

c

d

a

b

1

0

I. FURDU AND O. BRUDARU

244

the size of the resulting OBDD is polynomially related to the size of the initial
OBDD [19]. Hereby, heuristics that choose several candidates for a “good”
ordering cannot avoid the construction of the OBDDs for their evaluation.

Fortunately, for most functions in real-life applications, we can found a
variable order that keeps the size of the corresponding OBDD tractable.
Hence, for most practical applications, OBDD are efficient for manipulating
switching functions.

In this approach, six genetic operators are used: three for mutation and three
for crossover, which include a variant of the alternative crossover [16]. In
addition, a GA’s hybridization technique is proposed by using a partial
application of sifting [22] as a regular hypermutation operator. Adaptive
operators and a strategy to adjust the probabilities of genetic operators
according to a variability target in order to improve OBDD size are proposed.

3. A GENETIC ALGORITHM FOR THE VARIABLE ORDERING PROBLEM

Further, the main components of the proposed GA are summarized.
The GA’s main directions of improvement the OBDD size are: (i) more

operators are applied with given probability distribution, three for mutation
and three for crossover. (ii) sifting technique is grafted on the GA by a
hypermutation operator and (iii) the use of a control mechanism based on
information energy [20] in order to adapt the population variability.

III.1. Solution representation. Each individual represents a specific OBDD
variable order in permutation form [15] assuming the initial variables input
order is the natural one. Every gene represents one input variable by an integer
value in range [1, n], without duplicates, according to the position of the
variable in the stated order.

III.2. Initial population. Initial population P is randomly generated.
Additionally, the individual obtained by applying sifting for identical
permutation 1, 2, ...n is also included. Population size is empirically indicated
in table 1.

n <20 21-200 201-300 301-400 >400
Popsize 50 60 75 90 120

Table 1. Population size.

Survival selection. The selection is deterministic and elitist [14]. At the end
of each stage current population competes with the new individuals and those
with better fitness survives in the limit of |P| for the next stage.

Stop condition. Algorithm stops if the variation of the ratio
tolkkk mmm <−−)(/)]1()([φφφ , where)(kmφ is the average of the fitnesses

NEW HYBRID GA WITH ADAPTIVE OPERATORS FOR OPTIMIZING OBDDS

245

at stage k, tol is a prescribed tolerance, and no further improvement for
average fitness is observed for a fixed nadd number of iterations.

III.3. Fitness function. The fitness function computes for each chromosome
its number of nodes in the corresponding OBDD. Fitness is computed by
using Nanotrav tool included in CUDD package [24].

III.4. Mutation.
Operators. Three mutation operators are used: simple mutation (mutual

exchange which means the exchange of the positions of two randomly
selected genes), group mutation- a group of genes is moved from one position
to another (group length, first and last position- chosen randomly) and
inversion- in which two cutpoints are randomly selected and the ordering in
the enclosed segment is reversed.

Adaptive operators. As the algorithm converges, the disruption needs to be
small in order to preserve good schemata. In order to apply less disruptive
mutation we have to control the cutting segment length for each mutation
type. A big enough cutting segment gives a more different individual, which is
to prefer in early stages of the algorithm. Thus, the length of the cutting
segment is controled by a linear decreasing function: it decreases from 1/3 of
the input length at the first iteration to 1 when the number of iterations riched
it_max (1).

1)_(,3/)0(,)(==+= maxitfnrvarfbattf . (1)
where it_max is an estimation of maximum number of iterations and nrvar =
input length = chromosome length.

Selection and application. A randomly chosen individual from population
bears mutation with probability pm. If a mutation operation is decided, one of
the three mutation operators is randomly selected according to a given
probability distribution. This probability distribution remains fixed over the
whole evolution process.

III.5. Crossover.
Operators. The algorithm uses three crossover operators. Partially matched

crossover (PMX) [14] selects a matching section between two cutpoints and
uses exchange operations to make first parent’s matching section assimilate
the second ones. The second is order crossover (OX) in which every element
between two randomly selected cutpoints is copied from the first parent, and
the elements outside the cutpoints are filled with the missing genes from the
other parent, preserving its order [14]. The third crossover operator is a variant
of alternating crossover [16] but instead of taking one gene alternately from
each parent (more disruptive), a group of genes is used.

I. FURDU AND O. BRUDARU

246

Adaptive operators. In order to encourage the growth of the constructive
blocks, their formation and preservation as the evolution advances, the
distance between the cutting points is adapted to the number of iterations. The
length of the cutting segment (matching section for PMX) for all crossover
types is controled by a linear decreasing function. This length also, will
decrease with the number of generations from one third of the chromosome
length at the beginning to 1 when it_max is reached (1).

Selection and application. The matting pool is given by the first 50% most
efficient individuals. One individual is chosen for crossover with probability
pc. Its mate is randomly chosen also from the matting pool. For each pair of
parents one of the three crossover operators is applied according to a given
distribution probability which remains constant over the entire evolution.

III.6. Hypermutation. The main function of hypermutation is to graft
sifting heuristics on the GA. One arbitrary chosen individual from population
bears hypermutation with probability pH which remains constant during the
evolution process. When hypermutation is applied to an individual, two
randomly cutpoints that forms a segment are chosen. Swap steps are restricted
to the genes within the segment, the best position that gives the minimum
number of nodes for one arbitrary chosen gene is keeped, and a new
individual is generated. An adaptive mechanism is applied for hypermutation,
too. The length of the segment is also adapted to the number of iterations: it is
equal to 15% of the chromosome length at iteration 1 and decreases up to 5%
when it_max is reached.

III.7. Tuning the genetic operator’s application.
Another mechanism to improve performance of the proposed GA is to use a

variability policy in order to find the best strategy for applying genetic
operators. The variability of population generally decreases as the algorithm
converges and the interval between the best and the worst fitness shrinks.

Let P be the current population of m21 x ,...x ,x chromosomes at the
beginning of a given evolution stage. For each chromosome its fitness fit(xi), i
= 1, ... m, is computed.

Since the first iteration, best and worst fitness are computed for each
population, after evaluation step: },...1/)(min{ miixfitfm ==

and },...1/)(max{ miixfitMf == .
The interval [fm, fM] is divided in p equal lenghts subintervals Ik, where k=1,

... p, 10/|| Pp ≈ .

NEW HYBRID GA WITH ADAPTIVE OPERATORS FOR OPTIMIZING OBDDS

247

Let Fk be the number of fitness values which belong to Ik, k=1 ... p and

||/' PFF kk = . Obviously, 1'
1

=∑
=

p

k
kF .

The “energy” of the current population [20] is defined as:

∑=
=

p

k
kc FE

1

2')(. (2)

It gives a measure of population variability. It holds: 1/1 ≤≤ cEP .
Thus, a small Ec indicates a high variability and this should be associated

with the beginning of the algorithm evolution and a high Ec indicates a small
variability recommended being at the end of the run.

In order to find an appropriate policy to vary the probabilities for operators
application four types of variability target functions Eob are considered, each
depending on the number of iterations t (except first):

a.constant:
]1,/1[pBEob ∈= . (3)

b. linear increasing:
1max)_(,/1)(,)(==+= itfptEbattE obob . (4)

c. periodic:
,|cos|)(221 AtAAEob +−= ω ,1/1 12 ≤<≤ AAp ...3,2=ω . (5)

d. exponential periodic:
|cos|)(/ tetE t

ob ω= λ− , with pln2/1=λ . (6)

Let TEE cob /)(−=λ be an adjustment parameter, where T= 2, 3, ... is also
a parameter. Parameter λ adjusts the speed wherewith the target value Eob is
reached by the current value of the information energy Ec.

The probabilities for mutation and crossover are adjusted using the
equations:

,βλ+=
αλ−=

cc

mm
pp
pp

 (7)

where]1,0[, ∈βα . Those pm and pc values which exceed 0 or 1 are forced
to 0 or 1, respectively.

 Consider Eob a generic target of variability. The way to adapt pm and pc is
given by the rules (7): remark that if current energy Ec < Eob, then λ>0 so pc is
growing and pm is decreasing in order to lower the variability. If current

I. FURDU AND O. BRUDARU

248

energy Ec > Eob, then λ<0 and, as a result, a lower pc and a higher pm are
obtained, which will increase variability.

4. PERFORMANCE EVALUATION

In experiments a subset of LGSynth91 benchmarks is used, obtainable from
[25]. For OBDD manipulation the package used was CUDD [24]. The
experiments were conducted on a Dual Core system, with 2,4 GHz processors,
2G RAM available memory and Linux. Number of runs per circuit test was 10
for each type of experiment.

IV.1. Setting of parameters. In the first series of experiments, various
population sizes, stop criteria, parameters values were tested in order to find
adequate values. Consequently, population size is indicated in table 1.
Adequates distribution of probability for PMX, AX, OX are 0.2, 0.4 and 0.6
respectively and for simple mutation, inversion and group mutation are 0.2,
0.3 and 0.5, respectively. Hypermutation is applied with probability pH= 0.1
and is not controlled by the target variability mechanism. A recommended
value for tol is 0.001 and for nadd is 20. Other recommended values for
parameters: γ=1 for Eob constant; A1=0.9, A2 =0.45 for Eob periodic, ω=3 and
T=4 for Eob periodic and Eob exponential periodic.

IV.2. Performance estimation. The second series of experiments were
conducted in order to find the best policy for variability target. Table 2 shows
the corresponding values for best ever fitness reported F_best [22, 24] in
literature, followed by the input and output number of nodes for each
benchmark. The minimum number of nodes obtained for each benchmark is
given in column F_min and the variability target policy that produced it in
column F_type.

Name F_best In Out F_min F_type F_min -F_best (F_min-F_best)/F_best

apex6 498 135 99 589 periodic 91 0.182731

C499 25866 41 32 26153 exp_per 287 0.011096

vda 478 17 39 478 exp_per 0 0

misex3 478 14 14 478 periodic 0 0

dalu 689 75 16 714 periodic 25 0.036284

cordic 42 23 2 42 constant 0 0

ttt2 107 24 21 107 periodic 0 0

Table 2. Best variability policy.

NEW HYBRID GA WITH ADAPTIVE OPERATORS FOR OPTIMIZING OBDDS

249

Absolute and relative fitness errors are also given. For ttt2, misex3 and
cordic benchmarks, where the same minimum was obtained for more
variability target policies, the best policy was chosen according to the number
of F_min occurencies (not shown here). The obtained values seem to prove
that the best variability policy is the periodic (5) one. Certainly, constant and
linear target variability policies do not improve the performances significantly
by comparing with periodic and exponential periodic policies. Periodic
variability target seems to give slightly better results then the exponential
periodic variability target. A comparison between linear and periodic
variability target policies for benchmark apex6 is illustrated in figure 2.
(avg_F = average of fitnesses).

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 25 50 75 100 125 150

in
fo

rm
at

io
n

en
er

gy

E_ob

E_c

700

900

1100

1300

1500

1700

1900

0 25 50 75 100 125 150

#n
od

es

best_F

avg_F

(a) (b)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 25 50 75 100 125 150 175 200

in
fo

rm
at

io
n

en
er

gy

E_ob

E_c

500

700

900

1100

1300

1500

1700

0 25 50 75 100 125 150 175 200

#n
od

es

best_F

avg_F

(c) (d)

Fig. 2. Comparison between Eob linear ((a)-(b)) and Eob periodic ((c)-(d))
for apex6 benchmark.

Table 3 gives the average, standard deviation and unitized risk for absolute
error distribution F_min-F_best and for each type of target variability. In

I. FURDU AND O. BRUDARU

250

order to observe which policy performs better, in table 4 same data for relative
frequencies (F_min-F_best)/F_best are given.

Name apex6 C499 vda misex3 dalu cordic ttt2

constant
avg 160.0000 3930.6999 2.8000 13.9000 217.6999 2.1000 3.2000
σ 27.3464 3730.7937 0.9742 20.3597 36.4336 2.6089 2.2876

σ/avg 0.1709 0.9491 0.7062 1.4647 0.1673 1.2423 0.7148

linear
avg 179.5999 2772.7001 5.3000 16.2000 173.8999 4.4000 1.5000
σ 51.9529 2620.1159 4.4988 19.7414 83.1630 4.8620 1.4317

σ/avg 0.2892 0.9449 0.8488 1.2186 0.4782 1.1050 0.9544

periodic
avg 123.3000 2681.8999 2.4000 11.7000 161.7000 3.9000 2.5
σ 25.3566 2519.5214 1.2806 17.9451 65.1408 4.6804 2.5446

σ/avg 0.2056 0.9394 0.5335 1.5337 0.4028 1.2001 1.0178

exp_periodic
avg 134.6000 2205.1000 1.9000 15.2000 145.6000 3.8000 3.1000
σ 20.2593 1737.8807 1.8676 19.0812 63.0957 3.6848 2.5735

σ/avg 0.1505 0.7881 0.9829 1.2553 0.4333 0.9696 0.8301

Table 3. Average, standard deviation and unitized risk of F_min-F_best for
each variability target

Name apex6 C499 vda misex3 dalu cordic ttt2

constant
avg 0.3212 0.1033 0.0058 0.0290 0.3103 0.0214 0.0299
σ 0.05491 0.1522 0.0029 0.0425 0.0430 0.0213 0.0206

σ/avg 0.1709 1.47296 0.5101 1.4647 0.1387 0.9979 0.6912

linear
avg 0.3606 0.1265 0.0110 0.0338 0.2523 0.0119 0.0214
σ 0.1043 0.1089 0.0094 0.0413 0.1207 0.14263 0.0118

σ/avg 0.2892 0.8610 0.8488 1.2186 0.4782 11.9816 0.5516

periodic
avg 0.2160 0.1398 0.0050 0.0244 0.2346 0.1357 0.0233
σ 0.0512 0.1254 0.0026 0.0375 0.0945 0.1158 0.0237

σ/avg 0.2374 0.8967 0.5335 1.5337 0.4028 0.8532 1.0178

exp_periodic
avg 0.2702 0.0852 0.0054 0.0014 0.1864 0.1843 0.0289
σ 0.0228 0.0671 0.0039 0.0386 0.0961 0.1224 0.0240

σ/avg 0.0844 0.7881 0.7256 1.2150 0.5155 0.6643 0.8301

Table 4. Average, standard deviation and unitized risk of
(F_min-F_best)/ F_best for each variability target

Table 4 confirms that the periodic and exponential periodic policies are
better than the others. For the first two benchmarks values in table 3 and 4 fits
F_type from table 2; for vda periodic variability policy has a slight advantage
over exponential variability policy. Instead, for the last benchmark, linear
policy wins as table 3 shows. Overall, a periodic variability target is the best
candidate in order to optimize genetic operator’s effect. In the following only
this policy is used.

NEW HYBRID GA WITH ADAPTIVE OPERATORS FOR OPTIMIZING OBDDS

251

Further, the influence of periodic function parameters A1, A2 (5) is studied.
Three sets of 10 runs are made (apex). Because periodic function varies
between A2 and A1, in the first set of runs we lower the upper limit, in the
second we rise the inferior and in the last both to the average distance between
them. Table 5 shows that there are no further improvements for F_min, hence,
the distance between A1, A2 should be kept at maximum.

Table 5. Setting parameters for periodic function

In table 6 is presented for each benchmark, for periodic variability target,
average number of iterations until algorithm stop it_stop, average number of
fitness evaluations avgF. In order to evaluate the cost of policy application,
the given values includes the benchmarks for which periodic variability target
was not the best one.

{{{{

Name Periodic
it_stop avgF

apex6 182.2 4212.7
C499 122.6 3310.6
vda 62.1 1644.7

misex3 61.6 1623.4
dalu 148.1 3250.0

cordic 89.2 2147.3
ttt2 71.7 1672.7

Table 6. Costs for periodic variability target

Costs are also related to structural benchmark complexity in terms of
computational time.

Figure 3 illustrates the algorithm behavior with periodic variability target
and adaptive operators for one benchmark (dalu) run. It can be observed that
the current energy (2) of the algorithm cannot follow with accuracy the
objective energy. The process of current energy adaptation to objective energy
has, however, a normal oscillatory trend. When current energy is down, a
lower amount of mutation is compensated by a higher rate of crossover
operations (7). Lower peaks for current energy observed around iterations
100, 120 are because, for some period, mutation probability is 1. At the end of
the run a high value for current energy fits the idea that population variability
is low. Figure 4 presents for this runtest the best best_F and the average
fitness avg_F according to the number of generations. A very good
convergence can be observed.

A1, A2 A1=0.6,
A2=0.45

A1=0.9,
A2=0.6

A1=0.55,
A2=0.7

F_min 599 612 607

I. FURDU AND O. BRUDARU

252

Periodic variability target policy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 20 40 60 80 100 120 140

generations

in
fo

rm
at

io
n

en
er

gy
Eob
Ec

Fig. 3. Example of periodic variability target behavior (dalu benchmark).

Fitness convergence

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150generations

#n
od

es best_F
avg_F

Fig. 4. Best fitness and average fitness convergence for dalu benchmark.

IV.3. The effect of hypermutation. Third set of experiments studies the
effect of hypermutation within periodic variability target policy. Apex6
benchmark was selected for tests, as it gives the worst result compared to
F_best. Hypermutation was applied with different probabilities pH. Average
time, minimum number of nodes F_min obtained, the average, standard
deviation and unitized risk for F_min-F_best are presented in table 7. High
values of hypermutation probability lead to better fitnesses. Thus, a good
policy is to apply hypermutation with a high rate. Unfortunately, higher pH
values lead to a growing computational time as second row in table 7
indicates. Tests on other benchmarks confirm this result. In order to observe
the postoptimization effect of hypermutation, we applied hypermutation at the
end of the runs, for the first best five chromosomes. Half of their genes were
shifted within a window length equal to the chromosomes length.

NEW HYBRID GA WITH ADAPTIVE OPERATORS FOR OPTIMIZING OBDDS

253

pH 0.05 0.1 0.15 0.2 0.25
time 100.240 103.298 131.664 137.405 145.824

F_min 592 589 574 569 564
F_min - F_best 94 91 76 71 66

avg. 152.5 152.1999 134.3000 128.5000 123.3000
σ 34.3203 31.7000 37.6269 38.2057 25.3566

σ/avg 0.2250 0.2082 0.2801 0.2973 0.2056
Table 7. The effect of hypermutation for apex6 circuit with periodic

variability target policy.

No further improvement was obtained except a single case (pH= 0.05) where
the gain was of two nodes.

 In order to illustrate the method behavior, circuit apex6 is considered with
periodic variability target and the following parameters: A1= 0.45, A2=0.8,
popsize |P|=50, tol= 0.001, nadd= 20, pm= 0.3, pc=0,4, pH=0.1. Distribution of
the relative error (F_min-F_best)/F_best is presented in table 8 and the
associated graph in figure 5.

err. 0.1948 0.228916 0.2681 0.2771 0.3393
rel.freq 0.4 0.1 0.2 0.1 0.2

average= 0.2476 std.dev=0.0509 unitized risk=0.2056

Table 8. Average, standard deviation and unitized risk for
(F_min-F_best)/F_best

The resulted average error is 0.2476. The graph of this distribution is
shown in figure 5. The second objective is to get an idea on the stability of the
method. The value of the standard deviation obtained for the above-mentioned
sample is 0.0509, the unitized risk is 0.2056, and this shows that the method
gives good results systematically.

Distribution of relative error

0.4

0.1
0.2

0.1

0.2 0.1948
0.2289
0.2681
0.2771
0.3273

Fig. 5. Distribution of relative error (F_min-F_best)/F_best

I. FURDU AND O. BRUDARU

254

5. FINAL REMARKS
This paper presents a new hybrid GA for optimize variable ordering in

OBDDs. It contains new techniques for adapting and for controlling the
genetic operators’ behavior based on variability target policies. The hybrid
GA contains three main improvements: firstly, it uses three mutation operators
and three crossover operators applied with given probability distributions.
Secondly, a hypermutation operator grafts the sifting technique on the GA.
Third, the algorithm contains a control mechanism based on information
energy for adapting the population variability. In order to evaluate the GA’s
performance, experiments were made to determine the adequate algorithm’s
parameters values, to evaluate the best variability target policy and to study
the effect of hypermutation. Experimental results show that the proposed
method performs very well [15] and has further development potential.

References

[1] B. Bollig, M. Lobbing, I. Wegener, Simulated annealing to improve

variable orderings for OBDDs, International Workshop on Logic Synth.,
pag. 5b:5.1-5.10, 1995.

[2] B. Bollig, I. Wegener, Improving the Variable Ordering of OBDDs Is
NP-Complete, IEEE Transactions on Computers, vol. 45, 1996.

[3] R.E. Bryant, Graph-based algorithms for Boolean function
manipulation, IEEE Trans on Computers. 35(8) pag. 667-691, 1986.

[4] K.M.Butler, D. Ross, R. Kapur, M.R. Mercer, Heuristics to compute
variable orderings for efficient manipulation of OBDDs, Proc. of the
28th Computation Conference, GECCO’02, pag. 942–948. Morgan-
Kauffman, 2002.

[5] U.S. Costa, A. M. Moreira, D. Deharbe, A cache-based parallel genetic
algorithm for the bdd variable ordering problem, Proceedings of
SBAC-PAD’2000, pag.99-104, 2000.

[6] U.S. Costa, D. Deharbe, A. M. Moreira, Variable ordering of bdds with
parallel genetic algorithms, Proceedings of PDPTA’2000, 2000.

[7] R. Drechsler, B. Becker, N. Gockel, A Genetic Algorithm for Variable
Ordering of OBDDs, IEEE Proceedings, 143(6), pag. 363–368, 1996.

[8] R. Drechsler, N. Gockel, Minimization of BDDs by Evolutionary
Algorithms, International Workshop on Logic Synthesis, 1997.

[9] S. Droste, D. Heutelbeck, I. Wegener, Distributed Hybrid Genetic
programming for Learning Boolean Functions, Parallel Problem
Solving from Nature – 6th International Conference, pag. 181-190, 2000.

NEW HYBRID GA WITH ADAPTIVE OPERATORS FOR OPTIMIZING OBDDS

255

[10] R. Ebendt, F. Gorschwin, R. Drechsler, Advanced BDD minimization,
Springer, 2005.

[11] R. Ebendt, W.Günther, R.Drechsler, Combining Ordered Best-First
Search with Branch and Bound for Exact BDD Minimization, 2004,
url: informatik.uni-bremen.de.

[12] I. Furdu, An Analysis of Heuristics for OBDD’s Optimization, VIII
ETAI Conference, I1-5, 2007.

[13] S. J. Friedman, K. J. Supowit, Finding the Optimal Variable Ordering
for Binary Decision Diagrams, IEEE Transactions on Computers, vol.
39, 1990.

[14] D.E Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison Wesley, 1989.

[15] J. Harlow, F. Brglez, Design of experiments and evaluation in BDD
ordering heuristics, International Journal STTT, (3) pag.193-206, 2001.

[16] W. Lenders, C. Baier, Genetic Algorithms for Variable Ordering
Problem of Binary Decision Diagrams, url: inf.tu-dresden.de/content/

[17] W. Lenders, Genetic Algorithms for the Variable Ordering Problem
of Binary Decision Diagrams, Diploma Thesis, Institut für Informatik,
Universität Bonn, Germany, 2004.

[18] C. Meinel, T. Theobald, Algorithms and Data Structures in VLSI
Design, Springer, Berlin, 1998.

[19] C. Meinel, A. Slobodova, Speeding up variable reordering for OBDDs,
citeseer.ist.psu.edu/cache/papers/cs/640.
[20] O. Onicescu, Elements of Informational Statistics with Applications,
Technical Editing House, Bucharest, 1979 (in Romanian).
[21] S. Panda, F. Somezi, Who are the variables in your neighborhood,
International Conference of CAD, pag. 74-77, 1995.
[22] R. Rudell, Dynamic variable ordering for ordered binary decision

diagrams, International Conference of CAD, pag. 42-47, 1993.
[23] M. A. Thornton, J.P. Williams, R. Drechsler, N. Drechsler, D.M. Wesels,

SBDD Variable Reordering based on Probabilistic and Evolutionary
Algorithms, IEEE Proceedings, Pacific Rim Conference, pag. 381–387,
1999.

[24] CUDD package url: vlsi.colorado.edu/~fabio/CUDD/
[25] LGSynth91 benchmarks at url: http://cadlab.cs.ucla.edu/~kirill/ or

cbl.ncsu.edu:16080/benchmarks/

I. FURDU AND O. BRUDARU

256

Iulian Furdu

“Vasile Alecsandri” University of Bacău,
Faculty of Sciences

Department of Mathematics and Informatics,
Spiru Haret 8, 600114 Bacău, ROMANIA
e-mail: ifurdu@ub.ro

Octav Brudaru

Institute of Computer Science, Romanian Academy, Iaşi Subsidiary,
“Gh. Asachi” Technical University Iaşi,
Department of Management and Production Systems Engineering, Iaşi,
Romania
e-mail: brudaru@tuiasi.ro

