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ANALYSIS OF ENTROPY MEASURES

ANGEL GARRIDO

Abstract. Our paper to develop some useful analytical tools for
the foundations of Uncertainty Measures. Because we need to obtain
new ways to model adequate conditions or restrictions, constructed
from vague pieces of information. For this, it is necessary to classify
more efficiently the distinct types of measures; in particular, the fuzzy
measures.

Now, we complete this study by the analysis on Entropy and other
Measures of Uncertainty, with their relationships. So, we attempt to
go on, advancing by this paper.

1. Introduction

Kaufmann (1975) introduce the index of fuzziness as a normal dis-
tance.

Yager (1979), and Higashi and Klir (1983), shows the entropy mea-
sure as the difference between two fuzzy sets, a fuzzy set and its com-
plementary, which is also a fuzzy set.

Taking the Entropy concept, we attempt to measure the fuzziness,
that is, the degree of fuzziness for each element A ∈ ℘.
————————————–
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It can be designed as the function

H:℘ →[0,1]

Verifying that

I) If A is a crisp set, then H(A) = 0.

II) If H(x) = 1/2, for each x in A, then H (A) is maximal (i.e. the
maximal uncertainty state).

III) If A is less fuzzified than B, then H(A) ≤ H(B).

IV) H(A) = H(U \ A).

Given a discrete random variable, X, with associated probability
distribution P(x), we will define the Entropy (H) of X as

H (x) ≡ − ∑
x∈X

p (x) ln p (x) =
∑

x∈X

p (x) ln (1/p (x)) = E
[
ln 1

p(x)

]

Such H is a measure of the quantity of information that we receipt,
when is sent towards us.

The logarithmic base will be arbitrary.

If b = 2, it is measured in bits.

If b = 10, it will be in dits.

And if b = e, in nats.

Given two random discrete variables, X and Y, their Joint Entropy
is given by

H (X, Y ) = − ∑
x∈X

∑
y∈Y

p (x, y) log2 p (x, y) =

=
∑

x∈X

∑
y∈Y

p (x, y) log2 [1− p (x, y)] = −E [log2 p (x, y)]

The Conditional Entropy of the random variable Y, given the ran-
dom variable X, will be introduced by

H (Y/X) =
∑

x∈X

p (x) H (Y/X = x) =

− ∑
x∈X

p (x)
∑
y∈Y

p (y/x) log2 p (x, y) =

=
∑

x∈X

p (x)
∑
y∈Y

p (y/x) log2 [1− p (x, y)]

On an infinite domain, it is possible to generalize the entropy.

We found the Chain Rule, involving the symmetry of this H function

H (X,Y ) = H (X) + H (Y/X) = H (Y ) + H (X/Y ) = H (Y, X)
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It is also possible to prove that when X and Y are mutually equiv-
alent random variables, then

H (X,Y ) = H (X) + H (Y )

With the Corollary,

H (X, Y/Z) = H (X/Z) + H (Y/X, Z)

Mutual Info between X and Y. It will be denoted by I (X; Y).
But previously, we will define the Relative or Differential Entropy.

It will be also called Kullback-Leibler (1951) “distance” (pseudo-
distance, indeed), D, or divergence K-L.

Given two probability distributions, p and q, it will be defined by

D (p q q) =
∑

x∈X

p (x) log2

(
p(x)
q(x)

)
= Ep(x)

[
log2

p(x)
q(x)

]

Some essential properties of D will be

I) D (p q q) ≥ 0

II) D (p q q) ≥ 0 if and only if p (x) = q (x) , ∀x
III) In general, D (p q q) 6= D (q q p)

Therefore, it does not symmetrical. Neither verifies the triangular
inequality. So, it is not really a metric.

It report us the measure of inefficiency when supposing q as the
correct distribution, being so indeed p.

The mutual info of X on Y is the measure of the info which X has
on Y. Denoted by I (X; Y).

If we write instead I (Y; X), we have the info which Y posess on
X. But they give us the same value; so, it is a symmetrical measure.

The relationship between mutual info and entropy is

I (X; Y ) = H (X)−H (X/Y ) = H (Y )−H (Y/X) = I (Y ; X)

And also

I (X; Y ) = H (X) + H (Y )−H (X,Y )

Therefore,

I (X; X) = H (X)

I (Y ; Y ) = H (Y )

In general, conditioning a random variable on another, we reduce
the uncertainty of the last variable
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H (Y/X) ≤ H (X)

H (X/Y ) ≤ H (Y )

It is possible to generalise the Chain Rule for n variables

H (X1, H2, ..., Xn) =
n∑

i=1

H (Xi/Xi−1, Xi−2, ..., X1)

And therefore, in the conditional case

H (X1, H2, ..., Xn/Y ) =
n∑

i=1

H (Xi/Xi−1, Xi−2, ..., X1, Y )

Generalizing the K-L divergence.
In the discrete case, we have

D (P q Q) =
∑
i

p (i) log2

(
P (i)
Q(i)

)

Whereas in the continuum case

D (P q Q) =
+∞∫
−∞

p (x) log2

(
p(x)
q(x)

)
dx

Being p and q the density functions corresponding to both, P and
Q distributions.

Let

dP = pdµ

dQ = qdµ

be two probability measures, on the set X, such that they are abso-
lutely continuous with respect to the measure.

Then, we define the divergence of Kullback-Leibler, or K-L (if such
integral exist) as

D (P q Q) =
∫
X

p log
(

p
q

)
dµ

Where
p
q

= dP
dQ

is the Radon-Nikodym derivative of P with respect to Q. Then, the
final expression should be independent of measure µ.

Some interesting measures of divergence. For instance, we have the
symmetrized distance
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D (P q Q) + D (Q q P )

It will be very useful, for instance, in Feature Selection, into Clas-
sification Problems.

An alternative distance is the λ− div (lambda divergence),

Dλ (P q Q) =
λD [P q λP + (1− λ) Q] + (1− λ) D [Q q λP + (1− λ) Q]

This signifies the gaining expectation of info about that X is ob-
tained from P or Q, with respective probabilities p and q.

In particular, when λ = 1/2, we found the Jensen-Shannon diver-
gence

DJS (P q Q) = 1
2
D (P q M) + 1

2
D (Q q M)

Where M is the promediate value of probability distributions P and
Q.

This divergence of Jensen-Shannon can be interpreted as the capa-
bility of a noisy channel of info with two entries and giving as output
the probability distributions P and Q.

More generalized, from the Shannon Entropy measure, we can found
the Rényi Entropy, or Entropy due to Alfred Rényi.

Let be a random sample, {xi}n
i=1, with probabilities {pi}n

i=1.
We define the Rényi´s Entropy as

Hα (X) = 1
1−α

log

(
n∑

i=1

pα
i

)

If they are equal all the above probabilities, then

Hα (X) = log n, ∀α
The entropies, as functions of α, are weakly decreasing.
So, for instance,

H0 (X) ≥ H1 (X) ≥ H2 (X) ≥ ... ≥ H∞ (X)

A particular case should be the Hartley´s entropy,

If α = 0, then H0 (X) = log n (log [card (X)])

There exists these relation between entropies

H∞ < H2 < 2H∞



262 ANGEL GARRIDO

Furthermore, the Generalized Divergence of Rényi, of order α, of a
distribution Q, relative to P, the “authentic”, will be

Dα (P q Q) = 1
α−1

log

(
n∑

i=1

pα
i

qi−1
i

)
= 1

α−1
log

(
n∑

i=1

pα
i q1−i

i

)

So, we have

Dα (P q Q) ≥ 0,∀P, Q

2. Generalization

We may see now the Entropy Measures in a more generalized ver-
sion.

Departing of a t-norm, T, a t-conorm, S, and the negation, N, it
will be possible to introduce the Entropy Measure in another way.

Let

H : ℘ → [0, 1]

H (m) = k S {T (m (x)) , N (m (x))}x∈U

Where k is a constant of normalization, and m a fuzzy set on U,
wich depends of T, S and N.

We have the subsequent results,

1) If m is a crisp set, then H (m) = 0.

2) When T is in the minimum in the family of the t-norm product,
then H (m) = 0 if and only if m is a crisp set.

3) If A is less fuzzified than B, then H (A) ≤ H (B).
4) H (A) = H (U \ A).

5) H (m) = H (c(m)).

6) Let T as in 2). Then, if B ≤S A, then H (B) ≤ H (A) .

In this manner, we found that the Entropy Measure verifies the
properties signaled by De Luca and Termini (1972).

On an infinite domain, it is possible to generalize the entropy by

H (m) = k
∫

x∈X

{T (m (x) , N (m (x)))} dx
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3. Conclusion

With this new approximation to fuzzy measures and their classi-
fication, we hope to contribute in the advance through the field of
Uncertainty Measures, for to give an example of application. And so,
advancing through the Approximate Reasoning. It will be also useful
to work in different fields, such as Fuzzy Inference, Fuzzy Optimiza-
tion, and so on.
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