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A SET-VALUED LUSIN TYPE THEOREM

A. C. GAVRILUŢ

Abstract. In this paper, we present a Lusin type theorem un-
der a suitable type of measurability for regular multisubmeasures in
Hausdorff topology.

1. Introduction

In classical measure theory, regularity is an important property of
continuity. It connects measure theory and topology, aproximating
general Borel sets by more tractable sets, such as, compact and/or
open sets.

In the last years, non-additive regular (set-valued) measures were
intensively studied (see Gavriluţ [5-9], Ha and Wang [11], Kawabe
[13], Narukawa, Murofushi and Sugeno [14], Pap [15], Precupanu [16],
Song and Li [18], Wu and Ha [19], Wu and Wu [20] etc.) due to their
considerable applications in many fields, such as mathematical eco-
nomics, theory of control, decision theory, physics, biology, nonatomic
games, medicine etc.
————————————–
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lar, Lusin theorem, variation, totally-measurable in variation, atom,
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In this paper, we present a Lusin type theorem under a suitable type
of measurability for regular multisubmeasures in Hausdorff topology.
This type of measurability, called here totally-measurability in varia-
tion was used before, for instance in [17], in the study of a set-valued
Gould type integral.

2. Terminology and notations

Let T be an abstract set, C a ring of subsets of T , X a real normed
space, P0(X) the family of all nonempty subsets of X,Pf (X) the fam-
ily of closed, nonvoid sets of X, Pbf (X) the family of all bounded,
closed, nonvoid sets of X and h the Hausdorff pseudometric on Pf (X).

As it is well-known, h(M, N) = max{e(M, N), e(N, M)}, for every
M, N ∈ Pf (X), where e(M,N) = sup

x∈M
d(x,N).

(d(x,N) is the distance from x to N induced by the norm of X). e
is called the excess of M over N .

On Pbf (X), h becomes a metric [12].
We denote |M | = h(M, {0}), for every M ∈ Pf (X), where 0 is the

origin of X.
We observe that e(N, M) = h(M, N), for every M,N ∈ Pf (X),

with M ⊆ N .

On P0(X) we introduce the Minkowski addition ”
•
+ ” defined by:

M
•
+ N = M + N, for every M,N ∈ P0(X),

where M + N = {x + y; x ∈ M, y ∈ N} and M + N is the closure of
M + N with respect to the topology induced by the norm of X.

By N∗ we mean N\{0} and by 1, n, we mean {1, 2, ..., n}.
We also denote R+ = [0, +∞).

First, we recall the following classical notions. They are studied, for
instance, in Pap [15] in the context of non-additive set functions.

Definition 2.1. A set function m : C → R+ is said to be:
I) exhaustive if lim

n→∞
m(An) = 0, for every pairwise disjoint sequence

of sets (An)n∈N∗ ⊂ C.
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II) increasing convergent if lim
n→∞

m(An) = m(A), for every increasing

sequence of sets (An)n∈N∗ ⊂ C, with An ↗ A (ie., An ⊂ An+1, for every

n ∈ N∗) and A =
∞∪

n=1
An ∈ C.

III) decreasing convergent if lim
n→∞

m(An) = m(A), for every decreas-

ing sequence of sets (An)n∈N∗ ⊂ C, with An ↘ A (ie., An ⊃ An+1, for

every n ∈ N∗) and A =
∞∩

n=1
An ∈ C.

III’) order-continuous ( shortly, o-continuous) if we have
lim

n→∞
m(An) = 0, for every sequence of sets (An)n∈N∗ ⊂ C, with

An ↘ ∅.
IV) monotone if m(A) ≤ m(B), for every A,B ∈ C, with A ⊆ B.

V) a submeasure (in the sense of Drewnowski [4]) if m(∅) = 0, m is
monotone and subadditive, i.e., m(A ∪ B) ≤ m(A) + m(B), for every
A,B ∈ C, with A ∩B = ∅.

We shall need the following notions in the set valued case:

Definition 2.2. If µ : C → Pf (X) is a set multifunction, by |µ| we
mean the real extended valued set function defined by |µ|(A) = |µ(A)|,
for every A ∈ C.

Definition 2.3. A set multifunction µ : C → Pf (X), with µ(∅) =
{0} is said to be:

I) a multisubmeasure ([5-10]) if
a) µ is monotone (ie. µ(A) ⊆ µ(B), for every A,B ∈ C, with

A ⊆ B) and

b) µ(A ∪B) ⊆ µ(A)
•
+ µ(B), for every A,B ∈ C, with A ∩B = ∅)

(or, equivalently, for every A,B ∈ C).

II) a multimeasure if µ(A ∪B) = µ(A)
•
+ µ(B), for every A,B ∈ C,

with A ∩B = ∅.

Definition 2.4. A set multifunction µ : C → Pf (X) is said to be:
I) increasing convergent (with respect to h) if lim

n→∞
h(µ(An), µ(A)) =

0, for every increasing sequence of sets (An)n∈N∗ ⊂ C, with An ↗ A ∈
C.
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II) decreasing convergent (with respect to h) if
lim

n→∞
h(µ(An), µ(A)) = 0, for every decreasing sequence of sets

(An)n∈N∗ ⊂ C, with An ↘ A ∈ C.

III) exhaustive (with respect to h) if lim
n→∞

|µ(An)| = 0, for every

pairwise disjoint sequence of sets (An)n∈N∗ ⊂ C.

IV) order-continuous ( shortly, o-continuous) (with respect to h)
if lim

n→∞
|µ(An)| = 0, for every sequence of sets (An)n∈N∗ ⊂ C, with

An ↘ ∅.

Examples 2.5. I) Let ν1, . . . , νp : C → R+, be p finitely additive
set functions, where C is a ring of subsets of an abstract space T .

One can easily prove that the set multifunction µ : C → Pf (R),
defined for every A ∈ C by:

µ(A) =
⋃

B⊂A,
B∈C

{ν1(B), ν2(B), . . . , νp(B)},

is a multisubmeasure.

II) If ν1, ν2 : C → R+, ν1 is a finitely additive set function and ν2

is a submeasure (finitely additive set function, respectively), then the
set multifunction µ : C → Pf (R), defined by

µ(A) = [−ν1(A), ν2(A)], for every A ∈ C,

is a multisubmeasure (monotone multimeasure, respectively).
Note that |µ(A)| = max{ν1(A), ν2(A)}, for every A ∈ C.
Therefore, both ν1 and ν2 are order continuous (respectively, ex-

haustive) if and only if the same is µ.
Also, both ν1 and ν2 are increasing (respectively, decreasing) con-

vergent if and only if the same is µ.

Remark 2.6. I) Definitions 2.4 I)-IV) generalize the classical ones
from Definition 2.1.

Indeed, if m : C → R+ is a set function with m(∅) = 0 and
µ : C → Pf (R) is defined by µ(A) = [0, m(A)], for every A ∈ C,
then µ is increasing convergent (decreasing convergent, exhaustive,
o-continuous, respectively) if and only if the same is m.

The statements follow since |µ(A)| = m(A), for every A ∈ C and
h([0, a], [0, b]) = |a− b|, for every a, b ∈ R+.
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II) In Definition 2.3, if a set multifunction µ : C → Pf (X) with
µ(∅) = {0} is single-valued, then the monotonicity of µ implies that
µ(A) = {0}, for every A ∈ C. Therefore, the monotonicity finds a
meaning only in the case when the set multifunction is not single-
valued.

III) If C is finite, then any set multifunction µ : C → Pf (X), with
µ(∅) = {0} is increasing convergent, decreasing convergent, exhaustive
and o-continuous.

The following two notions are classic (see, for instance, Chiţescu [1,
2] for set functions), but here they are generalized for the set-valued
case. Suppose µ : C → Pf (X) is a set multifunction, with µ(∅) = {0}.

Definition 2.7. I) A set A ∈ C is said to be an atom of µ if
µ(A) ! {0} and for every B ∈ C, with B ⊂ A, we have µ(B) = {0}
or µ(A\B) = {0}.

II) µ is said to be finitely purely atomic if there is a finite disjoint

family (Ai)i=1,p ⊂ C of atoms of µ so that T =
p∪

i=1
Ai.

3. Regular multisubmeasures in Hausdorff topology

In this section, let T be a locally compact, Hausdorff space, B0

(respectively, B′0) the Baire δ-ring (respectively, σ-ring) generated by
compact sets, which are Gδ (that is, countable intersections of open
sets) and B (respectively, B′) the Borel δ-ring (respectively, σ-ring)
generated by the compact sets of T .

Note that B0 ⊂ B, B0 ⊂ B′0 and B ⊂ B′.
By K we denote the family of compacts and by D, the family of

open sets of T.
Consider X a real normed space, C a ring of subsets of T , A ∈ C an

arbitrary set and µ : C → Pf (X) a set multifunction, with µ(∅) = {0}.
In [5-9] (inspired by [3, 16]), various types of regularity in Hausdorff

topology were studied.
Here, we recall the following notion, which is consistent if, for in-

stance, C is the ring (δ-ring, σ-ring, respectively) generated by the
compact/compact, Gδ subsets of T.
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Definition 3.1. [5] µ is said to be regular if for every set A ∈ C
and every ε > 0, there is K ∈ K ∩ C, K ⊂ A so that |µ(B)| < ε, for
every B ∈ C, with B ⊂ A\K.

In what follows, suppose µ is a multisubmeasure.

Remark 3.2. [8] I) Every K ∈ K ∩ C is regular.
II) µ is regular if and only if for every A ∈ C and every ε > 0, there

is K ∈ K ∩ C, K ⊂ A so that |µ(A\K)| < ε.

Theorem 3.3. [6] i) If µ : C → Pf (X) is regular, then µ is o-
continuous.

ii) If µ : B0 → Pf (X), then µ is o-continuous if and only if µ is
regular on B0.

4. Totally-measurability in variation and a Lusin type
theorem

In what follows, without any special assumptions, suppose A is an
algebra of subsets of an abstract space T , X is a real normed space,
µ : A → Pf (X) is a multisubmeasure and f : T → R is a function.

Definition 4.1. A partition of T is a finite family P = {Ai}i=1,n ⊂
A such that Ai ∩ Aj = ∅, i 6= j and

n⋃
i=1

Ai = T.

We denote by P the class of all partitions of T and if A ∈ A is fixed,
by PA, the class of all partitions of A.

We consider the variation µ of µ, defined by µ(A) =

sup{
n∑

i=1

|µ(Ai)|}, for every A ∈ A,

where the supremum is extended over all finite partitions {Ai}i=1,n

of A.

Remark 4.2. [5] µ(A) ≥ |µ(A)|, for every A ∈ A and µ is finitely
additive on A.
|µ| is a submeasure on A.

Definition 4.3. f is said to be:



A SET-VALUED LUSIN TYPE THEOREM 271

I) totally-measurable in variation on (T,A, µ) if for every ε > 0
there exists a partition Pε = {Ai}i=0,n of T such that:

a) µ(A0) < ε and
b) sup

t,s∈Ai

|f(t)− f(s)| < ε, for every i = 1, n.

II) totally-measurable in variation on B ∈ A if the restriction f |B
of f to B is totally- measurable in variation on (B,AB, µB), where
AB = {A ∩B; A ∈ A} and µB = µ|AB

.

Remark 4.4. If f is totally-measurable in variation on T , then f
is totally-measurable in variation on every set A ∈ A.

Proposition 4.5. [10] Let µ : A → Pf (X) and {Ai}i=1,p ⊂ A an
arbitrary partition of a set A ∈ A. Then f is totally-measurable in
variation on A if and only if it is totally-measurable in variation on
every Ai, i = 1, p.

In the following, suppose (T, d1) is a locally compact, metric space.

Theorem 4.6. (Lusin type) Let µ : A → Pf (X) be a regular
multisubmeasure and f : T → R totally-measurable in variation on
T .

Then for every ε > 0, there is a compact set Kε ∈ A so that f
is ”pseudo”-continuous on Kε (i.e., for ε > 0, ∃δε > 0, ∀t, s ∈ Kε,
d1(t, s) < δε ⇒ |f(t) − f(s)| < ε) and |µ(T\Kε)| < ε (that is, f is
”pseudo”-quasi-continuous on T ).

Proof. Let ε > 0 be arbitrary.
Since f is totally measurable in variation on T , there is Pε =

{A0, A1, ..., Ap} ∈ P so that µ(A0) < ε
2

and sup
t,s∈Ai

|f(t) − f(s)| < ε,

for every i = 1, p.
Because for every i = 1, p, Ai is regular, there is a compact set

Ki ∈ A so that Ki ⊂ Ai and |µ(Ai\Ki)| < ε
2i+1 .

Then

|µ(
p∪

i=1
(Ai\Ki))| ≤

p∑
i=1

|µ(Ai\Ki)| <
p∑

i=1

ε

2i+1
<

ε

2
.
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Denote Kε =
p∪

i=1
Ki. Evidently, Kε is a compact set of A and

|µ((
p∪

i=1
Ai)\Kε)| ≤ |µ(

p∪
i=1

(Ai\Ki))| < ε

2
.

Because |µ(A0)| ≤ µ(A0) < ε
2
, then

|µ(T\Kε)| = |µ[A0 ∪ (
p∪

i=1
Ai)\Kε]| ≤

≤ |µ(A0)|+ |µ((
p∪

i=1
Ai)\Kε)| < ε.

It remains to prove that f is ”pseudo”-continuous on Kε.
Indeed, since sup

t,s∈A1

|f(t)− f(s)| < ε and sup
t,s∈A2

|f(t)− f(s)| < ε, then

f is ”pseudo”-continuous on A1 and A2 and also on K1 ⊂ A1 and on
K2 ⊂ A2.

Because K1∩K2 = ∅ and K1, K2 are compact, then d1(K1, K2)(ε) =
δε > 0.

Consequently, for ε > 0, there is δε > 0 such that for every t, s ∈
K1 ∪ K2, with d1(t, s) < δε = inf

u∈K1,v∈K2

d1(u, v), we must have either

t, s ∈ K1 ⊂ A1, or t, s ∈ K2 ⊂ A2, so |f(t) − f(s)| < ε, which means
f is ”pseudo”-continuous on K1 ∪K2.

Now, f is ”pseudo”-continuous on the compact disjoint sets K1∪K2

and K3.
We prove that f is ”pseudo”-continuous on K1 ∪K2 ∪K3.
Indeed, for ε > 0, there is δ

′
ε = min{d1(K1, K2)(ε), d1(K1 ∪

K2, K3)(ε)} > 0.
Let be arbitrary t, s ∈ (K1 ∪K2) ∪K3, with d1(t, s) < δ

′
ε.

Then d1(t, s) < d1(K1∪K2, K3)(ε), so we have either t, s ∈ K1∪K2,
or t, s ∈ K3.

I) If t, s ∈ K3 ⊂ A3, then |f(t)− f(s)| < ε and the proof finishes.
II) If t, s ∈ K1∪K2, since d1(t, s) < d1(K1, K2), then we have either

t, s ∈ K1 ⊂ A1, or t, s ∈ K2 ⊂ A2, so |f(t) − f(s)| < ε. Then f is
”pseudo”-continuous on K1 ∪K2 ∪K3.

Continuing this way, f is ”pseudo”-continuous on Kε =
p∪

i=1
Ki.

From now on, suppose (T, d1) is a compact, metric space. Then,
according to [3], B0 = B is an algebra.

By Theorem 3.3 and Theorem 4.6, we get:
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Corollary 4.7. (Lusin type) Let µ : B → Pf (X) be an o-
continuous multisubmeasure and f : T → R totally-measurable in
variation on T .

Then for every ε > 0, there is a compact set Kε ∈ B so that f is
”pseudo”-continuous on Kε and |µ(T\Kε)| < ε.

Proposition 4.8. [10] Suppose f : T → R is continuous on T and
µ : B → Pf (X) is a finitely purely atomic regular multisubmeasure.
Then f is totally-measurable in variation on T .

By Corollary 4.7 and Proposition 4.8, we immediately have:

Corollary 4.9. Suppose µ : B → Pf (X) is a regular finitely purely
atomic multisubmeasure. Let f : T → R.

Then, in this case, for f , totally-measurability in variation stands
between continuity and ”pseudo”-quasi-continuity on T :

f continuous ⇒ f totally-measurable in variation ⇒ f ”pseudo”-

quasi-continuous.
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[10] Gavriluţ, A., Croitoru, A. - Classical theorems for a Gould type inte-
gral, submitted for publication.



274 A. C. GAVRILUŢ
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