"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 19 (2009), No. 2, 275 - 288

ON TOTALLY-MEASURABLE FUNCTIONS

A. GAVRILUŢ AND A. CROITORU

Abstract. In this paper, we study different basic problems concerning real valued functions which are totally-measurable with respect to the variation of a (multi)submeasure. As applications, special considerations on their relation with Gould type integrability and additional problems are given (e.g., a Fatou lemma type, the Banach structure of a \mathcal{L}^p space).

1. INTRODUCTION

In the last years, the non-additive case and the set-valued case received a special attention because of their applications in mathematical economics, decision theory, artificial intelligence, statistics or theory of games.

Particularly, problems concerning measurability and set-valued integrability were of a great interest.

In this paper, we shall deal with a special type of measurability, called here, totally-measurability in variation. It was successfully used in the study of (set-valued) Gould type integrals [4, 5], [7, 8], [10], [11], [17-19], which have remarkable properties. Among other results, we shall present relationships between totally-measurability in variation and Gould integrability.

Keywords and phrases: set multifunction, multisubmeasure, variation, totally-measurable in variation, atom, finitely purely atomic, \mathcal{L}^p 2000 Mathematics Subject Classification: 28B20, 28C15. Results concerning \mathcal{L}^p spaces and a Fatou type lemma are also given. An important class of real valued functions which are totally-measurable in the variation of a special set multifunction is provided.

2. Basic notions and results

Let $(X, \|\cdot\|)$ be a real normed space with the origin 0, $\mathcal{P}_0(X)$ the family of non-empty subsets of X, $\mathcal{P}_f(X)$ the family of nonvoid closed subsets of X, $\mathcal{P}_{bf}(X)$ the family of nonvoid closed bounded subsets of X, $\mathcal{P}_{kc}(X)$ the family of nonvoid compact convex subsets of X and h the Hausdorff pseudometric on $\mathcal{P}_f(X)$, which becomes a metric on $\mathcal{P}_{bf}(X)$.

It is known that $h(M, N) = \max\{e(M, N), e(N, M)\}$, where

 $e(M, N) = \sup_{x \in M} d(x, N)$, for every $M, N \in \mathcal{P}_f(X)$ is the excess of M over N and

d(x, N) is the distance from x to N with respect to the distance induced by the norm of X.

We denote
$$|M| = h(M, \{0\}) = \sup_{x \in M} ||x||$$
, for every $M \in \mathcal{P}_0(X)$.

For every $M, N \in \mathcal{P}_0(X)$, let $M + N = \{x + y | x \in M, y \in N\}$.

By \overline{M} we mean the closure of M with respect to the topology induced by the norm of X.

On $\mathcal{P}_0(X)$ we consider the Minkowski addition " $\stackrel{\bullet}{+}$ " [12], defined by:

 $M + N = \overline{M + N}$, for every $M, N \in \mathcal{P}_0(X)$.

Let T be an abstract nonvoid set, $\mathcal{P}(T)$ the family of all subsets of T and \mathcal{C} a ring of subsets of T.

By $i = \overline{1, n}$ we mean $i \in \{1, 2, ..., n\}$, for $n \in \mathbb{N}^*$, where \mathbb{N} is the set of all naturals and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. We also denote $\mathbb{R}_+ = [0, +\infty)$ and $\overline{\mathbb{R}}_+ = [0, +\infty]$.

First, we recall some classical notions. Among others, they were intensively studied, for instance in [15].

Definition 2.1. A set function $m : \mathcal{C} \to \overline{\mathbb{R}}_+$, with $m(\emptyset) = 0$, is said to be:

I) monotone if $m(A) \leq m(B)$, for every $A, B \in \mathcal{C}$, with $A \subseteq B$.

II) superadditive if $m(\bigcup_{i \in I} A_i) \ge \sum_{i \in I} m(A_i)$, for every sequence of pairwise disjoint sets $(A_i)_{i \in I} \subset \mathcal{C}$, with $\bigcup_{i \in I} A_i \in \mathcal{C}$, $I \subseteq \mathbb{N}$.

III) subadditive if $m(A \cup B) \leq m(A) + m(B)$, for every $A, B \in \mathcal{C}$, with $A \cap B = \emptyset$.

IV) a submeasure (in the sense of Drewnowski [3]) if m is monotone and subadditive.

V) order-continuous (shortly, o-continuous) if $\lim_{n\to\infty} m(A_n) = 0$, for every decreasing sequence of sets $(A_n)_{n\in\mathbb{N}^*} \subset \mathcal{C}$, with $\bigcap_{n=1}^{\infty} A_n = \emptyset$ (denoted by $A_n \searrow \emptyset$).

Examples 2.2. Suppose $\nu_1, \nu_2 : \mathcal{C} \to \mathbb{R}_+$ are finitely additive set functions.

Then $m_1, m_2 : \mathcal{C} \to \mathbb{R}_+$ defined for every $A \in \mathcal{C}$ by $m_1(A) = \frac{\nu_1(A)}{1+\nu_1(A)}, m_2(A) = \sqrt{\nu_1(A)}$ are submeasures.

Also, $m : \mathcal{C} \to \mathbb{R}_+$ defined for every $A \in \mathcal{C}$ by $m(A) = \max\{\nu_1(A), \nu_2(A)\}$ is a submeasure, too.

We introduce now several notions in the set-valued case.

Suppose $\mu : \mathcal{C} \to \mathcal{P}_0(X)$, with $\mu(\emptyset) = \{0\}$ is an arbitrary set multifunction.

Definition 2.3. We consider:

I) the extended real valued set function $|\mu| : \mathcal{C} \to \overline{\mathbb{R}}_+$ defined for every $A \in \mathcal{C}$ by $|\mu|(A) = |\mu(A)|$.

II) the variation $\overline{\mu}$ of μ defined for every $A \in \mathcal{P}(T)$ by

 $\overline{\mu}(A) = \sup\{\sum_{i=1}^{n} |\mu(A_i)|\}, \text{ where the supremum is extended over all finite families of pairwise disjoint sets } \{A_i\}_{i=\overline{1,n}} \subset \mathcal{A}, \text{ with } A_i \subseteq A, \text{ for every } i \in \{1,\ldots,n\}.$

III) μ is said to be of finite variation on C if $\overline{\mu}(A) < \infty$, for every $A \in C$.

Definition 2.4. μ is said to be:

I) monotone if $\mu(A) \subseteq \mu(B)$, for every $A, B \in \mathcal{C}$, with $A \subseteq B$.

II) a multimeasure if $\mu(A \cup B) = \mu(A) + \mu(B)$, for every $A, B \in \mathcal{C}$, with $A \cap B = \emptyset$.

III) a multisubmeasure [4] if μ is monotone and $\mu(A \cup B) \subseteq \mu(A) + \mu(B)$, for every $A, B \in \mathcal{C}$, with $A \cap B = \emptyset$ (or, equivalently, for every $A, B \in \mathcal{C}$).

IV) *h*- σ -subadditive if $|\mu(\bigcup_{n=1}^{\infty} A_n)| \leq \sum_{n=1}^{\infty} |\mu(A_n)|$, for every sequence

of pairwise disjoint sets $(A_n)_{n \in \mathbb{N}^*} \subset \mathcal{C}$, with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{C}$.

V) order-continuous (shortly, o-continuous) if $\lim_{n\to\infty} |\mu(A_n)| = 0$, for every decreasing sequence of sets $(A_n)_{n\in\mathbb{N}^*} \subset \mathcal{C}$, with $A_n \searrow \emptyset$.

Remarks 2.5. I) If μ is $\mathcal{P}_f(X)$ -valued, then in Definition 2.4 - II), III) it usually appears the Minkowski addition instead of the classical addition because the sum of two closed sets is not, generally, a closed set.

II) $\overline{\mu}$ is monotone and superadditive on $\mathcal{P}(T)$.

[4] If $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ is a multi(sub)measure, then $\overline{\mu}$ is finitely additive on \mathcal{C} and $|\mu|$ is a submeasure.

III) Every monotone multimeasure is, particularly, a multisubmeasure. Evidently, the converse is not, generally, valid.

IV) [7] Let $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ be a multisubmeasure of finite variation. The following statements are equivalent:

i) μ is *h*- σ -subadditive;

ii) μ is order-continuous;

iii) $\overline{\mu}$ is σ -additive on \mathcal{C} .

Examples 2.6. I) Let $m_1, m_2 : \mathcal{C} \to \mathbb{R}_+$, with $m_1(\emptyset) = 0$ and $m_2(\emptyset) = 0$.

If m_1 is finitely additive and m_2 is a submeasure (finitely additive, respectively), then the set multifunction $\mu : \mathcal{C} \to \mathcal{P}_f(\mathbb{R})$, defined by

$$\mu(A) = [-m_1(A), m_2(A)], \text{ for every } A \in \mathcal{C},$$

is a multisubmeasure (a multimeasure, respectively).

II) Let \mathcal{C} be a ring of subsets of $T, m : \mathcal{C} \to \mathbb{R}_+$ a finitely additive set function and $\mu : \mathcal{C} \to \mathcal{P}_{bf}(\mathbb{R})$ the set multifunction defined for every $A \in \mathcal{C}$ by

$$\mu(A) = \begin{cases} [-m(A), m(A)], & \text{if } m(A) \le 1\\ [-m(A), 1], & \text{if } m(A) > 1 \end{cases}$$

One can easily check that μ is a multisubmeasure.

III) Let $T = 2\mathbb{N} = \{0, 2, 4, \ldots\}, \ \mathcal{C} = \mathcal{P}(T) \text{ and } \mu : \mathcal{C} \to \mathcal{P}_f(\mathbb{R})$ defined for every $A \in \mathcal{C}$ by

$$\mu(A) = \begin{cases} \{0\}, & \text{if } A = \emptyset\\ \frac{1}{2}A \cup \{0\}, & \text{if } A \neq \emptyset, \end{cases}$$

where $\frac{1}{2}A = \{\frac{x}{2} | x \in A\}$. Then μ is a multisubmeasure.

In [6, 9], the notions of an atom and of non-atomicity for set multifunctions were introduced and studied. In what follows, we recall the notion of an atom of a set multifunction and, using it, we extend to the set valued case the notion of a finitely purely atomic set function introduced and studied by Chitescu in [1-2].

Definition 2.7. I) A set $A \in C$ is said to be an *atom* of μ if $\mu(A) \supseteq \{0\}$ and for every $B \in C$, with $B \subseteq A$, we have $\mu(B) = \{0\}$ or $\mu(A \setminus B) = \{0\}$.

II) We say that μ is *finitely purely atomic* if there is a finite disjoint family $(A_i)_{i=\overline{1,n}} \subset \mathcal{C}$ of atoms of μ so that $T = \bigcup_{i=1}^n A_i$.

3. TOTALLY-MEASURABILITY IN VARIATION

In this section we present some remarkable properties of real valued functions which are totally-measurable with respect to the variation of a (multi)submeasure.

In the sequel, \mathcal{A} will be an algebra of subsets of T, $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ a set multifunction of finite variation, with $\mu(\emptyset) = \{0\}$ and $f : T \to \mathbb{R}$ an arbitrary function. **Definition 3.1.** i) A partition of a set $A \in \mathcal{A}$ is a finite family $P = \{A_i\}_{i=\overline{1,n}}$ of pairwise disjoint sets of \mathcal{A} such that $\bigcup_{i=1}^{n} A_i = A$.

ii) Let $P = \{A_i\}_{i=\overline{1,n}}$ and $P' = \{B_j\}_{j=\overline{1,m}}$ be two partitions of T.

P' is said to be finer than P, denoted $P \leq P'$ (or $P' \geq P$), if for every $j = \overline{1, m}$, there exists $i_j = \overline{1, n}$ so that $B_j \subseteq A_{i_j}$.

iii) The common refinement of two partitions $P = \{A_i\}_{i=\overline{1,n}}$ and $P' = \{B_j\}_{j=\overline{1,m}}$ is the partition $P \wedge P' = \{A_i \cap B_j\}_{i=\overline{1,n}}$.

Obviously, $P \wedge P' \geq P$ and $P \wedge P' \geq P'$.

We denote by \mathcal{P} the class of all partitions of T and if $A \in \mathcal{A}$ is fixed, by \mathcal{P}_A , the class of all partitions of A.

Definition 3.2. I) f is said to be *totally-measurable in variation* (shortly, t.m.v.) on (T, \mathcal{A}, μ) if for every $\varepsilon > 0$ there exists a partition $P_{\varepsilon} = \{A_i\}_{i=\overline{0,n}}$ of T such that:

(*)
$$\begin{cases} a) \ \overline{\mu}(A_0) < \varepsilon \ \text{and} \\ b) \ \sup_{t,s \in A_i} |f(t) - f(s)| = osc(f, A_i) < \varepsilon, \ \forall i = \overline{1, n}. \end{cases}$$

II) f is said to be totally-measurable in variation (shortly, t.m.v.) on $B \in \mathcal{A}$ if the restriction $f|_B$ of f to B is totally measurable in variation on $(B, \mathcal{A}_B, \mu_B)$, where $\mathcal{A}_B = \{A \cap B; A \in \mathcal{A}\}$ and $\mu_B = \mu|_{\mathcal{A}_B}$.

Remark 3.3. Totally-measurability in variation is hereditary, i.e., if f is t.m.v. on T, then f is t.m.v. on every $A \in \mathcal{A}$.

We consider now the extended real valued set function $\tilde{\mu}$ defined by $\tilde{\mu}(A) = \inf{\{\overline{\mu}(B); A \subseteq B, B \in \mathcal{A}\}}$, for every $A \in \mathcal{P}(T)$.

From now on, suppose $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ is a multisubmeasure of finite variation.

Remarks 3.4. [7] I) $\widetilde{\mu}(A) = \overline{\mu}(A)$, for every $A \in \mathcal{A}$.

II) $\widetilde{\mu}$ is a submeasure on $\mathcal{P}(T)$. If, moreover, μ is *h*- σ -subadditive, then $\widetilde{\mu}$ is σ -subadditive on $\mathcal{P}(T)$.

Definition 3.5. We say that a property (P) holds μ -almost everywhere (shortly, μ -ae) if the property (P) is valid on $T \setminus A$, with $\tilde{\mu}(A) = 0$.

In [5, 13, 14, 18, 19] several types of convergences for sequences of functions are introduced and studied. Here we shall use the following:

Definition 3.6. If $f_n : T \to \mathbb{R}$, for every $n \in \mathbb{N}$, then the sequence of functions $(f_n)_n$ converges in submeasure to f (denoted by $f_n \xrightarrow{\mu} f$) if for every $\delta > 0$, $\lim_{n \to \infty} \tilde{\mu}(B_n(\delta)) = 0$, where

$$B_n(\delta) = \{t \in T; |f_n(t) - f(t)| \ge \delta\}.$$

Proposition 3.7. ([5, 7]) I) If $f, g : T \to \mathbb{R}$ are bounded t.m.v. functions, then:

i) f + g, λf are t.m.v., for every $\lambda \in \mathbb{R}$; ii) f^2 and fg are t.m.v.

II) If for every $n \in \mathbb{N}$, $f_n : T \to \mathbb{R}$ is bounded, t.m.v. and (f_n) is convergent in submeasure to a bounded function $f : T \to \mathbb{R}$, then f is t.m.v.

Using the definition of totally-measurability in variation, one can easily obtain by standard proofs the following:

Proposition 3.8. Suppose $f, g : T \to \mathbb{R}$ are bounded functions and $p \in [1, +\infty)$ is arbitrarily. Then:

I) If f is t.m.v., then $|f|^p$ is t.m.v.;

II) If $|f|^p$ and $|g|^p$ are t.m.v., then $|f+g|^p$ is t.m.v.

Proposition 3.9. [7] Let $f : T \to \mathbb{R}$ be a bounded function and $A \in \mathcal{A}$.

If $\{A_i\}_{i=\overline{1,p}} \subset \mathcal{A}$ is an arbitrary partition of A, then f is t.m.v. on $\bigcup_{i=1}^{p} A_i$ if and only if the same is f on every $A_i, i = \overline{1,p}$.

In the following, we obtain an important class of functions which are totally measurable in the variation of a special multisubmeasure:

Theorem 3.10. Suppose (T, ρ) is a compact metric space, \mathcal{B} is the Borel δ -ring generated by the compact subsets of $T, f: T \to \mathbb{R}$ is continuous on T and $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ is a finitely purely atomic R'_l -regular [6] multisubmeasure. Then f is t.m.v. on T.

Proof. According to Proposition 3.9, it is sufficient to establish the t.m.v. of f on an arbitrary fixed atom A_0 of μ .

Because μ is a R'_l -regular multisubmeasure, by [6], there is an unique $a_0 \in A_0$ so that $\mu(A_0 \setminus \{a_0\}) = \{0\}$.

Consider arbitrary $\varepsilon > 0$. Since f is continuous in a_0 , there is $\delta_{\varepsilon} > 0$ so that for every $t \in A_0$, with $\rho(t, a_0) < \delta_{\varepsilon}$, we have $|f(t) - f(a_0)| < \frac{\varepsilon}{3}$.

Let $B_{\varepsilon} = \{t \in A_0; \rho(t, a_0) < \delta_{\varepsilon}\} = A_0 \cap B(a_0, \delta_{\varepsilon})$, where $B(a_0, \delta_{\varepsilon})$ is the open ball of center a_0 and radius δ_{ε} .

Then $B_{\varepsilon} \in \mathcal{B}$ and since A_0 is an atom, we have $\mu(B_{\varepsilon}) = \{0\}$ or $\mu(A_0 \setminus B_{\varepsilon}) = \{0\}$. Also, one can easily check that \mathcal{B} is an algebra.

If $\mu(B_{\varepsilon}) = \{0\}$, then since $a_0 \in B_{\varepsilon}$, we get $\mu(\{a_0\}) = \{0\}$. But $\mu(A_0 \setminus \{a_0\}) = \{0\}$, so $\mu(A_0) = \{0\}$, a contradiction. So, we have $\mu(A_0 \setminus B_{\varepsilon}) = \{0\}$.

Now, one can easily observe that the partition $P_{A_0} = \{A_0 \setminus B_{\varepsilon}, B_{\varepsilon}\}$ assures the t.m.v. of f.

Theorem 3.11. Suppose \mathcal{A} is a σ -algebra, $m : \mathcal{A} \to \mathbb{R}_+$ is an σ -continuous submeasure of finite variation and $(f_n)_{n \in \mathbb{N}^*}$ is a sequence of uniformly bounded t.m.v. functions $f_n : T \to \mathbb{R}$.

If for every $t \in T$, there exists $\lim_{n \to \infty} f_n(t) = f(t)$, then f is t.m.v.

Proof. I. We prove that g defined for every $t \in T$ by $g(t) = \inf_{t \in T} f_n(t)$, is t.m.v.

One can easily check that for every $t, s \in T$, the following inequality holds:

$$|g(t) - g(s)| \le \sup_{n \in \mathbb{N}^*} |f_n(t) - f_n(s)|.$$
 (1)

Because for every $n \in \mathbb{N}^*$, f_n is t.m.v., then for every $\varepsilon > 0$, there is a partition $P_{\varepsilon}^n = \{A_j^n\}_{j=\overline{0,p_n}} \in \mathcal{P}$ so that $\overline{m}(A_0^n) < \frac{\varepsilon}{2^{n+1}}$ and

$$\sup_{t,s\in A_j^n} |f_n(t) - f_n(s)| < \frac{\varepsilon}{2^{n+1}}, \quad j = \overline{1, p_n}.$$
(2)

Consider $A_0 = \bigcup_{n=1}^{\infty} A_0^n \in \mathcal{A}$. Because *m* is an o-continuous submeasure of finite variation, then \overline{m} is σ -additive on \mathcal{A} , so,

$$\overline{m}(A_0) \le \sum_{n=1}^{\infty} \overline{m}(A_0^n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} < \frac{\varepsilon}{2}.$$

On the other hand,

$$cA_{0} = \bigcap_{n=1}^{\infty} cA_{0}^{n} = \bigcap_{n=1}^{\infty} (A_{1}^{n} \cup A_{2}^{n} \cup ... \cup A_{p_{n}}^{n}) = \\ = (A_{1}^{1} \cup A_{2}^{1} \cup ... \cup A_{p_{1}}^{1}) \cap (A_{1}^{2} \cup A_{2}^{2} \cup ... \cup A_{p_{2}}^{2}) \cap ... \\ = \bigcup_{(i_{n}) \in \prod_{n=1}^{\infty} I_{n}} (A_{i_{1}}^{1} \cap A_{i_{2}}^{2} \cap ... \cap A_{i_{n}}^{n} \cap ...),$$

where $I_n = \{1, 2, \dots, p_n\}$, for every $n \in \mathbb{N}^*$.

Denote the last reunion by $\bigcup_{n=1}^{\infty} B_n$. Now let $C_n = \bigcup_{k=1}^n B_k$ and $D_n = cA_0 \setminus C_n$, for every $n \in \mathbb{N}^*$.

We observe that $B_n \cap B_m = \emptyset$ whenever $n \neq m$, $\bigcup_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} B_n = cA_0$ and $D_n \searrow \emptyset$.

Since \overline{m} is o-continuous, there is $n_0(\varepsilon) = n_0 \in \mathbb{N}^*$ such that $\overline{m}(cA_0 \setminus (\bigcup_{i=1}^{n_0} B_i)) < \frac{\varepsilon}{2}$. Because $\overline{m}(A_0) < \frac{\varepsilon}{2}$, we get $\overline{m}(c(\bigcup_{i=1}^{n_0} B_i)) < \varepsilon$. From (1) and (2), for every $i \in \{1, \ldots, n_0\}$ we have:

$$\sup_{t,s\in B_i} |g(t) - g(s)| \le \sup_{t,s\in B_i} \{ \sup_{n\in\mathbb{N}^*} |f_n(t) - f_n(s)| \} < \frac{\varepsilon}{2}$$

If we now consider the partition $P_{\varepsilon} = \{c(\bigcup_{i=1}^{n_0} B_i), B_1, ..., B_{n_0}\},$ we obtain that q is t.m.v.

II. By I, the function h defined for every $t\in T$ by $h(t)=\sup_{n\in\mathbb{N}^*}f_n(t),$ is also t.m.v.

III. By I and II we immediately have the conclusion.

4. Totally-measurability in variation and Gould integrability

As in the previous section, \mathcal{A} is an algebra of subsets of T, $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ a set multifunction of finite variation with $\mu(\emptyset) = \{0\}$ and $f: T \to \mathbb{R}$ an arbitrary bounded function.

In what follows, $\sigma_{f,\mu}(P)$ (or, if there is no doubt, $\sigma_f(P), \sigma_{\mu}(P)$ or $\sigma(P)$) denotes $\sum_{i=1}^{n} f(t_i)\mu(A_i)$, for every partition $P = \{A_i\}_{i=\overline{1,n}}$ of T and every $t_i \in A_i, i = \overline{1, n}$.

Definition 4.1. [4, 5, 7, 8, 17-19] I) The function f is said to be μ -integrable on T if the net $(\sigma(P))_{P \in (\mathcal{P}, \leq)}$ is convergent in $(\mathcal{P}_f(X), h)$, where P, the set of all partitions of T, is ordered by the relation " \leq " given in Definition 3.1.

If $(\sigma(P))_{P \in (\mathcal{P}, \leq)}$ is convergent, then its limit is called the integral of f on T with respect to μ , denoted by $\int_T f d\mu$.

II) If $B \in \mathcal{A}$, f is said to be μ -integrable on B if the restriction $f|_B$ of f to B is μ -integrable on $(B, \mathcal{A}_B, \mu_B)$.

Remarks 4.2. I) f is μ -integrable on T if and only if there exists a set $I \in \mathcal{P}_{bf}(X)$ such that for every $\varepsilon > 0$, there exists a partition P_{ε} of T, so that for every other partition of T, $P = \{A_i\}_{i=\overline{1,n}}$, with $P \ge P_{\varepsilon}$ and every choice of points $t_i \in A_i, i = \overline{1, n}$, we have $h(\sigma(P), I) < \varepsilon$.

II) If $\mu : \mathcal{A} \to \mathcal{P}_{kc}(X)$, then $\int_{\mathcal{T}} f d\mu \in \mathcal{P}_{kc}(X)$.

III) [7] If $m : \mathcal{A} \to \mathbb{R}_+$, with $m(\emptyset) = 0$ is arbitrary, of finite variation, and $f : T \to \mathbb{R}$ a bounded function, consider:

i) the set multifunction $\mu : \mathcal{A} \to \mathcal{P}_f(\mathbb{R})$, defined by $\mu(A) = \{m(A)\}$, for every $A \in \mathcal{A}$.

Then f is *m*-integrable on T if and only if there is $I \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists a partition P_{ε} of T, so that for every other partition of T, $P = \{A_i\}_{i=\overline{1,n}}$, with $P \ge P_{\varepsilon}$ and every choice of points $t_i \in A_i, i = \overline{1,n}$, we have $|\sigma(P) - I| = |\sum_{i=1}^n f(t_i)m(A_i) - I| < \varepsilon$. Here, $I = \int_T f d\mu$.

ii) the set multifunction $\mu : \mathcal{A} \to \mathcal{P}_f(\mathbb{R})$, defined by $\mu(A) = [0, m(A)]$, for every $A \in \mathcal{A}$.

Then on every $A \in \mathcal{A}$, f is m-integrable if and only if f is μ -integrable and, in this case,

$$\int_{A} f d\mu = [0, \int_{A} f dm].$$

IV) The Gould type integral [18, 19], if it exists, is unique and has remarkable properties. Among them, homogenity and additivity with respect to the function f and the set multifunction μ , additivity with respect to the set, monotonicity with respect to the function f, to the set multifunction μ , and to the set.

In what follows, we point out some relationships between integrability and totally-measurability in variation for various set (multi)functions:

Theorem 4.3. [17] Suppose $\mu : \mathcal{A} \to \mathcal{P}_{kc}(X)$ is a multimeasure. If f is t.m.v. on T, then f is μ -integrable on T.

For multisubmeasures, in general, such a result does not hold. Although, if we deal with finitely purely atomic multisubmeasures, totally-measurability in variation implies integrability:

Theorem 4.4. [7] Suppose $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ is a finitely purely atomic multisubmeasure. If f is t.m.v. on T, then f is μ -integrable on T.

By Theorem 3.10 and Theorem 4.4, we obtain:

Corollary 4.5. Suppose (T, ρ) is a compact metric space, \mathcal{B} is the Borel δ -ring generated by the compact subsets of $T, f: T \to \mathbb{R}$ is continuous on T and $\mu: \mathcal{B} \to \mathcal{P}_f(X)$ is a finitely purely atomic R'_{f} -regular multisubmeasure. Then f is μ -integrable on T.

From now on, suppose $m : \mathcal{A} \to \mathbb{R}_+$ is a submeasure of finite variation.

In this case, as we shall see from the following result, totally measurability in variation is equivalent to integrability:

Proposition 4.6. [10] The following statements are equivalent:

i) f is *m*-integrable; ii) f is t.m.v. Moreover, in this case, $\int_T f dm = \int_T f d\overline{m}$ (where $\int_T f d\overline{m}$ is the Gould integral [11]).

In the following, let us consider the space $\mathcal{L}^p = \{f : T \to \mathbb{R}; f \text{ is bounded on } T \text{ and } |f|^p \text{ is } m\text{-integrable on } T\}.$

Proposition 4.7. [8] i) \mathcal{L}^p is a linear space.

ii) The function $|| \cdot || : \mathcal{L}^p \to \mathbb{R}_+$, defined for every $f \in \mathcal{L}^p$ by $||f|| = (\int_T |f|^p dm)^{\frac{1}{p}}$, is a semi-norm.

Theorem 4.8. (Fatou Lemma) [7] Suppose \mathcal{A} is a σ -algebra, $m : \mathcal{A} \to \mathbb{R}_+$ is a submeasure of finite variation so that \widetilde{m} is ocontinuous on $\mathcal{P}(T)$ and $(f_n)_{n \in \mathbb{N}}$ is a sequence of uniformly bounded, t.m.v. functions $f_n : T \to \mathbb{R}$. Then

$$\int_{T} \liminf_{n} f_n dm \le \liminf_{n} \int_{T} f_n dm.$$

By the Fatou lemma, using the ideas of [16], in [8] the following result is obtained:

Corollary 4.9. Let \mathcal{A} be a σ -algebra and suppose m is finitely purely atomic and \widetilde{m} is o-continuous on $\mathcal{P}(T)$. Then $|| \cdot || : \mathcal{L}^p \to \mathbb{R}_+$ is a norm and \mathcal{L}^p is a Banach space.

References

- Chiţescu, I. Finitely purely atomic measures and L^p-spaces, An. Univ. Bucureşti Şt. Natur. 24 (1975), 23-29.
- [2] Chiţescu, I. Finitely purely atomic measures: coincidence and rigidity properties, Rend. Circ. Mat. Palermo (2) 50 (2001), no. 3, 455-476.
- [3] Drewnowski, L. Topological rings of sets, continuous set functions, Integration, I, II, III, Bull. Acad. Polon. Sci. Sér. Math. Astron. Phys. 20 (1972), 269-276, 277-286.
- [4] Gavriluţ, A. A Gould type integral with respect to a multisubmeasure, Math. Slovaca, 58 (2008), no 1, 1-20.
- [5] Gavrilut, A. On some properties of the Gould type integral with respect to a multisubmeasure, An. St. Univ. Iași 52 (2006), no 1, 177-194.
- [6] Gavriluţ, A. Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions, Fuzzy Sets and Systems 160 (2009), 1308-1317.
- [7] Gavriluţ, A., Croitoru, A. Classical theorems for a Gould type integral, submitted for publication.
- [8] Gavriluţ, A., Croitoru, A. L^p spaces generated by the Gould integrability, submitted for publication.
- [9] Gavriluţ, A., Croitoru, A. Non-atomicity for fuzzy and non-fuzzy multivalued set functions, Fuzzy Sets and Systems, 160 (2009), 2106-2116.
- [10] Gavriluţ, A., Petcu, A. A Gould type integral with respect to a submeasure, An. Şt. Univ. Iaşi, Tomul LIII, 2007, f. 2, 351-368.

- [11] Gould, G.G. On integration of vector-valued measures, Proc. London Math. Soc. 15 (1965), 193-225.
- [12] Hu, S. Papageorgiou, N.S. Handbook of Multivalued Analysis, vol. I, Kluwer Acad. Publ., Dordrecht, 1997.
- [13] Li, J. Order continuous of monotone set function and convergence of measureable functions sequence, Applied Mathematics and Computation 135 (2003), 211-218.
- [14] Li, J. A note on the null-additivity of the fuzzy measure, Fuzzy Sets and Systems 125(2002), 269-271.
- [15] Pap, E. Null-additive Set Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995.
- [16] Precupanu, A.M. Analiză Matematică. Funcții Reale (in Romanian), Edit. Didactică și Pedagogică, București, 1976.
- [17] Precupanu, A., Croitoru, A. A Gould type integral with respect to a multimeasure, I, An. Şt. Univ. Iaşi, 48 (2002), 165-200.
- [18] Precupanu, A., Gavriluţ, A., Croitoru, A. A fuzzy Gould type integral, submitted for publication.
- [19] Precupanu, A., Gavrilut, A., Croitoru, A. On a generalized Gould type set valued integral, VMIA Conference, Eichstätt, Germany, 2008.

Faculty of Mathematics, "Al.I. Cuza" University, Carol I Bd. 11, Iași, 700506, România, gavrilut@uaic.ro, croitoru@uaic.ro