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SOME CURVATURE PROPERTIES IN RANDERS SPACES
OTILIA LUNGU

Abstract. In this paper we get a condition for Randers spaces to be
simultaneously with scalar flag curvature and with constant E-curvature.

1. INTRODUCTION
Let us consider a real differentiable manifold of dimension n. Denote

by (TM,7,M) the tangent bundle of M. Let F" =(M,F(x,y)) be a Finsler

space where F:TM — R is its fundamental function and the Hessian given
by

(1.1) gij(x.y)==

called the fundamental tensor field of F" is positive defined.
The Finsler metric F induces a vector field

(1.2) oy -0 26l o
ox' ay'
on TM, defined by
i1 il 2 k |=2
(1.3) G' :Zg' (x, y){[F ]Xkyl (x,y)y —[F ]XI (x, y)}
Any vector field in the above form (1.2) with the homogeneity property
(1.4) G'(x,ny)=22G'(x,y), >0

is called a spray and G' are called the spray coefficients.
For a vector y € TyM — {0}, the Riemann curvature

(1.5) Ry = R (x,y)ax" ®ii:TxM —>TM
OX
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is defined by
i oG %G i 0’6" o6 oG!
(1.6) Ry =2 k—yJ : k+2GJ e
ox ox oy oylay oyl oy
For a flag P:Span{y,u}cTXM with the flagpole y, the flag
curvature K = K(P,y) is defined by

gy(u,Ky(u))

(1.7) K(P,y)=
gy (y.¥)gy (u.u)-gy(y.u)’

9

where gy = gjj (, y)ix' @ dxJ .
We say that a Finsler metric F is of scalar curvature if for any
yeT,M, the flag curvature K =K(x,y) is a scalar function. If

K =constant, then F is said to be of constant flag curvature.
The volume form of F is expressed by

(1.8) dVE = o (x)dx!..dx"
where

n
(1.9) op = VoI(B )

Vol{(yi)e R"

The S-curvature is defined by

(O

i
(1.10) Szg—y'i(lncp(x)).

A Finsler metric F is said to have isotropic S-curvature if there is a
scalar function ¢ = ¢(x) on M such that
(1.11) S=(n+1)F.
For a vector y € T,M — {0}, we define a symmetric bilinear form on T, M

i .
Ey =Ejj(x y)dx' ®dx’,

with
o°G"
=(x,y),

(1.12) Ejj (%, Y)I%W

called E-curvature.
An equivalent expression for Ejj is
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2
1 0°S
(1.13) Eij(x.y)=>——=(xy).
2 oy ayl
A Finsler metric F is said to have isotropic E-curvature if there is a
scalar function ¢ = ¢(x) on M such that

n+1 __
(114) E'J :TCF lhij,
where
2
ay'oy!

2. E-CURVATURE AND S-CURVATURE PROPERTIES IN RANDERS SPACES
A Randers metric is a Finsler metric

2.1 F(x,y)=alxy)+ Alx.y),
where a(X,y)=/a;(Xx )yi yj is a Riemannian metric and
,B(X,y):bi(x)yi is a I-form on M.

Define b-“ by

1
by;6 =db; —b;6],
where
' =dx' and 6] =T} dx¥
denote the Levi-Civita connection forms of « .
We use the notation from [5]:

1 1
h

sij —a Sh
(2.2) sj=bisj, ej=rj+bisj+bjs;
e00:eijyiyj
S0=5iyi
50 = s}y

According to [5], the spray coefficients G' of F are related to the
spray coefficients G' of by
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(2.3) G' :G'+(;LF°—so)y'+as(')
and the volume form o of F is related to the volume form o, of o by
n+l1
s
e or = (-] o
In a Randers space we have a formula for S-curvature:
(2.5) S=(n+1 ;LFO—(SO +Po)),
where
2 i . blbj‘l i
pzlﬂﬁl—”ﬂ”a , dp = pdx’, i.e p :—1 ||,B||2 and p, = p;y .
(24

Then we have already known the following
Lemma 2.1 [2] Let F=a+ f be a Randers metric on an n-
dimensional manifold M. For a scalar function ¢ =c¢(x) on M the following

are equivalent:
i) S=(n+1)F;
i) ey =2clo? - 52).
Lemma 2.2 [2] Let F=a+ f be a Randers metric on an n-

dimensional manifold M. For a scalar function ¢ =c¢(x) on M the following

are equivalent:
n+1

i) E=——cF'h;
2
ii) e = 2¢la® - 52).
From the two lemmas we have
Theorem 2.1 [2] Let F=a+ f be a Randers metric on an n-
dimensional manifold M. For a scalar function ¢ =c(x) on M the following
are equivalent:

i) S=(n+1)F;
iy =" Lep-in,
2

From [3] we also have
Theorem 2.2 Let (M ,F) be an n-dimensional Finsler manifold of scalar flag

curvature K(x, y). Suppose that F has an isotropic S-curvature,
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S =(n+1)cF, with ¢ = ¢(x) a scalar function on M. Then there is a scalar

function o(x) on M such that
Comy™
(2.6) K=32"—+0o(x).
F(x.y)
From Theorem 2.1 and Theorem 2.2 we immediately get
Theorem 2.3 Let F =a + £ be a Randers metric on an n-dimensional
manifold M of scalar flag curvature K(x,y). Suppose that F has an isotropic

E-curvature , E :nTHCF_lh, with ¢ =c(x) a scalar function on M. Then

there is a scalar function o(x) on M such that

m
CmY
K =32"—<+0(x).
F(x.y)
3. RANDERS SPACES WITH SCALAR FLAG CURVATURE AND

ISOTROPIC E-CURVATURE
Theorem 3.1 Let F = o + £ be a Randers metric on an n-dimensional

manifold M of scalar flag curvature K(x,y)- Suppose that F has an isotropic

E-curvature , E :nTHcF_lh, with ¢ =c(x) a scalar function on M. Then

there is a scalar function o(x) on M such that

(me ym)l i (me ym)k
3—+G“ hll( +13

m
(me y )m
F

+Gk h|I +

+6p (SLF;| —aiF;k)

_ (Cx' )mF—(cXm ym}m F;I (ka )mF—(cXm ym)m F;k

= he i
2 2
Proof.
From the assumption F is of scalar flag curvature we have
(3.1 Rjk = K(x,y)hj

and
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1
(3.2) Rik = K(ny)hikl +§(hikK;l —hy K;k) ’
where
oK
K, = 7
oy
and

hiw = 9ikFy = 9l Fx-
Contracting (3.2) with g" we get
(3.3) Ry = K(gikgij Fy - 90" F;k)+%(h|<jK;l _h|jK;k)
and then
(3.4)
R} = Kinlowg"Fy - gig"Fy )
+Klowo P + 1y - (o0 )m Fa - 910 Fi )

1 - - - -
+—(h’ K. +h/ Kiijm —h! Ky —hle;kmj.

m

30 Km |
We know that
(3.5) hkj‘m = (hikg” }m = hik\mgIJ + hik(g ! )m =0.
Plugging (3.5) in (3.4) we obtain
- aa as 1 N N
(3.6) Rkjl‘m =Kim (gikgu Fy - 9i19" Fy )+§(th Kijm = ! K;km)
For the hh-curvature R}, we have the following Bianchi identities:
jkI g
i i i _

3.7 Riim * Rjimpe = Rjmip =9
or, contracting with yj

i i i _
(3.8) Rk”m + le‘k + Rmk‘I =0.
Contracting (3.8) with y™ results

i m i i
(3.9 Rk”my + Rl‘k + Rk‘I =0.

From (3.1) we get
(3.10) Ry = Khy
and
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(3.11) Rli(“ = K“hli.
From (3.6), (3.9) and (3.11) we obtain
Kk + Kt + K y™ (03007 Fy — 0 Mg P

(3.12) : .
hi —%ymth;,m =0,

I m
+§y K;I\m
or, equivalent
Kyht + Ky hl + K m(‘F ‘F)

1k + Kichr + Ky "Bk =81 Fk
(3.13) 1( i i m
+§ K,I‘mhk —h| K;I\m = 0

From Theorem 2.3 , there is a scalar function &(x) on M such that

Comy™
K=32X"—+0o(x).
F(x.y)
Replacing
m
(mey %
K“ =3—+c5“
F
ciF—c.my"F,
(3.14) K. =32 X ’
b F2
emy™]
K 3 <CXI )m i (me Y Fi
Aim =
m FZ
in (3.13) we obtain the conclusion.
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