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SOME CURVATURE PROPERTIES IN RANDERS SPACES 

 
OTILIA LUNGU 

 
Abstract.  In this paper we get a condition for Randers spaces to be 
simultaneously with scalar flag curvature and with constant E-curvature. 
 

1.  INTRODUCTION 
Let us consider a real differentiable manifold of dimension n. Denote 

by ( )MTM ,,τ  the tangent bundle of M. Let ( )( )yxFMF n ,,=  be a Finsler 
space where RTMF →:  is its fundamental function and the Hessian given 
by 
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called the fundamental tensor field of nF  is positive defined. 
 The Finsler metric F induces a vector field  
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on TM, defined by 
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Any vector field in the above form (1.2) with the homogeneity property 
(1.4)                                  ( ) ( )yxGyxG ii ,, 2λ=λ , 0>λ  

is called a spray and iG  are called the spray coefficients. 
 For a vector { }0−∈ MTy x , the Riemann curvature  
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is defined by 
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 For a flag { } MTu,yspanP x⊂=  with the flagpole y, the flag 
curvature ( )y,PKK =  is defined by 
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where ( ) ji
ijy dxdxyxgg ⊗= , .  

 We say that a Finsler metric F is of scalar curvature if for any 
MTy x∈ , the flag curvature ( )y,xKK =  is a scalar function. If 

ttanconsK = , then F is said to be of constant flag curvature. 
 The volume form of F is expressed by 
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The S-curvature is defined by 
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A Finsler metric F is said to have isotropic S-curvature if there is a 
scalar function ( )xcc =  on M such that 
(1.11)                                              ( )cFnS 1+= . 
For a vector { }0−∈ MTy x , we define a symmetric bilinear form on MTx  
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called E-curvature. 
  An equivalent expression for ijE  is 
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A Finsler metric F is said to have isotropic E-curvature if there is a 
scalar function ( )xcc =  on M such that  
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where 
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2. E-CURVATURE AND S-CURVATURE PROPERTIES IN RANDERS SPACES 

 A Randers metric is a Finsler metric  
(2.1)                                  ( ) ( ) ( )y,xy,xy,xF βα += , 

where  ji
ij yy)x(a)y,x( =α  is a Riemannian metric and 

i
i y)x(b)y,x( =β  is a 1-form on M. 

 Define jib by 
j
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where 
ii dx=θ  and kj

ik
j

i dxΓ=θ  
denote the Levi-Civita connection forms of α . 
We use the notation from [5]: 
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  According to [5], the spray coefficients iG  of F are related to the 

spray coefficients iG  of α  by 
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and the volume form Fσ  of F is related to the volume form ασ of α  by 

(2.4)                                    ( ) αα σβσ 2
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F . 
In a Randers space we have a formula for S-curvature: 
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Then we have already known the following 
 Lemma 2.1 [2] Let βα +=F  be a Randers metric on an n-
dimensional manifold M. For a scalar function ( )xcc =   on M the following 
are equivalent: 
i) ( )cFnS 1+= ; 

ii) ( )22
00 2 βα −= ce . 

 Lemma 2.2 [2] Let βα +=F  be a Randers metric on an n-
dimensional manifold M. For a scalar function ( )xcc =   on M the following 
are equivalent: 

i) hcFnE 1
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  From the two lemmas we have 
 Theorem 2.1 [2]  Let βα +=F  be a Randers metric on an n-
dimensional manifold M. For a scalar function ( )xcc =  on M the following 
are equivalent: 
i) ( )cFnS 1+= ; 

ii) hcFnE 1
2
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= . 

  From [3] we also have 
Theorem 2.2 Let ( )F,M  be an n-dimensional Finsler manifold of scalar flag 
curvature ( )y,xK . Suppose that F has an isotropic S-curvature, 
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( )cFnS 1+= , with ( )xcc =  a scalar function on M. Then there is a scalar 
function ( )xσ  on M such that 
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 From Theorem 2.1 and Theorem 2.2 we immediately get 
 Theorem 2.3 Let βα +=F  be a Randers metric on an n-dimensional 
manifold M of scalar flag curvature ( )y,xK . Suppose that F has an isotropic 

E-curvature , hcFnE 1
2
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there is a scalar function ( )xσ  on M such that 
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3.  RANDERS SPACES WITH SCALAR FLAG CURVATURE AND              

ISOTROPIC E-CURVATURE 
 Theorem 3.1 Let βα +=F  be a Randers metric on an n-dimensional 
manifold M of scalar flag curvature ( )y,xK . Suppose that F has an isotropic 

E-curvature , hcFnE 1
2

1 −+
= , with ( )xcc =  a scalar function on M. Then 

there is a scalar function ( )xσ  on M  such that  
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 Proof.  
  From the assumption F is of scalar flag curvature we have 
(3.1)                                          ( ) jkjk hy,xKR =  
and 
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We know that 
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Plugging (3.5) in (3.4) we obtain 
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For the hh-curvature i
jklR  we have the following Bianchi identities: 
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or, contracting with jy  
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Contracting (3.8) with my  results 
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From (3.6), (3.9) and (3.11) we obtain 
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or, equivalent 
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From Theorem 2.3 , there is a scalar function ( )xσ  on M such that 
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in (3.13) we obtain the conclusion. 
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