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A GENERALIZATION OF ORLICZ-SOBOLEV
CAPACITY IN METRIC MEASURE SPACES

MARCELINA MOCANU

Abstract. Given a Banach function space B and a metric measure
space X, we investigate continuity and regularity properties of the
B−capacity, that we introduced in [13] by means of a Sobolev-type
space N1,B(X). It was proved that B−capacity is an outer measure,
which represents the correct gauge for distinguishing between two
functions in N1,B(X) [13] . In the case when B is reflexive we show
that B−capacity is continuous on increasing sequences of arbitrary
subsets of X. Assuming that B has absolutely continuous norm, that
every function in B is dominated by a semicontinuous function in B
and that continuous functions are dense in N1,B(X), we prove that
B−capacity is outer regular. As consequences of this outer regularity
we obtain the continuity of B−capacity on decreasing sequences of
compact subsets of X and the coincidence between the B−capacity
and another usual capacity.

1. Introduction

In this paper (X, d) is a metric space endowed with a Borel regular
measure µ, which is finite and positive on balls.
————————————–
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Sobolev capacity, Choquet capacity
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Sobolev-type spaces based on Banach function spaces have been in-
troduced in [13] as a generalization of Orlicz-Sobolev spaces on metric
measure spaces studied in [17], that in turn generalize the Newtonian
spaces introduced in [15], [16]. Newtonian spaces turned out to be a
remarkable tool in analysis and nonlinear potential theory on metric
measure spaces.

Capacity is a set function arising in potential theory as the abstract
analogue of the physical concept of electrostatic capacity. The notion
of capacity is important in understanding the behavior of Sobolev
functions, since capacity takes the place of measure in Egorov and
Lusin type theorems for these functions [7] and in estimates used in
studying solutions of PDEs.

In the classical potential theory the capacity admits a variational
characterization as the minimum of an energy functional for functions
achieving particular boundary values. This characterization allows
the definition of several capacities using various energy functionals.
For example, an absolute Sobolev p−capacity of a set E ⊂ Rn is

defined by capp(E) = inf

∫

Rn

(|u|p + ‖∇u‖p) dµ : u ∈ W 1,p (Rn) , u ≥

1 in a neighborhood of E. This concept of capacity has been first
extended to metric measure spaces in [9], where the generalization
of the Sobolev space W 1,p (Rn) is the HajÃlasz-Sobolev space M1,p (X)
introduced in [5]. Another extension to metric measure spaces, based
on Newtonian spaces, of the concept of Sobolev capacity has been
given in [16]. A more general concept of capacity, based on Orlicz-
Sobolev spaces, has been introduced and studied in [17], as follows.
Given an Orlicz-Sobolev space N1,Ψ(X) with the norm ‖·‖N1,Ψ(X), the

corresponding Ψ−capacity of a set E ⊂ X is defined by CapΨ (E) =

inf
{
‖u‖N1,Ψ(X) : u ∈ N1,Ψ(X), u ≥ 1 on E

}
. It is proved in [17] that

sets of zero Ψ−capacity are removable for N1,Ψ.
In nonlinear potential theory a Sobolev capacity is said to be a

Choquet capacity on X if it is an outer regular outer measure, con-
tinuous on arbitrary increasing sequences of sets and continuous on
decreasing sequences of compact sets. In [9] and [10] it was proved
that the HajÃlasz-Sobolev p−capacity is a Choquet capacity. In [4]
a relative Sobolev p−capacity based on the Newtonian space N1,p is
studied, being shown that this is a Choquet capacity.
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The notion of B−capacity, based on a Sobolev-type space N1,B(X),
with B a Banach function space, has been introduced in [13], as a
generalization of the above notion of Ψ−capacity. For every Banach
function space B the B−capacity is an outer measure, which repre-
sents the correct gauge for distinguishing between two functions in
N1,B(X) [13]. A characterization of sets of zero B−capacity, as well
as a partial result on the outer regularity of B−capacity, extending
results from [18] have also been proved in [13] .

In this paper we prove, under quite general assumptions for B and
N1,B (X), that B−capacity is a Choquet capacity. In the case when
B is reflexive we show that B−capacity is continuous on increasing
sequences of arbitrary subsets of X. Assuming that B has absolutely
continuous norm, that every function in B is dominated by a semi-
continuous function in B and that continuous functions are dense in
N1,B(X), we prove that B−capacity is outer regular. As consequences
of this outer regularity we obtain the continuity of B−capacity on
decreasing sequences of compact subsets of X and the coincidence
between the B−capacity and another usual capacity. In conclusion,
assuming that B is a reflexive Banach function space with absolutely
continuous norm, that every function in B is dominated by a semi-
continuous function in B and that continuous functions are dense in
N1,B(X), it follows that B−capacity is a Choquet capacity.

We deal only with absolute capacity, although some of our results
could be extended to relative capacity.

2. Preliminaries

We recall the concept of Banach function space, an unifying ax-
iomatic framework for Orlicz and Lorentz spaces, as presented in [2].

Banach function spaces are Banach spaces of measurable functions,
in which the norm is related to the underlying measure in an ap-
propriate way, allowing an interplay between functional-analytic and
measure/theoretic techniques .

Let (X, Σ, µ) be a complete σ−finite measure space and let M+(X)
be the collections of all measurable functions f : X → [0, +∞].

Definition 1. [2]

A function N : M+(X) → [0,∞] is called a Banach function norm
if, for all f , g, fn (n ≥ 1) in M+(X), for all constants a ≥ 0 and for
all measurable sets E ⊂ X, the following properties hold:
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(P1) N(f) = 0 ⇔ f = 0 µ−a.e.; N(af) = aN(f);
N(f + g) ≤ N(f) + N(g).

(P2) If 0 ≤ g ≤ f µ−a.e., then N(g) ≤ N(f).
(P3) If 0 ≤ fn ↑ f µ−a.e., then N(fn) ↑ N(f).
(P4) If µ(E) < ∞, then N(χE) < ∞.

(P5) If µ(E) < ∞, then

∫

E

f dµ ≤ CEN(f), for some constant

CE ∈ (0, +∞) depending only on E and ρ.
The collection B of the µ−measurable functions f : X → [−∞, +∞]

for which N(|f |) < ∞ is called a Banach function space on X. For
f ∈ B define

‖f‖B = N(|f |).
By (P5), every function in B is locally integrable, hence finite µ−a.e.

in X, since µ is σ−finite.
The Fatou property (P3) implies, for fn ∈ B (n ≥ 1) the following

convergence properties [2, Theorem 1.4, Theorem 1.7] :
(C1) (Strong Fatou property) If 0 ≤ fn ↑ f µ−a.e, then either

f /∈ B and ‖fn‖B ↑ ∞, or f ∈ B and ‖fn‖B ↑ ‖f‖B.
(C2) (Fatou’s lemma-lower semicontinuity of the B−norm) If fn →

f µ−a.e. and if lim inf
n→∞

‖fn‖B < ∞, then f ∈ B and ‖f‖B ≤
lim inf
n→∞

‖fn‖B.

(C3) If
∞∑

n=1

‖fn‖B < ∞, then the series
∞∑

n=1

fn converges in B to a

function f ∈ B and ‖f‖B ≤
∞∑

n=1

‖fn‖B.

(C4) If fn → f in B, then a subsequence (fn)n≥1 converges pointwise
µ−a.e. to f .

It is known that (B, ‖·‖B) is a complete normed space, see [2, The-
orem 1.6].

In the following, (B, ‖·‖B) is a Banach function space corresponding
to a metric measure space (X, d, µ). We assume throughout the paper
that µ is an outer regular Borel measure, positive and finite on balls.

Let Γrec be the family of all rectifiable curves in X. The B−modulus
of a family Γ of curves in X is defined by

MB(Γ) = inf ‖ρ‖B ,
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where the infimum is taken over all Borel functions ρ : X → [0, +∞]
with

(2.1)

∫

γ

ρ ds ≥ 1

for all γ ∈ Γrec.
If a nonnegative Borel function satisfies (2.1), it is said to be ad-

missible for Γ. The family of all curves that are not rectifiable has
zero B−modulus. It is said that a property holds for B−almost ev-
ery curve if it holds for every curve except a family of curves of zero
B−modulus. Several basic results regarding the modulus of a family
of curves have been extended in [13] to this abstract setting.

In the definitions of Newtonian spaces and Orlicz-Sobolev spaces
the substitute for the notion of length of the gradient is a notion of
weak upper gradient.

Definition 2. A Borel function g : X → [0, +∞] is an upper gradient
of a function u : X → R if for every rectifiable path γ : [0, 1] → X

(2.2) |u(γ(1))− u(γ(0))| ≤
∫

γ

gds.

Moreover, g is said to be a B−weak upper gradient (B−w.u.g.) of u
if inequality (2.2) holds for B− almost every compact rectifiable curve
γ.

Denote by Ñ1,B(X) the collection of all real-valued functions u ∈ B

having a B−weak upper gradient g ∈ B. Then Ñ1,B(X) is a vector

space. For u ∈ Ñ1,B(X) define

‖u‖1,B = ‖u‖B + inf
g
‖g‖B ,

where the infimum is taken over all B−w.u.g. s g ∈ B of u. Then ‖·‖1,B

is a seminorm on Ñ1,B(X). The seminormed space (Ñ1,B(X), ‖·‖1,B)
is turned into a normed space via the equivalence relation defined by:
u ∼ v ⇔ ‖u− v‖1,B = 0.

It follows that N1,B(X) = Ñ1,B(X)/ ∼ is a vector space with the
norm ‖u‖N1,B := ‖u‖1,B.

If B = Lp(X), p ≥ 1 is a Lebesgue space or, more general,
B = LΨ (X) is an Orlicz space, then N1,B (X) is the Newtonian space
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introduced by Shanmugalingam [15], respectively the Orlicz-Sobolev
space introduced by Tuominen [17].

We will use the following convergence result that is a substitute
for Mazur’s lemma in Sobolev-type spaces on metric measure spaces,
generalizing Theorem 4.17 of [17].

Lemma 1. [13, Theorem 1] Let (uj)j≥1 be a sequence of functions
in B and (gj)j≥1 be a sequence in B of corresponding B−weak upper
gradients. Assume that uj → u and gj → g weakly in B, for some
u, g ∈ B. Then there are sequences (ũj)j≥1 and (g̃j)j≥1 of convex
combinations

ũj =

nj∑

k=j

λkjuk, g̃j =

nj∑

k=j

λkjgk,

where λkj ≥ 0,

nj∑

k=j

λkj = 1, such that ũj → u and g̃j → g in B. In

addition, g is a B−weak upper gradient of u.

The following lemma will be useful in building monotone sequences
in N1,B (X). Its proof relies on the lattice properties of B and
N1,B (X) and on the Fuglede lemma for B−modulus (see [13, Propo-
sition 1, Remarks 2 and 3]).

Lemma 2. [13, Lemma 1] Let (ui)i≥1 be a sequence in B, with cor-
responding B−upper gradients (gi)i≥1 in B, such that (ui(x))i≥1 is

non-negative and bounded for each x ∈ X,
∞∑
i=1

‖ui‖B < ∞ and

∞∑
i=1

‖gi‖B < ∞. Define vj = max
1≤i≤j

ui, wi = min
1≤i≤j

ui, and hj = max
1≤i≤j

gi.

Then:
(a) For each j ≥ 1, vj ∈ B has the B−w.u.g. hj ∈ B;
(b) The pointwise limits v := lim

j→∞
vj and w := lim

j→∞
wj are well-

defined and v, w ∈ B with ‖w‖B = 0;
(c) The sequence (hj)j≥1 is convergent in B to some function h ∈ B

and ‖h‖B ≤ lim
j→∞

‖hj‖B;

(d) h is a B−w.u.g. of v and w.
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3. Continuity of B−capacity on increasing sequences of sets

We define a capacity with respect to the space N1,B(X), called
B−capacity.

Definition 3. [13] The B−capacity of a set E ⊂ X is

CapB(E) = inf
u∈A(E)

‖u‖N1,B ,

where A(E) = {u ∈ N1,B(X) : u ≥ 1 on E}. The functions belonging
to A(E) are said to be admissible for E.

The following properties of B−capacity have been proved in [13],
generalizing Proposition 7.3 and Proposition7.4 of [17].

(a) CapB(E) = inf
u∈Ã(E)

‖u‖N1,B , where

Ã(E) = {u ∈ A(E) : 0 ≤ u ≤ 1}.
(b) B−capacity is an outer measure.
(c) CapB(E) = 0 if and only if µ(E) = 0 and MB(ΓE) = 0.
(d) Two representatives of an equivalence class in N1,B(X) can dif-

fer only on a set of zero B−capacity. Conversely, modifying a function
in N1,B(X) on a set of zero B−capacity we obtain a function in the
same equivalence class in N1,B(X).

It is natural to look for assumptions on B and N1,B(X) under which
B−capacity is a Choquet capacity. These assumptions have to be
general enough to encompass the properties used in [18] in proving
the Choquet properties of Orlicz-Sobolev capacity.

In the following we prove the continuity of B−capacity on increasing
sequences of arbitrary subsets of X, provided that B is reflexive. Anal-
ogous continuity property have been proved in case B = Lp(X) for
Hajlasz-Sobolev capacity [10] and for relative Newtonian p−capacity
[4]. The theorem below is new even for B = LΨ(X).

Theorem 1. If the Banach function space B is reflexive, then
B−capacity is continuous on increasing sequences of arbitrary subsets
of X:

CapB

( ∞⋃
i=1

Ei

)
= lim

i→∞
CapB(Ei),

whenever E1 ⊂ E2 ⊂ ... ⊂ Ei ⊂ Ei+1 ⊂ ... ⊂ X.
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Proof. Denote E =
∞⋃
i=1

Ei. The monotonicity of B−capacity implies

CapB (E) ≥ L := lim
i→∞

CapB(Ei). In order to prove the reverse in-

equality, it suffices to assume that L is finite.

Let ε > 0. For each i ≥ 1, let ui ∈ Ã(Ei) and let gi be a B−w.u.g.
of ui, such that ‖ui‖B + ‖gi‖B < CapB(Ei) + ε. Then the sequences
(ui)i≥1 and (gi)i≥1 are bounded in the normed space B. Since B is
reflexive, we may assume, passing to subsequences, that (ui)i≥1 and
(gi)i≥1 are weakly convergent in B to u ∈ B and g ∈ B, respectively.
By Mazur-type property Lemma 1, there are sequences (ũj)j≥1 and

(g̃j)j≥1 of convex combinations ũj =

nj∑

k=j

λkuk, g̃j =

nj∑

k=j

λkgk,where

λk ≥ 0,

nj∑

k=j

λk = 1, such that ũj → u and g̃j → g in B. In addition, g

is a weak B−w.u.g. of u.
We have

‖ũj‖B + ‖g̃j‖B ≤
nj∑

k=j

λk (‖uk‖B + ‖gk‖B) <

nj∑

k=j

λk (CapB(Ek) + ε),

hence

(3.1) ‖ũj‖B + ‖g̃j‖B < L + ε

for all sufficiently large j.

Using the sequence (ũj)j≥1 we will build a function w ∈ Ã(E) such

that ‖w‖N1,B < L+ ε, using some ideas from the proof of [4, Theorem
3.2 (v) ]. It follows that CapB (E) < L + ε , where ε > 0 is arbitrarly
small, hence CapB (E) ≤ L.

Passing to subsequences if necessary, we may assume that for every
i ≥ 1 the following inequality holds:

(3.2) ‖ũi+1 − ũi‖B + ‖g̃i+1 − g̃i‖B < 2−i−1ε.

Define vj,k = sup
j≤i≤k

ũi for 1 ≤ j ≤ k and wj = sup
i≥j

ũi for j ≥ 1. Then

wj = lim
k→∞

vj,k = sup
k≥j

vj,k, where the convergence is pointwise.

Since 0 ≤ ui ≤ 1 on X for every i ≥ 1, we have 0 ≤ vj,k ≤ 1 on X
whenever 1 ≤ j ≤ k, as well as 0 ≤ wj ≤ 1 on X for every j ≥ 1. Fix
j ≥ 1 . For every j ≤ k ≤ nj we have uk = 1 on Ej, hence ũj(x) = 1
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on Ej.For every x ∈ E there exists a positive integer N = N (x) such
that x ∈ Ei for every i ≥ N . For j ≥ N we have wj(x) ≥ ũN(x) = 1,
while for j < N we have wj(x) ≥ wN(x) ≥ 1. It follows that wj = 1
on E, for every j ≥ 1.

By Lemma 2, a B−weak upper gradient of vj.k is gj,k := sup
j≤i≤k

g̃i,

where 1 ≤ j ≤ k.

Using the elementary inequality sup
j≤i≤k

ai ≤ aj +
k−1∑
i=j

|ai+1 − ai|, where

ai are non-negative reale numbers, for 1 ≤ j ≤ k, we get

(3.3) vj,k ≤ ũj +
k−1∑
i=j

|ũi+1 − ũi| on X

and

gj,k ≤ g̃j +
k−1∑
i=j

|g̃i+1 − g̃i| on X.

Letting k →∞ in (3.3) we get wj ≤ ũj +
∞∑
i=j

|ũi+1 − ũi| on X. Since

‖ũj‖B +
∞∑
i=j

‖ũi+1 − ũi‖B < +∞, the previous inequality shows that

wj ∈ B and

(3.4) ‖wj‖B ≤ ‖ũj‖B +
∞∑
i=j

‖ũi+1 − ũi‖B .

Define Gj := g̃j +
∞∑
i=j

|g̃i+1 − g̃i|, j ≥ 1. By (3.2), it follows that

Gj ∈ B for every j ≥ 1 and

(3.5) ‖Gj‖B ≤ ‖g̃j‖B +
∞∑
i=j

‖g̃i+1 − g̃i‖B .

We show that Gj is a B−weak upper gradient of wj. There exists
Γ0 ⊂ Γrec with MB (Γ0) = 0 such that for every γ ∈ Γrec \ Γ0 and

every 1 ≤ j ≤ k, |vj,k(x)− vj,k (y)| ≤
∫

γ

gj,k ds, where x and y are the
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endpoints of γ. Then

|vj,k(x)− vj,k (y)| ≤
∫

γ

Gjds

for every γ ∈ Γrec \ Γ0 and all k ≥ j. Letting k tend to infinity we

get |wj(x)− wj (y)| ≤
∫

γ

Gjds, for every γ ∈ Γrec \ Γ0, hence Gj is a

B−weak upper gradient of wj.
Since 0 ≤ wj ≤ 1 on X, wj = 1 on E, wj ∈ B and wj has a B−weak

upper gradient of wj, it follows that wj ∈ Ã(E) and

CapB (E) ≤ ‖wj‖N1,B ≤ ‖wj‖B + ‖Gj‖B .

By (3.4), (3.5), (3.2) and (3.1) we obtain

‖wj‖B + ‖Gj‖B ≤ L + ε
(
1 + 2−j

)
.

for every j ≥ 1.
Then CapB (E) ≤ L+ε (1 + 2−j) for every j ≥ 1 and all ε > 0. Let-

ting j tend to infinity, then letting ε tend to zero, we get CapB (E) ≤
L, q.e.d.

Remark 1. The Orlicz space LΨ(X) is reflexive if and only if Ψ sat-
isfies the growth conditions ∆2 and ∇2 simultaneously [2]. Recall that
an Young function Ψ : [0,∞) → [0,∞) is said to satisfy

a) the ∆2−condition if there is a constant C2 > 0 such that

(3.6) Ψ(2t) ≤ C2Ψ(t)

for every t ≥ 0;
b) the ∇2−condition if there is a constant C > 1 such that

Ψ(t) ≤ 1
2C

Ψ(Ct) for every t ≥ 0.[14], [17].

4. Outer regularity of B−capacity and consequences

The purpose of this section is to establish some assumptions on B
and X, that imply the outer regularity of B−capacity and that are
fulfilled in the case B = Lp(X).

Definition 4. The B−capacity is said to be outer regular (in other
words, B−capacity is an outer capacity) if
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CapB(E) = inf{Cap(O) : O open, E ⊂ O ⊂ X},

for every set E ⊂ X.
We need the notion of Banach function space with absolutely con-

tinuous norm.

Definition 5. [2, Lemma 3.4] A function f in the Banach function
space B is said to have absolutely continuous norm if

∥∥fχEn

∥∥
B
→ 0 for

every sequence En ⊂ X, n ≥ 1 of measurable sets such that lim sup
n→∞

En

has measure zero. The Banach function space B is said to have abso-
lutely continuous norm if each f ∈ B has absolutely continuous norm.

Remark 2. Moreover, If f has absolutely continuous norm, then for
every ε > 0 there is δ (ε) > 0 such that µ (A) < δ (ε) implies
‖fχA‖B < ε, by [2, Lemma 3.4],

Lemma 3. If the Young function Ψ is doubling and Ψ is continuous at
origin, then the Orlicz space LΨ(X) has absolutely continuous norm.
Moreover, if Ψ is doubling, then for each f ∈ LΨ (X) and every ε > 0
there is δ (ε) > 0 such that µ (A) < δ (ε) implies ‖fχA‖B < ε.

Proof. Let Ψ be a doubling Young function. Let f ∈ LΨ (X). Since Ψ
is doubling, Ψ(|f |) ∈ L1 (X).

Assume that En ⊂ X, n ≥ 1 are measurable sets such that

µ

(
lim sup

n→∞
En

)
= 0. Then lim

n→∞
χEn

= 0 µ−a.e., hence lim
n→∞

fχEn
=

0 µ−a.e. Assuming that Ψ is continuous at origin,we get
lim

n→∞
Ψ

(∣∣fχEn

∣∣) = 0 µ−a.e. But 0 ≤ Ψ
(∣∣fχEn

∣∣) ≤ Ψ(|f |) for ev-

ery n ≥ 1, hence lim
n→∞

∫

X

Ψ
(∣∣fχEn

∣∣) dµ = 0, by Lebesgue dominated

convergence theorem. In every Orlicz space LΨ (X), the convergence
with respect to the Luxemburg norm ‖·‖LΨ(X) implies the conver-
gence in Ψ−mean and for Ψ doubling the converse also holds. Then∥∥fχEn

∥∥
LΨ(X)

→ 0, which proves that f has absolutely continuous
norm.
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The following estimate follows from [18, Lemma 4], where Ψ satisfies

(3.6) and u ∈ LΨ(U), ‖u‖LΨ(U) > 0 and I :=

∫

U

Ψ (|u|) dµ:

‖u‖LΨ(U) ≤ max{I, (C2I)1/ logc C2}.
Let ε > 0. Since Ψ(|f |) ∈ L1 (X), it follows by the absolute conti-

nuity of Lebesgue integral that there exists δ (ε) > 0 such that µ (A) <

δ (ε) implies

∫

A

Ψ (|f |) dµ < min{ε, C−1
2 εlog2 C2}. Hence, by the above

estimate, µ (A) < δ (ε) implies ‖fχA‖LΨ(X) = ‖f‖LΨ(A) < ε.

Definition 6. We say that a Banach function space B has the Vitali-
Carathéodory property if every function in B is majorated by a lower
semicontinuous function belonging to B: for every f ∈ B there exists
a semicontinuous function g ∈ B such that f ≤ g.

Remark 3. It is well-known that L1(X) has the Vitali-Carathéodory
property if X is a Hausdorff locally compact topological space. As-
sume that X is a locally compact metric space, endowed with a Borel
measure non-trivial and finite on balls. Then Lp(X) has the Vitali-
Carathéodory property for every p with 1 ≤ p < ∞,( see [8, Lemma
2.3]). Moreover, if Ψ is a strictly increasing, continuous and doubling
Young function, then LΨ(X) has the Vitali-Carathéodory property (see
[18], proof of Lemma 3).

First we prove the outer regularity of B−capacity for sets of
B−capacity zero, generalizing [18, Lemma 3].

Lemma 4. Assume that the metric space X is proper (i.e. all closed
balls in X are compact). Assume that B has absolutely continu-
ous norm and B has Vitali-Carathéodory property. If E ⊂ X has
B−capacity zero, then

CapB(E) = inf{CapB(O) : O open , E ⊂ O ⊂ X}.
Proof. Let E ⊂ X with capB(E) = 0. Consider ε > 0. We prove
that there exists an open set O so that capB(O) < ε. By Proposition
1, capB(E) = 0 implies µ (E) = 0 and MB (ΓE) = 0, therefore the
characteristic function χE of E admits the zero function as a B−weak
upper gradient. There exists an upper gradient g ∈ B of χE.Since B
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has the Vitali-Carathéodory property, there exists a lower semicontin-
uous function v ∈ B with g ≤ v. Let k > 0 be a constant and let
ρ := v + k. Then ρ is lower semicontinuous, ρ > g and ρχA ∈ B for
every bounded measurable set A ⊂ X.

Assume first that E is bounded. Using Remark 2 and the outer
regularity of the measure µ we find a bounded open set V such that
E ⊂ V and

‖χV ‖B + ‖ρχV ‖B < ε/2.

Define as in the proof of [18, Lemma 3] the function

u(x) = 2 min



1,

∫

γ

ρ ds



, x ∈ X, where the infimum is taken over

all rectifiable paths connecting x to X \ V . By [3, Lemma 3.4], u
is lower semicontinuous, 2ρχV is an upper gradient of u on X and
u = 0 on X \ V . It follows that u ∈ N1,B(X) and the set U :=
{x ∈ X : u(x) > 1} is open. By the proof of [18, Lemma 3], u = 2
on E, hence E ⊂ U . Then we obtain capB(U) ≤ ‖u‖B + ‖2ρχV ‖B.
The definition of u implies 0 ≤ u ≤ 2χV , hence ‖u‖B ≤ ‖2χV ‖B

by the monotonicity property (P2) of the B−norm. It follows that
capB(U) ≤ 2 (‖χV ‖B + ‖ρχV ‖B), therefore capB(U) < ε.

If E is unbounded, fix x0 ∈ X and let En := E ∩ B(x0, n) for each

positive integer n. Then E =
∞⋃

n=1

En and capB(En) = 0, n ≥ 1. By the

first part of the proof, for each n ≥ 1 there exists an open set Un ⊂ X,

with En ⊂ Un such that capB(Un) < ε
2n+1 . Then U0 :=

∞⋃
n=1

Un is an

open set containing E with capB(U0) ≤
∞∑

n=1

capB(Un) ≤
∞∑

n=1

ε
2n+1 =

ε
2

< ε.

We need the following characterization of the outer regularity of
B−capacity, that connects this property to the quasicontinuity of
functions belonging to N1,B(X).

Lemma 5. [13, Theorem 3] Assume that (X, d, µ) is a metric mea-
sure space, where µ is a Borel regular outer measure, positive and
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finite on balls, and let B be a Banach function space on X. If con-
tinuous functions are dense in N1,B(X), then the following properties
are equivalent:

(1) Every function in N1,B(X) is B−quasicontinuous (continuous
on complements of open sets of arbitrarily small capacity);

(2) CapB(E) = inf{CapB(U) : U open, E ⊂ U ⊂ X} for every
E ⊂ X such that CapB(E) = 0;

(3) CapB(F ) = inf{CapB(G) : G open, F ⊂ G ⊂ X} for every
F ⊂ X.

The last two lemmas imply the following

Theorem 2. Let (X, d) be a proper metric endowed with a Borel reg-
ular outer measure µ, which is positive and finite on balls. Assume
that B is a Banach function space that has absolutely continuous norm
and Vitali-Carathéodory property. Moreover, assume that continuous
functions are dense in N1,B(X). Then:

(1) Every function in N1,B(X) is B−quasicontinuous.
(2) B−capacity is outer regular, that is

CapB(E) = inf{Cap(O) : O open, E ⊂ O ⊂ X} for every E ⊂ X.

Remark 4. Applying the above theorem to B = LΨ(X), where Ψ
is a doubling Young function, we recover some recent results of [18],
Theorem 1 and Corollary 1 (1).

Next we prove two important consequences of the outer regularity
of B−capacity: the continuity of B−capacity on decreasing sequences
of compact subsets and the coincidence of two types of B−capacity.

Proposition 1. Assume that (X, d, µ) is a metric measure space,
where µ is a Borel regular outer measure, positive and finite on balls,
and let B be a Banach function space on X. If B−capacity is outer
regular, then for every decreasing sequence (Ki)i≥1 of compact subsets

of X we have CapB

( ∞⋂
i=1

Ki

)
= lim

i→∞
CapB(Ki).

Proof. Let (Ki)i≥1 be a decreasing sequence of compact subsets of X.

Denote K =
∞⋂
i=1

Ki. By the monotonicity of B−capacity, CapB (K) ≤
lim
i→∞

CapB(Ki).
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Let O ⊂ X be an open set containing K. By compactness,
we have Ki ⊂ O for all sufficiently large i. The monotonicity of
B−capacity yields lim

i→∞
CapB(Ki) ≤ CapB (O). Taking the infimum

over all open sets O ⊂ X containing K and using the outer regularity
of B−capacity, we get lim

i→∞
CapB(Ki) ≤ CapB (K).

Remark 5. The above proposition generalizes Corollary 1 (2) from
[18].

Besides the B−capacity defined by CapB(E) = inf{‖u‖N1,B : u ∈
N1,B(X) : u ≥ 1 on E} we introduce, following the definitions of
Sobolev capacity from [9], [10], [4] the following alternative version of
B−capacity:

Cap∗B(E) = inf{‖u‖N1,B : u ∈ N1,B(X) : u ≥ 1 on a neighborhood of E}.
Denote A∗(E) = {u ∈ N1,B(X) : u ≥ 1 on a neighborhood of E}.
Since A∗(E) ⊂ A(E), we have CapB(E) ≤ Cap∗B(E) for every

E ⊂ X.

Remark 6. Cap∗B is monotonically increasing. Outer regularity of
Cap∗B is a straightforward consequence of its definition. Obviouosly,
CapB(O) = Cap∗B(O) for every open set O ⊂ X.

If CapB(E) = Cap∗B(E) for every E ⊂ X, then CapB is outer
regular. Conversely, we have

Proposition 2. If the B−capacity CapB is outer regular, then
CapB(E) = Cap∗B(E) for every E ⊂ X.

Proof. LetE ⊂ X. Assume that CapB is outer regular. We have to
prove that Cap∗B(E) ≤ CapB(E).

Let ε > 0. There exist O ⊂ X open such that E ⊂ O and
CapB (O) < CapB(E) + ε. Since

Cap∗B(E) ≤ Cap∗B (O) = CapB (O) < CapB(E) + ε,

we have Cap∗B(E) < CapB(E) + ε. Letting ε tend to zero, we get
Cap∗B(E) ≤ CapB(E), q.e.d.
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