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INTELLIGENT AGENTS FOR MONITORING SYSTEMS 
 

BOGDAN PĂTRUŢ 
 

Abstract. This paper’s aim is to define the concepts of s-agent and multi-
agent monitoring system we used for constructing the MageLan and ContTest 
systems. We used formal language theory to present the environment and the 
abstract architecture for constructing multi-agent systems. 

 
1. S-AGENTS AND MULTI-AGENT MONITORING SYSTEMS 

 Intelligent agents have to be reliable in order to offer accuracy in the 
results, in dissimilar, open or unpredictable environments Software agents are 
situated in particular environments and capable of autonomous actions, in 
order to fulfill their objectives. On the other hand, distribution of hardware, 
software and data offer the possibility for the agents to be fragmented or 
replicated on diverse nodes on the computer network ([4], [5]). 
 Definition 1. We use the name of environment for a set of elements 

{ }neeeee ,...,,,,E 3210=  among which there is a relation of partial order marked 
with “<”. We use the notation fe ≤ for the fact that fe < or fe = ., 
respectively ef >  if fe < .  
 The environment can be, at a certain point, in a certain state e, which 
we will express by eEst =)( . At first, the environment leaves an initial state 
e0, for which { }niee ,...,2,1,10 ∈∀< . The state ne is called final state for which 
it is considered that { }niee ni ,...,2,1, ∈∀< . 
 Definition 2. We use the name of agent for a triple of the type (3.1) 

( )RsSA ,, 0= where S is a finite set of states, s0 in S is called the agent’s 
initial state, and R is a set of evolution rules.  
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 If agent A is in state s, then we express this by sAst =)( . Among the 
states of S there is a special state marked with λ. At first 0)( sAst = , and when 

λ=)(Ast we say that the agent is inactive. For the rest, the agent is active.  
 The rules in R are of the type (1) or (2):  

),,(),,(1 ftAesAr →=        (1) 
),,(),,(2 ftBesBr →=       (2) 

 Rule (1) states that if sAst =)( , eEst =)( , then )(Ast  becomes t and 
)(Est becomes f , if fe ≤ . The second rule (2) states that agent A ceases its 

implementation (st(A) becomes λ), transferring the control to agent B, for 
which st(B) becomes t, and the environment remains in the same state.  
 If st(E) = e and there are two agents A and B with λ≠= aAst )( and 

λ≠= bBst )( and  ( ) ( )fzCesA ,,,, →  and ( ) ( )fzDetB ′′→ ,,,, , then we will 
consider  ( ) ( )ffEst ′= ,max  if f and f ′  are comparable, one of them 
respectively, if f  and f ′ are not comparable, and  0)( =Ast  and zCst =)(  if 

ff ′<  , respectively 0)( =Bst and zDst ′=)( , if ff ′< .  
 This can be generalised for more active agents. 
 Definition 3. We use the name of s-agent for an n-uple of the type (3)  

( )nAAACS ,...,,, 21=        (3) 
where C is an agent called coordinating agent, and nAAA ,...,, 21  are agents 
corresponding to the definition above that are called effectors or atomic 
agents. The coordinating agent will interact directly with the user and the 
architecture and its functionality depends on the concrete implementation (the 
examples will be offered in the following chapters).  
 Because inside an s-agent, the agents transfer the control form one to 
another, an s-agent behaves like a communicative multi-agent system.  
 Definition 4. Let there be ( )nAAACS ,...,,, 21=  an s-agent. If 

nsss ,...,, 21  are the states of the atomic agents that make up S  (without the 
coordinator C), we then say that  ( )nsss ,...,, 21  is the state of S (at a given 
moment).  
 Definition 5. Let there be  ( )nAAACS ,...,,, 21=  an s-agent in the 
environment E, that cannot be modified by the user. If the initial state of S is 
of the type ( )λλλ ,....,,,0  we say that S is a normal s-agent (s01 marks the 
initial state of the agent A1).  

Directly, we obtain the following lemma: 
 Lemma 1. In a normal s-agent,  { } { }λλλ ,...,,,,...,, 21 ssss n =  is 
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enacted, with λ≠s , at any point of time t.  
Proof. The s-agent being normal, it follows that its initial state (at the 

moment t0) is ( )λλλ ,...,,,0 , therefore { } { }λλλ ,...,,,,...,, 0100201 ssss n = , and  
λ≠01s . Let us suppose that the state in the moment ti is { }λλλ ,...,,,s , with 

s≠λ. This means that an active Ai agent exists and that it is unique, with and  
( ) λ≠= sAst i  and ( ) ijAst j ≠∀= ,λ .If there is a relation of evolution of the 

type ( ) ( )ftAesA ji ,,,, → , then by applying this relation of evolution, we will 
obtain in the moment  ( ) λ=+ ii Astt :1  and ( ) λ=jAst , with λ≠t . Therefore 
the state of the s-agent will become (no matter the situation) 
( )λλλλλ ,...,,,,...,, t , with λ≠t , on the position j, therefore. If there is no 
relation of evolution with  ( )esAi ,, on the left side, then the s-agent will 
remain in the state { }λλλ ,...,,,s , with s≠λ. The fact that the agent will remain 
in that certain state will be called blockage, a notion that we will eventually 
formally define.  
 Definition 6.  We use the name of multi-agent monitoring system 
(MMS) of the environment E, based on s-agents (or on groups) for a triple of 
the type  (4)    

( )ELSaSMM ,,=        (4)  
where Sa is a set of s-agents, having the same structure, E is the environment 
within which these exist and are implemented, and L are communication or 
linkage rules of the type ji CC → , where Ci and Cj are coordinating agents of 
some s-agents from Sa. 
 The communication relations among the s-agents form an oriented 
graph depending on the architecture and the concrete implementation of the 
multi-agent system, as we will see in the following chapters. Our interest lies 
in some evolution rules of the environment within an s-agent and the structure 
and graphic representation of an s-agent.  
 A SMM containing only normal s-agents is called a normal SMM.  
 Definition 7. The purpose of an s-agent is to take the environment E to 
a state as close as possible to its final ne  state. If the relation can be obtained 
(5), we then say that the aim of the s-agent can be carried out.  

st(E)=e  ∧¬∃ f ∈ E, f ≠ en: e<f      (5)  
 By extension, we can say that the aim of SMM is reached if all the 
targets of the component s-agents are achieved. 
 Definition 8. Two rules of evolution of the type r1 = a→b şi r2 = b→c, 
where a, b, and c are triples of the type of those in (1) or (2), they are called 
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adjacent.  
 Definition 9. Let there be  r1, r2, ..., rk a line of adjacent rules of 
evolution, two by two. We will use the notation (6) and we will call this 
relation as the derivation relation (see (6)).  

r1⇒rk        (6)  
     Within an s-agent, the following results are obvious:  
 Proposition 1. If st(E)=e, there is an agent A with st(A)=s≠λ, (A, s, e) 
⇒ (A’, s’, e’) and there is no f≠en, so that e’< f, then the aim of the s-agent 
can be reached (with the environment in state e’). (From the very beginning, 
we have noted the final state of the environment with en). Most of the times, set 
E is not fully ordered. If, however, a fully ordered relation „<” is found, then 
the following sentence is enacted.  
 Proposition 2.  If the relation “<” is fully ordered, then the purpose 
of the s-agent can be reached with the environment in the final state (en) if 
there is a derivation of the type (A, s0

A, e0) ⇒ (B, t, en).  
 So, the purpose of the s-agent can be reached if there is a derivation 
which leads the environment to the state en, starting from the environment’s 
initial state e0 and the initial state of any agent (A), without the user’s 
intervention (in the case of a fully ordered relation ”<”).  
 If |{A; st(A)≠λ}| = 1, for any e=st(E) (therefore a single agent is active 
at a given moment, as in lemma 1), then the MMS operates sequentially. This 
is what happens most of the times.  
 We consider that the environment E modifies its current state in two 
cases:   

• as a result of applying an evolution rule, by one of the system’s agents; 
• as a result of the direct intervention of a human user. We can also 

consider, in some exceptional cases, that the state a certain agent is in 
can be modified by the evolution rules as by the user as well. 
Therefore, we cannot hold control over what is going to happen, or 
how the state of the environment is going to evolve within a certain 
interval of time. If, ideally, the human user cannot randomly modify 
neither the environment E nor the current state of the agents, then the 
system is entirely deterministic. 

 
2. BLOCKAGES AND INFINITE CYCLES  

 Our interest does not lie simply in building absolutely sequential 
systems or deterministic systems, but in specifying in the best possible way 
the evolution rules so that blockages cannot occur.   
 Definition 10. If relation (7) is certified, then we say that the s-agent is 
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under blockage.  
∃A∈S : st(A)=s, st(E)=e, e≠en ∧ ¬∃ (A, s, e’) → (B, s, f), f, e’≠en   (7) 

 Therefore, we say that an s-agent is under blockage when an atomic 
agent of the system gets into a state s, and the environment is in a non-final 
state e, and there is no evolution relation that can allow for the agent’s passing 
out from the state s, although the environment is suddenly modified by the 
user, into another non-final state e’.  

In (7) f and e’ are certain non-final states of the environment (e’and f 
may also be even e), and s’ a certain state of a certain agent B from the           
s-agent, being even possible for B to be A.  
 In other words, there is no evolution rule, with s on the left side, which 
can lead to another state of A or within another agent B, no matter the 
evolution of the environment E.  
 Definition 11. In an s-agent a derivation of the type (A,s,e)⇒ (A,s,e) is 
called infinite cycle.  
 This occurs when, if the user does not intervene through modifying the 
environment, the execution of the s-agent’s agents cycles infinitely, without 
the environment reaching the final state. In this case, the user may intervene to 
take the MMS out of the cycle.   
 Blockages and infinite cycles can be identified easier if we represent 
the s-agents and the MMS. Graphically, a multi-agent monitoring system 
(MMS) can be represented in the shape of a graph oriented thus (figure 1):  

• optionally, more s-agents are represented in the shape of some 
polygons or other geometrical figures, containing more s-agents, the 
internal structure being represented only for one of them;  

• optionally, the links among the s-agents will have the shape of some 
curves; graphically only one s-agent will be represented, because all 
s-agents are considered to have the same internal structure;  

• the generic s-agent will be represented through a geometrical figure 
where all atomic agents are represented;  

• the atomic agents are represented through some rectangles labeled 
with their names; inside those squares there will be circles representing the 
different states of the respective agent;  

• each state will represent a point in an oriented graph, where the 
edges are the evolution relations, labeled with a pair of clues for the states of 
the environment: the starting state and the state that is finally reached.  
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Figure 1. A simple s-agent containing a blockage in A1 and an infinite cycle in A2 

 
Figure 2. A normal s-agent and its reduced s-agent 

 
 

 This is an ideal example of MMS functioning, illustrated by the bold 
arcs in figure 2. Obviously, the other arcs except the bold ones are useless in 
this graph, because they will never be passed through. If, however, the user 
interferes, for example the moment the MMS is in state 2 from the atomic 
agent A1, modifying the state of the environment from e2 to e3, then the 
evolution (A1, 2, e3) → (A2, 1, e4) will occur, expressed in figure 3 through the 
dotted arc. We can obviously “endow” an s-agent with many evolution rules. 
Inside a co-operating working environment, different users will introduce 
different rules of evolution. The question is, if under the circumstances of 
some normal agents, some of those rules will ever be applicable, will ever 
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come into action. It is as if we had a program with functions or pieces of 
codes which are not resorted to by anywhere, cannot be touched, or an expert 
system with production rules whose part of the premises will never be 
fulfilled.    
 Thus, we will show that normal agents can be reduced to other normal 
agents, on the basis of an algorithm, so that certain evolution rules could 
become useless and could be eliminated from the system, the later behavior 
being not affected. On the contrary, the systems become more simple. By an 
s-agent’ behavior we mean the applicability of the rules of its component 
agents. Therefore, if a certain evolution rule could ever be applied, it will be a 
part of the s-agent’s behavior, and if not, then it will not be a part of this 
behavior.  
 

3. PRACTICAL IMPLEMENTATIONS AND FUTURE WORKS 
 Let there be S1 and S2 two normal s-agents, functioning simultaneously 
within the same environment E. If the behavior of S1 is identical with the one 
of S2 at all moments, meaning that the same evolution rule is applied both in 
S1 and S2, we say that the two agents are equivalents. Equivalence also refers 
to the situations of blockages or infinite cycles. 
 Our next interest is to consider normal s-agents and reducing them. In 
our next research, we will proof that a normal s-agent S can be reduced to a 
normal s-agent T that is equivalent with S, by eliminating some evolution 
relations, according to a specific algorithm. 
 One first example of MMS is that where the environment is given by 
an intelligent hyper-encyclopaedia ([1],[2]) and the MAgeLan multi-agent 
system. 
 A second example is given by an instructive system for accounting, 
ContTest ([3]).  
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