
"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 19 (2009), No. 2, 357 - 364

INTELLIGENT AGENTS FOR MONITORING SYSTEMS

BOGDAN PĂTRUŢ

Abstract. This paper’s aim is to define the concepts of s-agent and multi-
agent monitoring system we used for constructing the MageLan and ContTest
systems. We used formal language theory to present the environment and the
abstract architecture for constructing multi-agent systems.

1. S-AGENTS AND MULTI-AGENT MONITORING SYSTEMS

 Intelligent agents have to be reliable in order to offer accuracy in the
results, in dissimilar, open or unpredictable environments Software agents are
situated in particular environments and capable of autonomous actions, in
order to fulfill their objectives. On the other hand, distribution of hardware,
software and data offer the possibility for the agents to be fragmented or
replicated on diverse nodes on the computer network ([4], [5]).
 Definition 1. We use the name of environment for a set of elements

{ }neeeee ,...,,,,E 3210= among which there is a relation of partial order marked
with “<”. We use the notation fe ≤ for the fact that fe < or fe = .,
respectively ef > if fe < .
 The environment can be, at a certain point, in a certain state e, which
we will express by eEst =)(. At first, the environment leaves an initial state
e0, for which { }niee ,...,2,1,10 ∈∀< . The state ne is called final state for which
it is considered that { }niee ni ,...,2,1, ∈∀< .
 Definition 2. We use the name of agent for a triple of the type (3.1)

()RsSA ,, 0= where S is a finite set of states, s0 in S is called the agent’s
initial state, and R is a set of evolution rules.

Keywords and phrases: intelligent agents, distributed systems; monitoring
systems; hyper-encyclopedia
(2000) Mathematics Subject Classification: 68Q45, 68T35

BOGDAN PĂTRUŢ

358

 If agent A is in state s, then we express this by sAst =)(. Among the
states of S there is a special state marked with λ. At first 0)(sAst = , and when

λ=)(Ast we say that the agent is inactive. For the rest, the agent is active.
 The rules in R are of the type (1) or (2):

),,(),,(1 ftAesAr →= (1)
),,(),,(2 ftBesBr →= (2)

 Rule (1) states that if sAst =)(, eEst =)(, then)(Ast becomes t and
)(Est becomes f , if fe ≤ . The second rule (2) states that agent A ceases its

implementation (st(A) becomes λ), transferring the control to agent B, for
which st(B) becomes t, and the environment remains in the same state.
 If st(E) = e and there are two agents A and B with λ≠= aAst)(and

λ≠= bBst)(and () ()fzCesA ,,,, → and () ()fzDetB ′′→ ,,,, , then we will
consider () ()ffEst ′= ,max if f and f ′ are comparable, one of them
respectively, if f and f ′ are not comparable, and 0)(=Ast and zCst =)(if

ff ′< , respectively 0)(=Bst and zDst ′=)(, if ff ′< .
 This can be generalised for more active agents.
 Definition 3. We use the name of s-agent for an n-uple of the type (3)

()nAAACS ,...,,, 21= (3)
where C is an agent called coordinating agent, and nAAA ,...,, 21 are agents
corresponding to the definition above that are called effectors or atomic
agents. The coordinating agent will interact directly with the user and the
architecture and its functionality depends on the concrete implementation (the
examples will be offered in the following chapters).
 Because inside an s-agent, the agents transfer the control form one to
another, an s-agent behaves like a communicative multi-agent system.
 Definition 4. Let there be ()nAAACS ,...,,, 21= an s-agent. If

nsss ,...,, 21 are the states of the atomic agents that make up S (without the
coordinator C), we then say that ()nsss ,...,, 21 is the state of S (at a given
moment).
 Definition 5. Let there be ()nAAACS ,...,,, 21= an s-agent in the
environment E, that cannot be modified by the user. If the initial state of S is
of the type ()λλλ ,....,,,0 we say that S is a normal s-agent (s01 marks the
initial state of the agent A1).

Directly, we obtain the following lemma:
 Lemma 1. In a normal s-agent, { } { }λλλ ,...,,,,...,, 21 ssss n = is

INTELLIGENT AGENTS FOR MONITORING SYSTEMS

359

enacted, with λ≠s , at any point of time t.
Proof. The s-agent being normal, it follows that its initial state (at the

moment t0) is ()λλλ ,...,,,0 , therefore { } { }λλλ ,...,,,,...,, 0100201 ssss n = , and
λ≠01s . Let us suppose that the state in the moment ti is { }λλλ ,...,,,s , with

s≠λ. This means that an active Ai agent exists and that it is unique, with and
() λ≠= sAst i and () ijAst j ≠∀= ,λ .If there is a relation of evolution of the

type () ()ftAesA ji ,,,, → , then by applying this relation of evolution, we will
obtain in the moment () λ=+ ii Astt :1 and () λ=jAst , with λ≠t . Therefore
the state of the s-agent will become (no matter the situation)
()λλλλλ ,...,,,,...,, t , with λ≠t , on the position j, therefore. If there is no
relation of evolution with ()esAi ,, on the left side, then the s-agent will
remain in the state { }λλλ ,...,,,s , with s≠λ. The fact that the agent will remain
in that certain state will be called blockage, a notion that we will eventually
formally define.
 Definition 6. We use the name of multi-agent monitoring system
(MMS) of the environment E, based on s-agents (or on groups) for a triple of
the type (4)

()ELSaSMM ,,= (4)
where Sa is a set of s-agents, having the same structure, E is the environment
within which these exist and are implemented, and L are communication or
linkage rules of the type ji CC → , where Ci and Cj are coordinating agents of
some s-agents from Sa.
 The communication relations among the s-agents form an oriented
graph depending on the architecture and the concrete implementation of the
multi-agent system, as we will see in the following chapters. Our interest lies
in some evolution rules of the environment within an s-agent and the structure
and graphic representation of an s-agent.
 A SMM containing only normal s-agents is called a normal SMM.
 Definition 7. The purpose of an s-agent is to take the environment E to
a state as close as possible to its final ne state. If the relation can be obtained
(5), we then say that the aim of the s-agent can be carried out.

st(E)=e ∧¬∃ f ∈ E, f ≠ en: e<f (5)
 By extension, we can say that the aim of SMM is reached if all the
targets of the component s-agents are achieved.
 Definition 8. Two rules of evolution of the type r1 = a→b şi r2 = b→c,
where a, b, and c are triples of the type of those in (1) or (2), they are called

BOGDAN PĂTRUŢ

360

adjacent.
 Definition 9. Let there be r1, r2, ..., rk a line of adjacent rules of
evolution, two by two. We will use the notation (6) and we will call this
relation as the derivation relation (see (6)).

r1⇒rk (6)
 Within an s-agent, the following results are obvious:
 Proposition 1. If st(E)=e, there is an agent A with st(A)=s≠λ, (A, s, e)
⇒ (A’, s’, e’) and there is no f≠en, so that e’< f, then the aim of the s-agent
can be reached (with the environment in state e’). (From the very beginning,
we have noted the final state of the environment with en). Most of the times, set
E is not fully ordered. If, however, a fully ordered relation „<” is found, then
the following sentence is enacted.
 Proposition 2. If the relation “<” is fully ordered, then the purpose
of the s-agent can be reached with the environment in the final state (en) if
there is a derivation of the type (A, s0

A, e0) ⇒ (B, t, en).
 So, the purpose of the s-agent can be reached if there is a derivation
which leads the environment to the state en, starting from the environment’s
initial state e0 and the initial state of any agent (A), without the user’s
intervention (in the case of a fully ordered relation ”<”).
 If |{A; st(A)≠λ}| = 1, for any e=st(E) (therefore a single agent is active
at a given moment, as in lemma 1), then the MMS operates sequentially. This
is what happens most of the times.
 We consider that the environment E modifies its current state in two
cases:

• as a result of applying an evolution rule, by one of the system’s agents;
• as a result of the direct intervention of a human user. We can also

consider, in some exceptional cases, that the state a certain agent is in
can be modified by the evolution rules as by the user as well.
Therefore, we cannot hold control over what is going to happen, or
how the state of the environment is going to evolve within a certain
interval of time. If, ideally, the human user cannot randomly modify
neither the environment E nor the current state of the agents, then the
system is entirely deterministic.

2. BLOCKAGES AND INFINITE CYCLES

 Our interest does not lie simply in building absolutely sequential
systems or deterministic systems, but in specifying in the best possible way
the evolution rules so that blockages cannot occur.
 Definition 10. If relation (7) is certified, then we say that the s-agent is

INTELLIGENT AGENTS FOR MONITORING SYSTEMS

361

under blockage.
∃A∈S : st(A)=s, st(E)=e, e≠en ∧ ¬∃ (A, s, e’) → (B, s, f), f, e’≠en (7)

 Therefore, we say that an s-agent is under blockage when an atomic
agent of the system gets into a state s, and the environment is in a non-final
state e, and there is no evolution relation that can allow for the agent’s passing
out from the state s, although the environment is suddenly modified by the
user, into another non-final state e’.

In (7) f and e’ are certain non-final states of the environment (e’and f
may also be even e), and s’ a certain state of a certain agent B from the
s-agent, being even possible for B to be A.
 In other words, there is no evolution rule, with s on the left side, which
can lead to another state of A or within another agent B, no matter the
evolution of the environment E.
 Definition 11. In an s-agent a derivation of the type (A,s,e)⇒ (A,s,e) is
called infinite cycle.
 This occurs when, if the user does not intervene through modifying the
environment, the execution of the s-agent’s agents cycles infinitely, without
the environment reaching the final state. In this case, the user may intervene to
take the MMS out of the cycle.
 Blockages and infinite cycles can be identified easier if we represent
the s-agents and the MMS. Graphically, a multi-agent monitoring system
(MMS) can be represented in the shape of a graph oriented thus (figure 1):

• optionally, more s-agents are represented in the shape of some
polygons or other geometrical figures, containing more s-agents, the
internal structure being represented only for one of them;

• optionally, the links among the s-agents will have the shape of some
curves; graphically only one s-agent will be represented, because all
s-agents are considered to have the same internal structure;

• the generic s-agent will be represented through a geometrical figure
where all atomic agents are represented;

• the atomic agents are represented through some rectangles labeled
with their names; inside those squares there will be circles representing the
different states of the respective agent;

• each state will represent a point in an oriented graph, where the
edges are the evolution relations, labeled with a pair of clues for the states of
the environment: the starting state and the state that is finally reached.

BOGDAN PĂTRUŢ

362

Figure 1. A simple s-agent containing a blockage in A1 and an infinite cycle in A2

Figure 2. A normal s-agent and its reduced s-agent

 This is an ideal example of MMS functioning, illustrated by the bold
arcs in figure 2. Obviously, the other arcs except the bold ones are useless in
this graph, because they will never be passed through. If, however, the user
interferes, for example the moment the MMS is in state 2 from the atomic
agent A1, modifying the state of the environment from e2 to e3, then the
evolution (A1, 2, e3) → (A2, 1, e4) will occur, expressed in figure 3 through the
dotted arc. We can obviously “endow” an s-agent with many evolution rules.
Inside a co-operating working environment, different users will introduce
different rules of evolution. The question is, if under the circumstances of
some normal agents, some of those rules will ever be applicable, will ever

INTELLIGENT AGENTS FOR MONITORING SYSTEMS

363

come into action. It is as if we had a program with functions or pieces of
codes which are not resorted to by anywhere, cannot be touched, or an expert
system with production rules whose part of the premises will never be
fulfilled.
 Thus, we will show that normal agents can be reduced to other normal
agents, on the basis of an algorithm, so that certain evolution rules could
become useless and could be eliminated from the system, the later behavior
being not affected. On the contrary, the systems become more simple. By an
s-agent’ behavior we mean the applicability of the rules of its component
agents. Therefore, if a certain evolution rule could ever be applied, it will be a
part of the s-agent’s behavior, and if not, then it will not be a part of this
behavior.

3. PRACTICAL IMPLEMENTATIONS AND FUTURE WORKS
 Let there be S1 and S2 two normal s-agents, functioning simultaneously
within the same environment E. If the behavior of S1 is identical with the one
of S2 at all moments, meaning that the same evolution rule is applied both in
S1 and S2, we say that the two agents are equivalents. Equivalence also refers
to the situations of blockages or infinite cycles.
 Our next interest is to consider normal s-agents and reducing them. In
our next research, we will proof that a normal s-agent S can be reduced to a
normal s-agent T that is equivalent with S, by eliminating some evolution
relations, according to a specific algorithm.
 One first example of MMS is that where the environment is given by
an intelligent hyper-encyclopaedia ([1],[2]) and the MAgeLan multi-agent
system.
 A second example is given by an instructive system for accounting,
ContTest ([3]).

References
[1] Pătruţ, B., Pandele, I., 2008, How to Compute the References
Emergencies in a Hyper-encyclopedya, in “Recent Advances in Systems
Engineering and Applied Mathematics. Selected papers from the WSEAS
conferences in Istanbul, May 27-30, 2008”, ISBN 978-960-6766-91-6, ISSN
1790-2769, Istanbul, Turkey, p.72-75
[2] Pătruţ, B., Socaciu, T., 2008, Constructing a Hyper-enciclopedya:
How to Transfer the Emergencies Between the Nodes, in Proceedings of
the Fourth International Bulgarian-Greek Conference (Computer Science'
2008), 18-19 September 2008, Kavala, Greece, p. 468-473

BOGDAN PĂTRUŢ

364

[3] Pătruţ, B., Vârlan S. E., Socaciu, T., 2008, ContTest – a Multiagent
System for Accounting Education, in Proceedings of the Third International
Multi-Conference on Computing in the Global Information Technology,
ICCGI 2008, July 27 - August 1, 2008, Athens, Greece
[4] Vlassis, N., 2007, A Concise Introduction to Multiagent Systems
and Distributed Artificial Intelligence. Synthesis Lectures on Artificial
Intelligence and Machine Learning, Department of Production Engineering
and Management, Technical University of Crete, Morgan and Claypool
Publishers
[5] Weiss Gerhard (ed.), 1999, Multiagent Systems - A Modern
Approach to Distributed Artificial Intelligence, MIT Press, ISBN 978-0-
262-23203-6

Department of Mathematics and Informatics,
Faculty of Sciences
“Vasile Alecsandri” University of Bacău,
Spiru Haret 8, 600114 Bacău, ROMANIA
Email: bogdan@edusoft.ro

