
"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 19 (2009), No. 2, 393 - 402

THE RODIN TECHNICAL REPORT

COMPUTING THE EXPRESSION OF A PSEUDOCONSTRUCTOR
OVER MONADIC VALUES USABLE AS MODULAR SEMANTIC

AUTOEVALUATOR BY EQUATIONAL REWRITING

DAN POPA

Abstract. The paper focuses on the act of computing the expression of a
pseudoconstructor over monadic values (actions) - usable as a modular
semantic autoevaluator - by using equational rewriting. After that, the syntax
is represented by it's semantic. This paper is a part of The Rodin Technical
Report.

1. INTRODUCTION
This paper is showing on the steps of creating the semantic of a new

statement for a modular language (called Rodin [5],[6],[7] which is in fact a
platform for modular language development). The pragmatic goal of this
paper is to practically answer a simple question: How can we add a Pascal
Like "for" - statement semantics (expressed by syntax) in a C-like language
which is rebuilt using the modular monadic semantics introduced by Popa in
[4]. We are concentrating here on the development of a piece of that specific
modular monadic semantic using equational reasoning. A term over a set of
monadic pseudoconstructors [4] provided by the Rodin [12] platform is build,
in the pages below, step by step. Finally the equation which links the abstract
syntax with the just developed semantic is simply pasted into the module and
compiled as part of the project, becoming immediately usable.

Keywords and phrases: modular monadic semantics, interpreters,
pseudoconstructor, autoevaluator,(itselfevaluator),The Expression Problem
AMS (2000) Mathematical Subject Classification: 68Q55, 68N20, 68Q42

 DAN POPA 394
The Rodin Platform for language development is a system able to be

used in the development of modular languages - (i.e. languages which can be
built by compiling together a set of modules.) Each module includes a
modular parser built using the parser combinators from a common used
library (Parsec [1],[2] is used but Parselib an older Haskell library [10],[11]
and other libraries are also possible choices.) and a semantic description
associated to the abstract syntax produced by the parser, creating an equation.

The simplest pieces are in fact semantic atoms called
pseudoconstructors [4] over monadic values - because they are functions
from monadic values to monadic values. Larger syntax structures have their
own pseudoconstructors built in a compositional constructive way. This paper
is explaining how to built such a complex term - the pseudoconstructor of a
Pascal-like ''for '' statement.

2. THE SYNTAX
The actual syntax we choose to implement is this one, with usual

notations and a positive step.
FOR <var> := <exp1> TO/DOWNTO <exp2> STEP <step> DO <com>

 Correspondingly, the abstract syntax of this loop (expressed with a
pseudoconstructor forPas) is:

forPas num e1 semn e2 step com =
where
 num - is the identifier of the counter variable
 e1 - an expression which gave us the first value of the counter
 semn - is just a +1 or a -1 corresponding with the semantic of the keyword
"To or Downto" used
 e2 - expression which gave us the final value
 step - the step (should be positive)
 com - the statement to be executed repeatedly, called "command 1"

3. THE SEMANTICS
A possible non standard operational semantic of this statement is here

described inspired by the final paragraph (pp 71) from this e-book [3]
concerning the Oberon-2 language. With some minor modifications (which
are in fact alpha conversions, like in lambda calculus) and considering the fact
that the step = zero is forbidden by the syntax, the semantics may looks like

 THE RODIN TECHNICAL REPORT 395
here:
 v := <exp1>;
 temp := <exp2>;
 IF <step> > 0 THEN
 WHILE v <= temp DO <com>; v := v + <step> END
 ELSE
 WHILE v >= temp DO <com>; v := v + <step> END
 END
where semn = 1 in cases when TO was used, respectively semn = -1 in cases
when TO was used, so we can consider the following:
 v := <exp1>;
 temp := <exp2>;
 IF <semn> = 1 THEN
 WHILE v <= temp DO <com>; v := v + <step> END
 ELSE
 WHILE v >= temp DO <com>; v := v + <step> END
 END
 Let's note the main structure: it is a sequence: the first assignment
followed by the rest of the code.
 Parsing may be used to reveal the syntax tree and all the visible
structures and substructures. So we can write our new semantic as:
(segv i1 i2) - where i1 and i2 will be two pseudoconstructors
implemented as monadic actions
where i1 will implement the first assignment and i2 will implement the rest:
i.e. the entire block composed by the second assignment and the if statement.

So we can write them as:
 i1 = (attrib2 n1 e1)
 i2 = (segv i3 i4)
 And by the replacement (substitution) in the first term we get:
(segv (attrib2 n1 e1)
 (segv i3
 i4))
 Remark: the names of the two variables are chosen to be n1 and n2
(i.e. abbreviations of name #1 and name #2).

The variable n1 will have the real name gave by the programmer in
order to make the variable usable from the inside of the body of the loop. The
second name is hidden and is automatically generated starting from the first

 DAN POPA 396
one, by adding the "$" prefix. Because it is not actually an identifier the
syntax of the language will forbid it's use by the programmer.
 n1=num
 n2=("$"++num)

Carefully looking to the structure, we are able to write the third and the
fourth statement:
 i3 = (attrib2 n2 e2)
 i4 = (cond (eq semn unu)
 (while (le (var n1) (var n2))
 (segv com
 (attrib2 n1 (plus step (var n1)))
)
)
 (while (ge (var n1) (var n2))
 (segv com
 (attrib2 n1 (minus (var n1) step))
)
)
)

The descriptions is using a set of standard semantic primitives of the
Rodin Project: cond, eq, while, le, var , segv, attrib2, plus, ge, minus having
sugestive names. (See the annexed text.)

Replacing i3 and i4 in the main term we get a longer one:
(segv (attrib2 num e1)
 (segv (attrib2 n2 e2)
 (cond (eq semn unu)
 (while (le (var n1) (var n2))
 (segv com
 (attrib2 n1 (plus step (var n1)))
)
)
 (while (ge (var n1) (var n2))
 (segv com
 (attrib2 n1 (minus (var n1) step))
)
)
)

 THE RODIN TECHNICAL REPORT 397
)
)
 Now it's the moment to substitute all the appearances of n1 and n2 by
their description, each of them as term:
 n1=num
 n2=("$"++num)
and we get this:
(segv (attrib2 num e1)
 (segv (attrib2 ("$"++num) e2)
 (cond (eq semn unu)
 (while (le (var num) (var ("$"++num)))
 (segv com
 (attrib2 num (plus step (var num)))
)
)
 (while (ge (var num) (var ("$"++num)))
 (segv com
 (attrib2 num (minus (var num) step))
)
)
)
)
)

Finally, we have to replace 'unu' by the semantic description of the
constant 1 represented by a pseudoconstructor with it's argument (con 1)
because
 unu = (con 1)

And we can write the equation linking the abstract syntax with it's
semantic (which is expressed by composing pseudoconstructors over monadic
values):
forPas num e1 semn e2 step com
 = (segv (attrib2 num e1)
 (segv (attrib2 ("$"++num) e2)
 (cond (eq semn (con 1))
 (while (le (var num) (var ("$"++num)))
 (segv com
 (attrib2 num (plus step (var num)))

 DAN POPA 398
)
)
 (while (ge (var num) (var ("$"++num)))
 (segv com
 (attrib2 num (minus (var num) step)) –
numele se repeta !
)
)
)
)
)

In fact we are expressing the syntax as it's corresponding semantic.

The final equation: syntax = semantic
We was starting from the syntax:

FOR <var> := <exp1> TO/DOWNTO <exp2> STEP <step> DO <com>
And the corresponding abstract syntax which is (considered as a

subtree):

forPas num e1 semn e2 step com
and by expressing the syntax by a composition of monadic pseudoconstructors
following the pattern of the informal semantics we have got the equation
which is directly usable as part of one Haskell module of the project. The
remaining previous part of that module is the modular parser and we had
detailed the construction of such a parser in [7].
forPas num e1 semn e2 step com
 = (segv (attrib2 num e1)
 (segv (attrib2 ("$"++num) e2)
 (cond (eq semn (con 1))
 (while (le (var num) (var ("$"++num)))
 (segv com
 (attrib2 num (plus step (var num)))
)
)
 (while (ge (var num) (var ("$"++num)))
 (segv com
 (attrib2 num (minus (var num) step))

 THE RODIN TECHNICAL REPORT 399
)
)
)
)
)

Next step: Compiling and testing

Now, we can copy this equation, paste it into the module of the project,
and compile it using GHC - the Glasgow Haskell Compiler. The session looks
like here, below:
[dan@localhost ExperimentExp13]$ date
ven. oct. 30 11:45:26 EET 2009
[dan@localhost ExperimentExp13]$ ghc --make Main.hs
[27 of 31] Compiling ModPforPas (ModPforPas.hs,
ModPforPas.o)
Linking Main ...
[dan@localhost ExperimentExp13]$
 After the compilation the binary of the interpreter, which includes the
semantic of this new statement, is ready to be used.

Please note, even if Rodin is a Didactic Programming Language using
romanian keywords, the syntax used by this plugin is actually written using
usual english keywords.
This way it will be:
- simple for the english reader to see and understand it
- simple for the romanian reader to notice it
- readable by any programmer

4. CONCLUSIONS
The goal of producing the expression of a pseudoconstructor over

monadic values (actions) - usable as a modular semantic autoevaluator - by
using equational rewriting reasoning was achieved.
 The final equation is immediately usable as a program, being the
second part of the Haskell module which defines such command. This
demonstration was made at ICMI-2 / 2009, in Bacău and other supplementary
data are provided via the Rodin Project Website [12]:
http://www.haskell.org/haskellwiki/Rodin

Annexa A:

 DAN POPA 400
 Some small programs running with Rodin codename Experiment
Exp13. The text was simply get with copy and pasted here below. The
romanian words included are parts of the usual output of the system and parts
of the Rodin language syntax.

Programul:./forpas1.txt
{fie i=1000 ;
 for i:=1 to 10 step 1 do
 { scrie i }
}

1
2
3
4
5
6
7
8
9
10

Programul a rulat !
Modular Language written by Dan V Popa, Ro/Haskell Group.
http://www.haskell.org/haskellwiki/Rodin/Download
sept/2009 - Rodin - Codename:ExperimentExp13
--
Programul:./forPas20.txt
{fie i=0 ;
 for i:=1 to 20 step 2 do
 { scrie i }
}

Programul:./forpas1.txt

1
3
5

 THE RODIN TECHNICAL REPORT 401
7
9
11
13
15
17
19

Annex B:

Here is the set of modular monadic semantic primitives which I have
written as part of The Rodin Project which are used (Full code not included,
due to space limitations).
 cond - the conditional
 eq - the equality
 while - the while loop
 le - less equal (<=)
 var - variable, followed by the identifier, its single parameter
 segv - sequence of (at least two) statements
 attrib2 - assignment (one kind, there are more)
 plus - the addition (+)
 ge - greather equal (>=)
 minus - the substraction (-)

The parameters of this kind of pseudoconstructors are easily seen from
the example, also they are matching the corresponding syntactic structure.

Acknoledgements: I have to send a "Thank you!" to prof. Philip
Wadler for his comments, including those above. He was the first person who
noticed the main idea of this solution: the abstract syntax is directly replaced
by monadic semantics. Also a warm “Thank You !” addressed to the editorial
team of “Studia”, for suggestions and feed-back.

References

[1] Daan Leijen, Erik Meijer, Parsec: Direct Style Monadic Parser
Combinators For The Real World, DRAFT, October 4, 2001
http://www.haskell.org/haskellwiki/Parsec.html

 DAN POPA 402
[2] Daan Leijen, Parsec, a fast combinator parser, University of Utrecht, 4
Oct 2001, http://legacy.cs.uu.nl/daan/download/parsec/parsec.html,
http://www.cs.uu.nl/~daan
[3] Dan Popa, Pascalul mileniului al III-lea, Programarea calculatoarelor
in Oberon-2, Edusoft, Bacău, 2005, ISBN 973-87496-8-9
[4] Dan Popa, Modular evaluation and interpreters using monads and
type classes in Haskell, Studii şi Cercetări Ştiinţifice, Seria Matematică,
Universitatea din Bacău, Nr. 18 (2008), pag. 233 – 248.
[5] Dan POPA, The Rodin Modular Language vers. 8 aug 2009 – User
Manual and Report, OPEN SOURCE SCIENCE JOURNAL (1/2009) ISSN
2066 – 740X , Info. ASE Bucureşti
[6] Dan Popa, The Rodin Modular Language - vers 21 aug 2009 - User
Manual and Report, “Gheorghe Vrănceanu” International Conference on
Mathematics and Informatics, Second Edition, 8-10 sept 2009, Bacău,
România
[7] Dan Popa, Rodin. Technical Report, Gheorghe Vrănceanu International
Conference on Mathematics and Informatics, Second Edition, 8-10 sept 2009,
Bacău, Romania
[8] Dan Popa, Practica Interpretării Monadice, MatrixRom, Bucureşti,
2008, ISBN 978-973-755-417-8
[9] Dan Popa, Introducere în Haskell 98 prin exemple, Edusoft, Bacău,
2007, ISBN 978-973-8934-48-1
[10] - The Haskell Org Community – www.haskell.org
[11] - The Ro/Haskell Community – www.haskell.org/haskellwiki/Ro/Haskell
[12] - The Rodin Community – www.haskell.org/haskellwiki/Rodin

Dan Popa
Department of Mathematics and Informatics
Faculty of Sciences
"Vasile Alecsandri" University of Bacău
Spiru Haret 8, 600114 Bacău, Romania
e-mail: danvpopa@ub.ro

