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NUMBER OF JUMPS FOR SAMPLE FUNCTIONS OF LEVY 

PROCESSES 
 

NADIA MIRELA STOIAN 
 

Abstract. The structure of jumps of a Levy process is determined by 
its Levy (or characteristic) measure. For an n-dimensional Levy process, 
the Levy measure of nRD ⊂  is given by the expected number, per unit 
time, of jumps whose size belongs to D . 
 

1. INTRODUCTION 
Levy processes are popular mathematical tools in Engineering, Physics 

and Mathematical finance [4]. These processes have been the subject of 
intense research and applications in recent years, because their paths can be 
decomposed into a Brownian motion with drift plus an independent 
superposition of jumps of all possible size. This decomposition of Levy 
processes makes them suited for modelling random phenomena which 
manifest jumps [1], [2]. Levy processes have some important features such 
that these processes have paths consist of continuous motion interspersed with 
jump discontinuities of random size. 

The paper is organized as follows. Section 2 reviews well known 
properties of Levy process. In Section 3 we describe probabilistic structure 
and path properties of Levy processes. In Section 4, we introduce independent 
processes. Finally, Section 5 includes conclusions. 
 

2. LEVY PROCESSES 
In this section we introduce definition and some basic properties of Levy 

processes. The name Levy processes honour the work of the French 
mathematician Paul Levy (1886-1971). General references on Levy processes 
are [1], [2], [11]. 
 
Keywords and phrases: Levy processes, jump, measures Levy, independent 
process. 
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An Rn – valued stochastic process { }0: ≥tX t  is a family of Rn – valued 
random variables ( )ωtX  with parameter [ )∞∈ ,0t  defined on a probability 
space ( )P ,  F,Ω .  

An Rn – valued stochastic process { }0: ≥tX t  is called a Levy process on 
Rn or n-dimensional Levy process, if the following five conditions are 
satisfied: 

(1)  it has independent increments, that is, for any choice of  1≥n  and 
nt ... tt <<<≤ 100  the random variables 

112010
,...,,,

−
−−−

nn ttttttt XX  XX XX  X  are independent; 
(2)  it starts at the origin, 00 =X  a.s.(almost surely); 
(3)  it is time homogeneous, that is, the distribution of  0: ≥−+ tXX sts      

does not depend on s; 
(4)  it is stochastically continuous, that is, for any 

[ ] 0  t as   XXP sts →→>−> + 0,0 εε ; 
(5)  as a function of t, ( )ωtX  is right-continuous with left limits a.s. 
 Note that the (4) condition does not imply that the path of Levy processes 

are continuous. It only requires that for a given time t, the probability of 
seeing a jump at t is zero, i. e. jumps occur at random times. 
Here we say that a property for ω  holds a.s., if there is F∈B  with ( ) 1=BP  
such that the property holds for every B∈ω . 

Next, we try to understand the structure of Levy processes. 
Let ( )ωtX  be a Levy process. The sample function of X will be denoted 

by ( )ω, X ⋅ . We will assume, that ( ) DXX t ∈= ω  for every ω. The set of all      
t > 0 for which 

( ) ( ) 0>−
−
ωω  XX tt  

is denoted by ( )ωI . This set ( )ωI  consists of all discontinuity points of 
( )ω, X ⋅ . We also consider the 2-dimensional set 

( ) ( ) ( )( ) ( ){ } ItXXt JJ tt ωωωω ∈−==
−

:,  
Then J(ω) is a countable subset of 00 RT × , where 

{ }00 −= TT ,       { }01
0 −= RR  

because ( ) D X ∈⋅ ω, . 
Let ( )00 RT ×B  denote the class of all Borel subsets of 00 RT ×  and let 
( )00 RT ×∗B  denote the class of all ( )00A RT ×∈B , such that  
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( )
⎭
⎬
⎫

⎩
⎨
⎧ >×⊂

a
uuaA 1:,0  for some a > 0. 

 
3. NUMBER OF JUMPS 

By virtue of ( ) ( )ωω JA     D X ∩∈⋅ ,  is a finite set depending on ω as long 
as ( )00A RT ×∈ ∗B . The number of points in this set ( )ωJA∩  will be 
denoted by ( )ω,AN .  
 Remark 1. That ( )ω,AN  is measurable in ω and so is a random variable. 

More precisely we have: 
 Theorem 1. If ( )00A RT ×∈ ∗B  and ( ] 0, RtsA ×⊂ , then N(A) is 

measurable [ ]dXstB . 
Proof. Denote ( ] ( ) 00,, ,, RTatsE ats ×⊂∞×=  the set where ∞<<≤ ts0  and 
0>a and  ( ]t sQ ,⊂  be a countable dense subset of (s, t] including the right 

end point t. It is easy to see that 
( ){ } ( ) ( ) ( ]{ }

( ) ( ){ } [ ]dX  parXrX

 t s,       somefor       aXXEN

st
p q

qrrQrr      
trrps      

ats

B∈+≥−

∈>−=≥

<−∈
≤<≤+

−

/1

1
'

/1,,
/1

,,

''
'

UI I

τττ

 

Observing 
( ){ }

( )
( ){ } ( ){ }11 ,,,,

,
,, ≥∩≥=+≥

∩∈
atsats

tsQr
ats ENkENkEN U  

we get 
( ){ } [ ]  ,... 2, 1,k        dXkEN stats =∈≥ ,,, B , 

which proves that ( )atsEN ,,  is measurable [ ]( )dXstB . 

Remark 2. Writing '
,, atsE  for ( ] ( ) ( )0a     a- ts >∞−× ,,  and using the same 

argument as above, we can see that ( )atsEN ,,
'  is also measurable [ ]( )dXstB . 

If ( )00A RT ×∈ ∗B  and ( ] 0, RtsA ×⊂ , we have 
( ) ( )'

,,,, atsats EAEAA ∩∪∩=  
and so 

( ) ( ) ( )'
,,,, atsats EANEANAN ∩+∩=  

by taking a>0 sufficiently small. Therefore N(A) is measurable [ ]( )dXstB . 
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Theorem 2.  
(a) If ( )00 RTA ×∈B  then N(A) is Poisson distributed with infinite parameter.  
(b) If ( )00 RTA ×∈ *B , then N(A) is Poisson distributed with finite parameter. 

Proof. (b) First we will discuss the case ( )00 RTA ×∈ *B . Write A(t) for 
the intersection ( ] 0,0 RtA ×∩  and consider the stochastic process  

( ) ( ) ( ) ( )ωω tAt NNtN ==  
It is obvious that ( )ωtN  is a right continuous step function in t increasing with 
jumps = 1. Since  

( ) ( ) ( ) ( )( ) ( ]( )[ ]t  sfor      RtsANsAtANsNtN <×∩=−=− 0,  
it is easy to see by Theorem 1 that N(t) is an additive process. Since, for every 
t fixed, 

( ) ( )( ) ( ) ( )( ) 000 =≠−≤≠−
−− ωω tt XXPtNtNP  

N(t) is continuous i.p.∗ Therefore N(t) is a Levy processes of Poisson type [7]. 
Since ( )00 RTA ×∈ *B , we have A = A(t) and so N(A) ≡ N(A(t)) for 
sufficiently large t. Therefore N(A) is Poisson distributed with finite parameter.   

(a) Let ( )00A RT ×∈B . Then we have an increasing sequence 
( ) ... 2, 1,n      RTAn =×∈ 00

*B , such that AAn ↑ . Then 
( ) ( )nn

ANAN
∞→

= lim . 

Each ( )nAN  is Poisson distributed with the parameter ( )( )nn ANE≡λ  and 

nλ  is increasing. If ∞<= nn
λλ lim , then N(A) is Poisson distributed with 

parameter λ. If  ∞=λ , then 

( )( ) ( )( ) 0
!0

→=≤≤≤ ∑
=

−
k

j

j
n

n j
ekANPkANP n

λλ  

as n → ∞ for k fixed. This proves ( )( ) 1=∞=ANP , completing the proof. 
It is obvious that ( )ωAN  is a measure in ( )00A RT ×∈B , which takes the 

values 0, 1, 2, … and  ∞. Therefore 
 

( ) ( )( )
( )AN  variable  Poisson  the of  parameter the         

ANEAn
=
=

 

is also a measure in ( )00A RT ×∈B , which may take the value ∞.  

                                           
∗ i.p.= in probability 
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Remark 3. In Theorem 2 we saw that n(A) < ∞ if ( )00 RTA ×∈ *B . The 
measure n(A) is called the Levy measure of the Levy process X. 
 

4. INDEPENDENT PROCESSES 
For ( )00 RTA ×∈ *B  we can consider 

( ) ( )
( ) ( )( )

( ) ( )( )
( ) ( )

uXXSAS
JAut

tt
AXXt

A
tt

∑∑
∩∈∈−

=−==
−

− ωωω
ωωω

,,
 

Since ( )ωJA∩  is a finite set for such A, the sum is a finite sum and so 
there is no problem of convergence. This ( )ωAS  is also measurable in ω and 
therefore a random variable, because  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎜
⎝
⎛ −

×∩= ∑
∞→

ωω ,,1lim 0 n
k

n
kTAN 

n
kS

knA             (1) 

This relation is also expressed as 
( ) ( )

( )
∫∫
∈

=
Aut

A dtduuNS
,

,ωω                                      (1’) 

 Theorem 3. Let ( )0021 ,...,, RTAAA n ×∈B  be disjoint. Then 
( ) ( ) ( )nAN  AN AN ....,,, 21  are independent. 

Proof. Since every ( )00A RT ×∈B  can be expressed as the limit of an 
increasing sequence of sets in ( )00 RT ×*B , we can assume that  

( )00 RTA ×∈ *B , i=1, 2, ..., n 
Then we can take t0 so large that ( )0tAA ii =  for every i. Therefore )( iAN , 

i=1, 2, ..., n are independent [5]. 
  For ( ) RTA 00 ×∈ *B  we set  

( )
⎭
⎬
⎫

⎩
⎨
⎧ +

≤<∈=
m

ku
m
kAusAmk

1:,  

Then ( ) ( ) ( )ωωω
mkA

km
A

A N
m
kdsduuNS ∑∫∫ ∞→

== lim,  

  Theorem 4. If ( ) RTA 00 ×∈ *B , then 

( )[ ] ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

−= ∫∫
A

izuAizS dsduneeE 1exp  

Proof. Since { }mkA  are disjoint for each m, ( ){ }kmkAN  are independent. 
Since ( )mkAN  is Poisson distributed with parameter ( )mkAn , we have 
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( )
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Therefore we have: 
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noticing that n(A) < ∞. 
  Similarly we have: 

Theorem 5. If ( ) RTA 00 ×∈ *B  is included in ( ){ }muus <:, for some   
m < ∞, then 

( )[ ] ( )∫∫=
A

dsduunASE  

( )[ ] ( )∫∫=
A

dsdunuASV 2  

Since ( ] { } ( ) 0    uut >>× εε:,0  belongs to ( )00 RT* ×B , we have 

( )∫∫
>
<<

∞<

εu
ts

dsdun
0

 

Example. Let X(t) be a Levy process of Gauss type such that ( )( ) 0=tXE  
and ( )( ) ( )tVtXV = . 

  Then ( ) i.p.        tVt
n

kXt
n
kXS

n

k
n ∑

=

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛≡

1

2
1 . 

  For fixed t and n, denote t
n
ktk ⎟
⎠
⎞

⎜
⎝
⎛=  for k=0, ..., n. Since ( ) ( )1−− kk tXtX  is 

Gauss distributed with mean 0 and variance ( ) ( )1−− kk tVtV  we have 
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( ) ( )( )[ ] ( ) ( )
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Hence ( ) ( )tVSE n =  and 

( ) ( ) ( )( ) ( ) ( )( )[ ]

( ) ( )( )[ ]
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It follows that 
( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )tV tVtVmax             

tVtVSESES Var

kkk

k
kknnn

1

2
1

22

2

2

−

−

−≤

−=−= ∑
 

which tends to 0 as ∞→n  since V(s) is uniformly continuous on [0, t]. Hence 
by Chebyshev’s inequality 

( )( ) ( ) ∞→→≤>− n  as      S VartVSP nn 0/ 2εε  
 

V.  CONCLUSIONS 
The law of a Levy process Xt is completely determined by the law of X1. 

The class of Levy models is include the Brownian model as a special case but 
contrar to the brownian model, allow us to modelling jumps. Levy processes 
are suitable for modelling market price fluctuations because include jumps. 
Jumps are useful to capture unexpected changes in the market.  
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