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PARALLEL ALGORITHMS FOR FINANCIAL DERIVATIVES 
EVALUATION IN GENERALIZED HESTON MODEL 

 
TIBERIU SOCACIU, ILIE PARPUCEA, BAZIL PÂRV AND MARIA PÂRV 

 
Abstract.  This paper shows how can be estimated the value of an option 
if we assume the Heston model on a message-based architecture. We use two 
methods: first, a Monte Carlo method, then a parallelization of a recurrence 
obtained from a generalized Merton-Garman equation. 
 

1. INTRODUCTION 
 
From physical models, the following situation has reached acceptance: a 

financial asset interest rate follows a normal law, where the mean is the drift 
rate and the deviation is the volatility. This leads to a model that is currently 
accepted in finance:, the model of  geometric Brownian motion. This model 
(known as Black–Scholes–Merton model in finance and financial engineering) 
is a stochastic differential equation: 

)()()()( tdBtsSdttmStdS += ,  
where: 
a) 0),( ≥ttS is a stochastic process for the value of stock; 
b) m is a static parameter for the drift rate of return; 
c) s2 is a static parameter for the volatility of stock (s≥0); 
d) 0),( ≥ttB  is a standard Wiener process. 

___________________________ 
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Another model is assumed by Heston (see [1]) and it consists from two 
stochastic differential equations: The Heston model corrects some 
inconsistency of the Black–Scholes–Merton model, for example: 
 

a) in reality, volatility is not a static parameter; it can be used as static value 
only on short periods (this value will obtain on calibration process, usual with a 
statistical estimator); 

b) on long periods, it is possible that interest rate series did not verify a 
normal law. 
  A generalization of Heston model is described by the following 
coupled stochastic differential equations: 

)()),(),(()),(),(()( 1 tdBttvtSBdtttvtSAtdS +=  
)()),(),(()),(),(()( 2 tdBttvtSDdtttvtSCtdv +=  

 
where: 

a) 0),( ≥ttS  is a stochastic process for value of stock; 
b) 0),( ≥ttv  is a stochastic process for volatility of value of stock; 

  c) ),,(),,,(),,,(),,,( tvSDtvSCtvSBtvSA  are three parametric algebraic 
functions; 

d) )(),( 21 tBtB , 0≥t  are two r correlated standard Wiener processes, i.e.: 
rdttdBtdB =)()( 21  

For Wiener processes, more details  can be found in [2].  
For the basic Heston model we have: 

a) mtSA )(=  

b) )()( tvtSB =  
c) ( ))(tvKC −= θ  

d) )(tvD ξ=  
where: 

a) m is a drift of rate; 
b) θ is long run average price volatility; as t tends to infinity, the expected 

value of v(t) tends to θ; 
c) K is the rate at which v(t) reverts to θ; 
d) ξ is the volatility of the volatility; as the name suggests, this determines 

the variance of v(t). 
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Note that for 0== DC  we obtain a static volatility model (Black–
Scholes–Merton): 

0)( =tdv . 
Any financial derivative based on support with price S(t) at time t, with 

quotation at time t and a value S of support as V(t,S), where 
[ ] ++ →× RRTV ,0:  and at maturity time T will generate an generate an 

interest rate: ++ → RRpayoff :  
For example, European options CALL and PUT has payoff functions: 

E}- xmax{0,  (x) =payoff  
x}-E max{0,  (x) =payoff  

 
 

2. PARALLELIZATION OF A MONTE CARLO METHOD FOR OPTION'S 
EVALUATION 

 
First, we discretize continuous dimension of time. Let us denote: 

[ ] [ ] Nk0,0 ≤≤Δ+= ktkt , 
N
tT ]0[−

=Δ  

where: 
a) T is the maturity time of option; 
b) N is a number of time units (like days); note that sometimes is used 

transaction days – in this case, discretization hasn't a constant step. 
Because for a standard Wiener process B(t), t ≥ 0 we can obtain a standard 
normal random variable series X[B(t)], t ≥ 0 with: 

dtXtdB =)(   
we can build a simulation step as: 

A = A(S[k], v[k], t[k]) 
B = B(S[k], v[k], t[k]) 
C = C(S[k], v[k], t[k]) 
D = D(S[k], v[k], t[k]) 

S[k+1] = S[k] + A Δ + B X SQRT(Δ) 
v[k+1] = v[k] + C Δ + D Y SQRT(Δ) 

where X and Y are r correlated. A simple method to generate two r correlated 
normal values is: 

X = NORMRAND() 
Z = NORMRAND() 

Y = r X + SQRT(1–r2) Z 
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A complete simulation for interval [t0, T] in N step with evaluation of payoff 
is: 
 

FUNCTION simulation() 
S = S0 
v = v0 
t = t0 
Δ = (T – t0) / N 
FOR k = 1, N 

t = t +  Δ 
X = NORMRAND() 
Z = NORMRAND() 
Y = r X + SQRT(1–r2) Z 
A = A(S, v, t) 
B = B(S, v, t) 
C = C(S, v, t) 
D = D(S, v, t) 
SS = S + A Δ + B X SQRT(Δ) 
vv = v + C Δ + D Y SQRT(Δ) 
S = SS 
v = vv 

END FOR 
RETURN S 
END FUNCTION 
 
 

Because for a level of acceptance α, where 0<α<1, a trust interval for E[S(T)] 
is [s – a, s + a], where 

∑
≤≤

=
Mk

simulations
1

()  

 2
F

a
M

σα
⎟
⎠
⎞

⎜
⎝
⎛

= , 

and F is the inverse function for CDF (cumulative distribution function) of 
standard normal distribution; it means that: 

a-1a)sE[S(T)]a-Prob(s =+<<  
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 or: 
a1))MO(s )]Prob(E[S(T −=+= . 

where big–O notation is a Buchmann–Landau symbol (see [3]). 
 

Suppose that we have a parallel architecture with message passing protocol 
(like MPI; for MPI see [5]) that consists in P processors. We broke a 

simulation job for P–1 slaves which will transmit result of ⎥⎥
⎤

⎢⎢
⎡

−1P
M  simulations 

to master processor: 
 
 
 

PROGRAM complete_simulation 
GLOBAL t0, T, S0, v0, P, N, EPSILON, M 
READ t0, T, S0, v0, N, EPSILON, M 
P = ProcessorsCount() 
If P ≥ 3 THEN 

 CALL parallel_simulation() 
ELSE 

CALL serial_simulation() 
END IF 
END PROGRAM 

 
PROCEDURE parallel_simulation() 
LOCAL x, y, Q 
IF ProcessorID() = 0 THEN 

FOR i = 1, P–1 
    RECV ANY, y 
    x = x + y 
ENDFOR 
x = payoff(x / (P–1)) 

ELSE 
Q = CEIL(M / (P–1)) 
x = 0 
FOR i = 1, Q 
    x = x + simulation() 
ENDFOR 
SEND 0, x / Q 

ENDIF 
END PROCEDURE 
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PROCEDURE serial_simulation() 
LOCAL x 
x = 0 
FOR i=1, M 

x = x + simulation() 
ENDFOR 
WRITE payoff(x / M) 
END PROCEDURE 
 
 
 

3. PARALLELIZATION OF NUMERICAL METHOD APPLIED TO 
GENERALIZED MERTON–GARMAN EQUATION 

 
We recall the following extended Itô’s Lemma.  For Itô’s lemma see [4].  
 
Theorem. Let S(t), t≥0 and v(t), t≥0 be two stochastic processes that verify 

the next differential stochastic equations: 
)()),(),(()),(),(()( 1 tdBttvtSBdtttvtSAtdS +=  
)()),(),(()),(),(()( 2 tdBttvtSDdtttvtSBtdv +=  

where 0 t(t),B1 = and 0 t(t),B2 =  are two Wiener correlated processes with ρ 
corellation. If f(S, v, t) is a continuous differentiable function, then: 

2v1Sv

2
vv2SS

vSt DdBfBdBf dtBDfS 
2
D f

2
Bf

 CfAffdf ++⎥
⎦

⎤
⎢
⎣

⎡
+++++= ρ  

Proof: see [6] 
 
Because we have two sources of risk, we must build a portfolio based on 

two types of derivatives and support: 
a) one option at value ),,( σStV ; 
b) X  shares at price )(tS ; 
c) Y  options at value ),,(1 σStV . 
Value of this portofolio is: 
 

),,()(),,()( 1 σσ StVYtSXStVt ++=Π  
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After appling extended Itô’s lemma for: 
),,(),,( 11 σσ StVtSf =  
),,(),,(2 σσ StVtSf =  

we can compute: 
),,()(),,()( 1 σσ StdVYtdSXStdVtd ++=Π  

as: 
)()()( 23121 tdBtdBdttd ααα ++=Π  

 
Because is a risk–free portofolio, we must have: 

032 == αα . 
 

But for a risk–free portofolio we have: 
dttrtd )()( Π=Π . 

 
From last two we obtain that (see [6]): 

vDV

Sv
vv

2
SS

2

vSts AV-BDVS 
2
V D

 
2
VB

  CV AV V rSVrV ρ+++++++
, 

is an invariant denoted as β, and named as the market price of volatility risk 
(see [7], p8). Rewrite last as a partial differential equation: 

0  rV-DVS
2
VD

 
2
VB

)VD -(C  rSV V v
vv

2
SS

2

vSt =+++++ ρβ  

obtain an equation like Black–Scholes equation (more on Black–Scholes 
equation in [8]). For Heston model, this equation is named as Merton–Garman 
equation (see [9]; [10] p. 41) or Garman equation. We name as generalized 
Merton–Garman equation or generalized Garman equation.  
 
On boundary we have: 
a) value of a null valued stock is null: 

Tt0 t, v,0,  ),,( ≤≤∀∀=TvSV , 
 

b) value at maturity will be payoff(): 
0,,),(),,( ≥∀∀= SSvSpayoffTvSV . 
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c) for null volatility we have a deterministic solution S* of differential 
equation: 

dS(t) = A(S(t), 0, t) dt 
and value of option is: 

TtStStStSV ≤≤≥∀∀= 0,0,,),(),0,( * . 
In particular case of Heston model: 

A = r S, 
solution S* is: 

S*(t) = S(t0) exp (r (t - t0)) 
 

After discretization on all three axis with ΔS, Δv, Δt denote with: 
V[i,j,k] = V(j(ΔS), k(Δv), i(Δt)) 

generalized Merton–Garman equation can be rewritten as: 
 
 
 

+
Δ

+Δ
+

Δ St 2
 k])j1,V[i,-k]1,j (V[i, S)( rjk]j,1,-V[i  k]j,V[i,  

+
Δ

++
+

Δ
+ 2

2

)(2
 k])1,-jV[i,  k]j,V[i, 2-k]1,j(V[i, B

2
1])-kj,V[i,-k1]j,(V[i, )D-(C

Sv
β

+
Δ

++
+ 2

2

)(2
1])-kj,V[i,  k]j,V[i, 2- 1]kj,(V[i,D

v
 

−
ΔΔ

+++++
+

))((
1])-k1,-jV[i,  1]k1,-jV[i,- 1]-k1,jV[i,- 1]k1,j(V[i, BD

vS
ρ

0k]j,rV[i, =−  
or in liniar form explicit form: 
 

 V[i–1,j,k] = p V[i,j,k] + q V[i,j+1,k] + r V[i,j–1,k] + 
 + s V[i,j,k+1] + t V[i,j,k–1] + u V[i,j+1,k+1] – 

– u V[i,j+1,k–1] – u V[i,j–1,k+1] + u V[i,j–1,k–1] 
–  

where: 
 p = (a – 2 d – 2 e – g) / a 
 q = (d + b) / a 
 r = (d – b) / a 
 s = (e + c) / a 
 t = (e – c) / a 



PARALLEL ALGORITHMS FOR FINANCIAL DERIVATIVES EVALUATION  
 

 

487

 

 u = f / a 
 a = (ΔS)2 (Δv)2 

 b = ½ r j (Δt) (ΔS)2 (Δv)2 

 c = ½ (C – D β) (Δt) (ΔS)2 (Δv) 
 d = ½ B2 (Δt) (Δv)2 

 e = ½ D2 (Δt) (ΔS)2 

 f = ρ B D (Δt) (Δv) (ΔS) 
 g = r (Δt) (Δv)2 (ΔS)2 

 

 

A parallel solution for a PRAM (see [11]) architecture was presented in 
[12]. We will build a parallel solution for a message passed architecture with a 
diagonalization method of domain splitting in order to reduce the number of 
messages (like in [13], where communication was halfed). Supose that our 
architecture has Q processors, where one will be master and Q-1 will be slaves.  

 
Each slave will process a prism obtained from cube 
 CUBE = [ ]PNM ,0],0[],0[ ×× , 

where M is the number of epochs (time), N–1 is number of intermediar points 
on S axis, with N (ΔS) enough biger to cover values, respectively P–1 for v 
axis, after split it in Q-1 prisms: 
 PRISM[x] = )}()1(:),{(},0[ xfzyxfzyM ≤+≤−×  
where: 
 f(x) = FLOOR ( (N + P + 1) x / (Q – 1) ). 
 
 
Because processing of PRISM[x] need first 2 left layer from PRISM[x+1] and 
last 2 right layer from PRISM[x-1], processors must interchange some values 
M-1 times. Parallel algorithm is: 
 
PROGRAM simulation 
Q = ProcessorsCount() 
x =  ProcessorID() 
IF x = 0 THEN 
  Z = 0 
  WHILE Z < Q – 1 DO 
    RECV x, I, J, K, a 
    IF I = J = K = 0 THEN 
      Z = Z + 1 
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    ELSE 
      V[I, J, K] = a 
    ENDIF 
  END WHILE 
ELSE 
  FOR j = 0, N 
    FOR k = 0, P 
      V[M, j, k] = payoff(j (ΔS)) 
    ENDFOR 
  ENDFOR 
  FOR I = M, 1, -1 
    // border 
    FOR k = 0, P 
      V[i-1, 0, k] = 0 
    ENDFOR 
    FOR j = 0, N 
      V[i-1, j, 0] = S*((i-1) (Δt)) 
    ENDFOR 
    // first 2 layers 
    If x <> 1 THEN 
      RECV x-1, {V[i,j,k]} | j+k=f(x-1)-1 OR  j+k=f(x-1)-2} 
    ENDIF 
    FOREACH j,k WITH j+k=f(x-1) OR  j+k=f(x-1)+1 
      CALL compute_one() 
    ENDFOR 
    If x <> 1 THEN 
      SEND x-1, {V[i,j,k]} | j+k=f(x-1) OR  j+k=f(x-1)+1} 
    ENDIF 
    // other internal layers 
    FOREACH j,k WITH f(x-1)+2<=j+k<=f(x)-2 
      CALL compute_one() 
    ENDFOR 
    // last 2 layers 
    If x <> Q-1 THEN 
      RECV x+1, {V[i,j,k]} | j+k=f(x)+1 OR  j+k=f(x)+2} 
    ENDIF 
    FOREACH j,k WITH  j+k=f(x) OR  j+k=f(x)-1 
      CALL compute_one() 
    ENDFOR 
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    If x <> Q-1 THEN 
      SEND x+1, {V[i,j,k]} | j+k=f(x) OR  j+k=f(x)-1} 
    ENDIF 
  ENDFOR 
  SEND 0, 0, 0, 0, 0 
ENDIF 
END 
 
PROCEDURE compute_one() 
IF j = 0 OR k = 0 THEN 
 RETURN 
ENDIF 
A = A(j (ΔS), k (Δv), i (Δt)) 
B = B(j (ΔS), k (Δv), i (Δt)) 
C = C(j (ΔS), k (Δv), i (Δt)) 
D = D(j (ΔS), k (Δv), i (Δt)) 
a = (ΔS)2 (Δv)2 

b = ½ r j (Δt) (ΔS)2 (Δv)2 

c = ½ (C – D β) (Δt) (ΔS)2 (Δv) 
d = ½ B2 (Δt) (Δv)2 

e = ½ D2 (Δt) (ΔS)2 

f = ρ B D (Δt) (Δv) (ΔS) 
g = r (Δt) (Δv)2 (ΔS)2 

p = (a – 2 d – 2 e – g) / a 
q = (d + b) / a 
r = (d – b) / a 
s = (e + c) / a 
t = (e – c) / a 
u = f / a 
V[i-1,j,k] = p V[i,j,k] + q V[i,j+1,k] + r V[i,j–1,k] 
  + s V[i,j,k+1] + t V[i,j,k–1] + u V[i,j+1,k+1] 
  – u V[i,j+1,k–1] – u V[i,j–1,k+1] + u V[i,j–1,k–1] 
SEND 0, i-1, j, k, V[i-1,j,k] 
END 
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