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WELL-POSEDNESS OF A FIXED POINT PROBLEM
USING G-FUNCTIONS

MOHAMED AKKOUCHI AND VALERIU POPA

Abstract. We study the well-posedness of the fixed point problem
for asymptotically regular self-mappings of a metric space (X, d) which
satisfy a contractive condition (see inequality (2.1)) defined by a G-
type function (see [5]). So, in particular, our result provides some
improvements to a result of [5].

1. Introduction

In 1974, Ćirić ([3]) has first introduced orbitally continuous map-
pings and orbitally complete metric spaces.

Definition 1.1. Let T be a self-mapping on a metric space (X, d).
If for any x ∈ X, every Cauchy sequence of the orbit OT (x) :=
{x, Tx, T 2x, . . .} is convergent in X, then the metric space is said to
be T−orbitally complete.

Remark 1. Every complete metric space is T−orbitally complete for
any T . An orbitally complete space may not be complete metric space
(see [6], Example and [14], Example 1).

Browder and Petryshyn (see [2]) defined the following notion.
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Definition 1.2. A selfmapping T on a metric space (X, d) is said to
be asymptotically regular at a point x in X, if

lim
n→∞

d(T nx, T nTx) = 0, (1.1)

where T nx denotes the n-th iterate of T at x.

In [5], the following class of functions was introduced.

Definition 1.3. A function g : [0,∞)5 → [0,∞) is called a G-
function, if it satisfies the following three condition:

(i) g is continuous.
(ii) g is nondecreasing in each variable.
(iii) If h(r) = g(r, r, r, r, r), then the function r → r−h(r) is strictly

increasing and positive in (0,∞).

Examples of G-type functions are given in [5].
By using these functions, the following result was proved in [5].

Theorem 1.1. ([5]). Let (X, d) be a metric space and A : X → X be
a self-mapping satisfying the inequality

d(Ax, Ay) ≤ g(d(x, y), d(Ax, x), d(Ay, y), d(Ax, y), k.d(Ay, x)) (1.2)

where g belongs to the class of G-type functions and 0 < k ≤ 1
2
.

Then for any x ∈ X, the sequence {Anx} is such that

lim
n→∞

d(Anx,An+1x) = 0. (1.3)

Further, if {Anx} is convergent then it converges to the unique fixed
point of A. Also in that case any other sequence {xn} satisfying

lim
n→∞

d(xn, Axn) = 0 (1.4)

will also converge to the unique fixed point of A.

The aim of this paper is to study the well-posedness (see Definition
1.4 below) of the fixed point problem for a self-mapping T of a metric
space (X, d) which satisfies the contractive condition (1.2).

The notion of well-posednes of a fixed point problem has evoked
much interest to a several mathematicians, for examples, F.S. De
Blassi and J. Myjak (see [1]), S. Reich and A. J. Zaslavski (see [12]),
B.K. Lahiri and P. Das (see [6]) and V. Popa (see [10] and [11]).
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Definition 1.4. Let (X, d) be a metric space and T : (X, d) → (X, d)
a mapping. The fixed point problem of T is said to be well posed if:

(a) T has a unique fixed point z in X;
(b) for any sequence {xn} of points in X such that

limn→∞ d(Txn, xn) = 0, we have limn→∞ d(xn, z) = 0.

2. Main result

The main result of this paper is the following.

Theorem 2.1. Let (X, d) be a metric space and T : X → X be a
self-mapping satisfying the inequality

d(Tx, Ty) ≤ g (d(x, y), d(Tx, x), d(Ty, y), d(Tx, y), kd(Ty, x)) (2.1)

for all x, y ∈ X, where g belongs to the class of G-type functions and
k is a given number in (0, 1

2
].

Suppose that (X, d) is T−orbitally complete. Then T has a unique
fixed point z in X and the fixed point problem of T is well-posed.
Moreover, T is continuous at its unique fixed point.

Proof. 1) Let x0 be a point of X. Then according to Theorem 1.1,
T is asymptotically regular at x0. We show that {xn} is a Cauchy
sequence, where xn = T nx0. To simplify notations, we denote

dn := d(xn, xn+1). (2.2)

Let ε be a given positive real number. We choose a real number δ such
that

0 < δ <
ε− h(ε)

3
, (2.3)

where (as before) h(t) = g(t, t, t, t, t) for every t ∈ [0,∞). Since
limn→∞ dn = 0, then there exists an positive integer Nδ such that

max{dn, dm} < δ, for all integers n,m ≥ Nδ. (2.4)

Using the triangle inequality, from (2.1) and (ii) of Definition 1.3, we
have

d(xn, xm) ≤ dn + d(Txn, Txm) + dm

≤ dn + dm + g(d(xn, xm), dn, dm, d(Txn, xm), kd(Txm, xn))

≤ dn + dm + g(d(xn, xm), dn, dm, d(Txn, xm), d(Txm, xn)).

Using (2.4) and the fact that g is non-decreasing in each variable, we
have

d(xn, xm) ≤ 2δ + g(d(xn, xm), δ, δ, δ + d(xn, xm), δ + d(xn, xm))
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≤ 2δ + h(δ + d(xn, xm)).

We deduce that

d(xn, xm) + δ ≤ 3δ + h(δ + d(xn, xm)),

which implies (by using (2.4)) that

(d(xn, xm) + δ)− h(δ + d(xn, xm)) ≤ 3δ ≤ ε− h(ε). (2.5)

Since the function t 7→ t − h(t) is strictly increasing and positive in
(0,∞) the inequality (2.5) implies

d(xn, xm) + δ < ε, for all integers n,m ≥ Nδ. (2.6)

From (2.6), we deduce that the sequence {xn} is a Cauchy sequence.
Since (X, d) is a T−orbitally complete metric space, there is some

z in X such that

lim
n→∞

xn = z. (2.7)

2) Now we show that z is a fixed point of T. Sppose that d(z, Tz) > 0.
From (2.1) we have

d(Tz, xn+1) = d(Tz, Txn) ≤ g (d(z, xn), d(Tz, z), d(xn+1, xn), d(Tz, xn), d(xn+1, z)) .
(2.8)

Making n →∞ and noting that g is continuous, we obtain from (2.8)
that

d(Tz, z) ≤ g (0, d(Tz, z), 0, d(Tz, z), 0) ≤ h(d(Tz, z))

which implies that

d(Tz, z)− h(d(Tz, z)) ≤ 0.

This is a contradiction with the property (iii) of h in Definition 1.3.
It follows that d(Tz, z) = 0, or equivalently, that z is a fixed point of
T.

3) To prove the uniqueness of z, let us suppose that u and v are two
different fixed points of T . From (2.1), we have

d(u, v) = d(Tu, Tv) ≤ g (d(u, v), d(Tu, u), d(Tv, v), d(Tu, v), d(Tv, u))

= g (d(u, v), 0, 0, d(u, v), d(u, v)) ≤ h(d(u, v))

which implies that

d(u, v)− h(d(u, v)) ≤ 0.
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Using the property (iii) of h in Definition 1.3, it follows that

d(u, v) = 0,

or equivalently, that u = v which is a contradiction. Thus z is the
unique fixed point of T.

4) Let {yn} be any arbitrary sequence of points in X such that

lim
n→∞

d(Tyn, yn) = 0. (2.9)

Let us show that the sequence {yn} converges to the unique fixed point
z of T. Let ε > 0 be a given number. Choose a real number δ such
that

0 < δ <
ε− h(ε)

2
. (2.10)

where h(t) = g(t, t, t, t, t). By assumption (2.9), we can find a nonneg-
ative integer Mδ such that

∀n ∈ N, n ≥ Mδ =⇒ d(Tyn, yn) ≤ δ. (2.11)

Using the triangle inequality, from (2.1) and the condition (ii) of Def-
inition 1.3, we have

d(yn, z) ≤ d(yn, T yn) + d(Tyn, T z)

≤ d(yn, T yn) + g(d(yn, z), d(yn, T yn), 0, d(Tyn, z), d(z, yn))

≤ d(yn, T yn) + g(d(yn, z), d(yn, T yn), 0, d(Tyn, yn) + d(yn, z), d(z, yn)).

Using (2.4) and the fact that g is non-decreasing in each variable, we
have

d(yn, z) ≤ δ + g(d(yn, z), δ, δ, d(z, yn) + δ, d(z, yn))

≤ δ + h(δ + d(z, yn)).

We deduce that

d(yn, z) + δ ≤ 2δ + h(δ + d(z, yn)),

which implies (by using the condition (2.10)) that

(d(z, yn) + δ)− h(δ + d(z, yn)) ≤ 2δ ≤ ε− h(ε). (2.12)

Since the function t 7→ t − h(t) is strictly increasing and positive on
the set (0,∞), then the inequality (2.12) implies

d(z, yn) + δ < ε, for all integers n ≥ Mδ. (2.13)

From (2.13), we deduce that the sequence {yn} converges to z. This
proves that the fixed point problem of T is well-posed.
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5) To prove that T is continuous at z, suppose that zn → z = Tz
and suppose that the sequence {Tzn} does not converge to Tz = z.
Then we can find a positive number η > 0 and a subsequence {wn} of
{zn} such that

d(Twn, z) ≥ 2η, ∀n ≥ 0. (2.14)

Since limn→∞ d(wn, z) = 0, then we can find a positive integer Nη such
that

n ≥ Nη =⇒ d(wn, z) ≤ η − h(η). (2.15)

Then from (2.1), we have

d(Twn, z) = d(Twn, T z) ≤ g (d(wn, z), d(Twn, wn), d(Tz, z), d(Twn, z), d(Tz, wn))

= g (d(wn, z), d(Twn, z) + d(z, wn), 0, d(Twn, z), d(z, wn))

≤ h(d(Twn, z) + d(z, wn)) (2.16)

From (2.16), we obtain that

d(Twn, z) + d(z, wn)− h(d(Twn, z) + d(z, wn)) ≤ d(z, wn) ≤ η − h(η).
(2.17)

Since t − h(t) is strictly increasing on (0,∞), from (2.17), we obtain
that

d(Twn, z) + d(z, wn) ≤ η, for all integer n ≥ Nδ. (2.18)

making n → ∞ in (2.18), we obtain that 2η ≤ η, which is a contra-
diction. We conclude that T is continuous at its unique fixed point z,
and this ends the proof. ¤

As a consequence, we have the following result.

Theorem 2.2. Let (X, d) be a metric space and T : X → X be a
self-mapping satisfying the inequality

d(Tx, Ty) ≤ g (d(x, y), d(Tx, x), d(Ty, y), d(Tx, y), d(Ty, x)) (2.19)

for all x, y ∈ X, where g belongs to the class of G-type functions.
Suppose that T is asymptotically regular at some x0 ∈ X and that

(X, d) is T−orbitally complete. Then T has a unique fixed point z
in X and the fixed point problem of T is well-posed. Moreover, T is
continuous at its unique fixed point.

Proof. The result can be deduced from the proof given for Theorem
2.1. So we omit the details. ¤
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