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SEMIVARIATION AND EXHAUSTIVITY OF SET
MULTIFUNCTIONS

ALINA CRISTIANA GAVRILUŢ

Abstract. In this paper we study exhaustivity and the properties
of semivariation for set multifunctions. An extension theorem by pre-
serving the properties is obtained and several results concerning fuzzy
set multifunctions are given.

1. Introduction

Exhaustivity is an important property in many problems of mea-
sure theory. For instance, it is well-known that for every exhaustive
submeasure can be indicated a control measure (see [4]).

In recent years, in the context of fuzzy measures, people began to
study exhaustivity and another important property, autocontinuity,
which is more general than subadditivity. Properties like autocontinu-
ity, exhaustivity, increasing convergence, decreasing convergence and
o-continuity are very popular in the literature of non-additive mea-
sures. We mention here the contributions of Denneberg [2], Jiang and
Suzuki [13,14], Jiang, Suzuki, Wang and Klir [12], Asahina, Uchino
and Murofushi [1], Tan and Zhang [17], Pap [16], Zhang [20], Wang
and Klir [18] and many others.
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On the other hand, due to its numerous applications in Mathematics
Economics, Theory of Control, Decision Theory and other fields, a set-
valued fuzzy measures theory became to develop. Guo and Zhang [10],
Zhang, Guo and Liu [21], Zhang and Wang [22] generalized different
problems of fuzzy measures and integrals theory to the set-valued case.
In three recent papers, Gavrilut [7], Gavriluţ and Croitoru [8,9] studied
regularity, non-atomicity, Darboux property and other problems for
fuzzy set multifunctions with respect to the Hausdorff topology.

In this paper we study exhaustivity and the properties of semivari-
ation for set multifunctions taking values in the family of non-void,
closed subsets of a real normed space, endowed with the Hausdorff
pseudometric h. Several results concerning fuzzy set multifunctions
are also obtained and an extension theorem by preserving the prop-
erties (exhaustivity, autocontinuity and increasing convergence) is es-
tablished for monotone set multifunctions taking values in the family
of non-void, closed, bounded subsets of a Banach space.

Let T be an abstract, nonvoid set, C a ring of subsets of T , X a real
normed space, P0(X) the family of all nonvoid subsets of X,Pf (X)
the family of all nonvoid, closed subsets of X, Pbf (X) the family
of all nonvoid, closed, bounded subsets of X and h the Hausdorff
pseudometric on Pf (X), which becomes a metric on Pbf (X).

It is known that h(M,N) = max{e(M,N), e(N,M)}, where
e(M, N) = sup

x∈M
d(x,N), for every M, N ∈ Pf (X) and

d(x,N) is the distance from x to N induced by the norm of X.
We denote |M | = h(M, {0}), for every M ∈ Pf (X), where 0 is

the origin of X. If X is complete, then the same is Pbf (X) (see [11],
Theorem 1.6).

On P0(X) we introduce the Minkowski addition ”
•
+ ”, defined by:

M
•
+ N = M + N, for every M,N ∈ P0(X),

where M + N = {x + y; x ∈ M, y ∈ N} and M + N is the closure of
M + N with respect to the topology induced by the norm of X.

First, we recall the following classical notions:

Definition 1.1. Let m : C → R+ be a set function. m is said to
be:
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I) exhaustive if lim
n→∞

m(An) = 0, for every pairwise disjoint sequence

of sets (An)n∈N∗ ⊂ C.
II) increasing convergent if lim

n→∞
m(An) = m(A), for every increasing

sequence of sets (An)n∈N∗ ⊂ C, with An ↗ A (that is, An ⊂ An+1, for

every n ∈ N∗) and
∞∪

n=1
An ∈ C.

III) decreasing convergent if lim
n→∞

m(An) = m(A), for every decreas-

ing sequence of sets (An)n∈N∗ ⊂ C, with An ↘ A (that is, An ⊃ An+1,

for every n ∈ N∗) and
∞∩

n=1
An ∈ C.

IV) monotone if m(A) ≤ m(B), for every A,B ∈ C, with A ⊆ B.
V) fuzzy if m(∅) = 0 and m is monotone, increasing convergent and

decreasing convergent.
VI) a submeasure (in the sense of Drewnowski [3]) if m(∅) = 0, m

is monotone and subadditive, that is, m(A ∪ B) ≤ m(A) + m(B), for
every A,B ∈ C, with A ∩B = ∅.

VII) uniformly autocontinuous if for every ε > 0, there is δ(ε) > 0 so
that for every A,B ∈ C, with m(B) < δ, we have m(A∪B) < m(A)+ε.

We shall need the following notions in the set valued case:

Definition 1.2. Let µ : C → Pf (X) be a set multifunction, with
µ(∅) = {0}.

I) We call the total variation of µ, the real extended valued set
function µ defined by:

µ(A) = sup{
n∑

i=1

|µ(Ai)|}, for every A ⊂ T,

where supremum is extended over all finite families (Ai)i=1,n of pair-
wise disjoint subsets of C, contained in A.

II) We say that µ is of finite variation if µ(A) < ∞, for every A ⊂ T.
III) We call the semivariation of µ, the real extended valued set

function µ̂ defined by:

µ̂(A) = sup{|µ(B)|; B ⊂ A, B ∈ C}, for every A ⊂ T.

By |µ| we mean the real extended valued set function defined by
|µ|(A) = |µ(A)|, for every A ∈ C.

Definition 1.3. A set multifunction µ : C → Pf (X) is said to be:
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I) a multisubmeasure ([5], [6]) if
a) µ(∅) = {0},
b) µ is monotone (ie. µ(A) ⊆ µ(B), for every A,B ∈ C, with A ⊆ B)

and

c) µ is subadditive (ie. µ(A∪B) ⊆ µ(A)
•
+µ(B), for every A,B ∈ C,

with A ∩B = ∅)
(or, equivalently, for every A,B ∈ C);

II) a multimeasure if µ(A ∪B) = µ(A)
•
+ µ(B), for every A,B ∈ C,

with A ∩B = ∅.

Definition 1.4. Let µ : C → Pf (X) be a set multifunction. µ is
said to be:

I) increasing convergent (with respect to h) if lim
n→∞

h(µ(An), µ(A)) =

0, for every increasing sequence of sets (An)n∈N∗ ⊂ C, with An ↗ A ∈
C.

II) decreasing convergent (with respect to h) if
lim

n→∞
h(µ(An), µ(A)) = 0, for every decreasing sequence of sets

(An)n∈N∗ ⊂ C, with An ↘ A ∈ C.
III) fuzzy if it is monotone, increasing convergent, decreasing con-

vergent and µ(∅) = {0}.
IV) exhaustive (with respect to h) if lim

n→∞
|µ(An)| = 0, for every

pairwise disjoint sequence of sets (An)n∈N∗ ⊂ C.
V) uniformly autocontinuous if for every ε > 0, there is δ(ε) > 0 so

that for every A,B ∈ C, with |µ(B)| < δ, we have h(µ(A∪B), µ(A)) <
ε.

VI) o-continuous (with respect to h) if lim
n→∞

|µ(An)| = 0, for every

sequence of sets (An)n∈N∗ ⊂ C, with An ↘ ∅.
VII) h−σ-subadditive if |µ(

∞∪
n=1

An)| ≤
∞∑

n=1

|µ(An)|, for every pairwise

disjoint sequence of sets (An)n∈N∗ ⊂ C, with
∞∪

n=1
An ∈ C.

Remark 1.5. i) If µ is a multisubmeasure, then µ is uniformly
autocontinuous. Indeed, if A, B ∈ C, then e(µ(A), µ(A ∪ B)) = 0 and
e(µ(A ∪B), µ(A)) ≤ |µ(B)|, hence the statement follows.

There are uniformly autocontinuous set multifunctions, which are
not multisubmeasures:
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Let C = P(N) and µ : C → Pf (R), defined for every A ⊂ N by

µ(A) =

{ {0}, if A is finite
[1,∞), if A is countable infinite.

Then µ is uniformly autocontinuous and it is not a multisubmeasure.

ii) If µ is uniformly autocontinuous, then for every ε > 0, there
exists δ(ε) > 0 so that for every A,B ∈ C, with |µ(A∆B)| < δ, we
have h(µ(A), µ(B)) < ε.

Indeed, by the uniformly autocontinuity of µ, we get that for ev-
ery ε > 0, there exists δ(ε) > 0 so that for every A,B ∈ C, with
|µ(A∆B)| < δ, we have h(µ(A), µ(A∪(A∆B))) = h(µ(A), µ(A∪B)) <
ε
2
. Analogously, h(µ(B), µ(A ∪ B)) < ε

2
. This yields h(µ(A), µ(B)) <

ε, as claimed.

iii) Definitions 1.4 I)-VII) generalize the classical ones mentioned
in Definition 1.1. Indeed, one can easily check that, if m : C → R+

is a set function and µ : C → Pf (R) is defined by µ(A) = [0, m(A)],
for every A ∈ C, then µ is fuzzy (respectively, increasing convergent,
decreasing convergent, exhaustive, o-continuous, monotone uniformly
autocontinuous) if and only if the same is m. So, in this direction, our
definitions generalize those well-known from the classical case.

Also, we observe that if m : C → R+ is a set function and
µ : C → Pf (R) is defined by µ(A) = {m(A)}, for every A ∈ C,
then µ is increasing convergent, decreasing convergent, exhaustive,
o-continuous if and only if the same is m. Let us note that the mono-
tonicity of µ implies that µ(A) = {0}, for every A ∈ C.

The statements follow since |µ(A)| = m(A), for every A ∈ C and
h([0, a], [0, b]) = |a− b|, for every a, b ∈ R+.

iv) If C is finite, then any set multifunction, with µ(∅) = {0}
is increasing convergent, decreasing convergent, exhaustive and o-
continuous.

v) If µ : C → Pf (X) is a multisubmeasure, then |µ| is a submeasure
in the sense of Drewnowski [3], µ is finitely additive on C and µ(A) ≥
|µ(A)|, for every A ∈ C.

For the special case of uniformly autocontinuous set multifunctions,
there are some immediate implications among increasing convergence,
o-continuity and decreasing convergence:
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Theorem 1.6. Let µ : C → Pf (X) be an uniformly autocontinuous
set multifunction, with µ(∅) = {0}. Then:

i) If µ is o-continuous, then µ is increasing convergent;
ii) µ is o-continuous if and only if it is decreasing convergent.
iii) If µ is monotone, then µ is o-continuous if and only if it is

fuzzy.

Proof. i) Let (An)n∈N∗ ⊂ C, with An ↗ A ∈ C. Then A\An ↘ ∅,
so, by the o-continuity of µ, lim

n→∞
|µ( A∆An)| = lim

n→∞
|µ( A\An)| =

0. According to Remark 1.5 ii), lim
n→∞

h(µ(A), µ(An)) = 0, so µ is

increasing convergent.
ii) The if part follows as in i).
The only if part is an immediate consequence of definitions.
iii) The statement easily follows by definitions, i) and ii).

2. Exhaustive fuzzy and non-fuzzy set multifunctions

In this section we establish different results concerning exhaustive
set multifunctions. We also generalize several known results from
single-valued fuzzy measures theory.

Theorem 2.1. Let µ : C → Pf (X) be a set multifunction, with
µ(∅) = {0}. Then:

i) µ is exhaustive if and only if every monotone sequence of sets
(An)n∈N∗ ⊂ C is Cauchy with respect to µ, that is, lim

n→∞
m→∞

|µ(An∆Am)| =

0.
ii) If µ is exhaustive and uniformly autocontinuous, then

lim
n→∞
m→∞

h(µ(An), µ(Am)) = 0.

Proof. i) For the if part, suppose without any loss of generality
that (An)n∈N is increasing. Let us suppose, by the contrary, that it is
not a Cauchy one. Then there exist ε0 > 0 and an increasing sequence
(nk)k ⊂ N∗ so that |µ(Ank

∆Ank+1
)| ≥ ε0, for every k ∈ N∗.

Let Bnk
= Ank+1

\Ank
, for every k ∈ N∗. Then

|µ(Bnk
)| = |µ(Ank

∆Ank+1
)| ≥ ε0, for every k ∈ N∗,

which is false because Bnk
are all pairwise disjoint and µ is exhaustive.
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For the only if part, let (An)n∈N∗ ⊂ C be pairwise disjoint and con-

sider Bn =
n∪

i=1
Ai, for every n ∈ N∗. Then (Bn)n∈N∗ ⊂ C is increasing,

so

lim
n→∞

|µ(An)| = lim
n→∞

|µ(Bn+1\Bn)| = lim
n→∞

|µ(Bn+1∆Bn)| = 0,

as claimed.
ii) The conclusion immediately follows according to Remark 1.5 ii).

By Remark 1.5 iii), Theorem 2.1 i) generalizes Proposition 1 of [12].

In what follows, we generalize Proposition 3 of [13]. Note that this
proposition also appears in a different form in [17], Proposition 2.1.

Theorem 2.2. If µ : C → Pf (X) is an exhaustive increasing
convergent set multifunction, then µ is o-continuous.

Proof. Suppose, by the contrary, that there exist ε0 > 0 and
(An)n∈N∗ ⊂ C, with An ↘ ∅ and |µ(An)| > ε0, for every n ∈ N∗. Since
for every k ∈ N∗ arbitrary, but fixed, Ak\An ↗ Ak and µ is increasing
convergent, then lim

n→∞
h(µ(A1\An), µ(A1)) = 0. Also, |µ(A1)| > ε0.

Since h(M, N) ≥ ||M | − |N ||, for every M, N ∈ Pf (X), then

h(µ(A1\An), µ(A1)) ≥ ||µ(A1)| − |µ(A1\An)||, for every n ∈ N∗,
hence

lim
n→∞

|µ(A1\An)| ≥ |µ(A1)| > ε0.

Then there is n1 ∈ N∗ so that |µ(A1\An1)| > ε0.
The same as before, there exists n2 > n1 such that |µ(An1\An2)| >

ε0. Continuing this way, we find an increasing sequence (nk)k ⊂ N∗ so
that |µ(Ank

\Ank+1
)| > ε0, a contradiction, because µ is exhaustive.

A converse of the above theorem is valid for monotone set multi-
functions:

Theorem 2.3. Let C be a σ-ring and µ : C → Pf (X) an o-
continuous monotone set multifunction. Then µ is exhaustive.

Proof. Let (An)n∈N∗ ⊂ C be pairwise disjoint and consider Bn =
∞∪

k=n
Ak, for every n ∈ N∗. Then (Bn)n∈N∗ ⊂ C and Bn ↘ ∅, so, by the
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o-continuity of µ, lim
n→∞

|µ(Bn)| = 0. Since An ⊂ Bn, for every n ∈ N∗,
then lim

n→∞
|µ(An)| = 0, so µ is exhaustive.

Note that a theorem of this type appears in fuzzy measures theory
in different forms: Proposition 3 of [12], Proposition 1 of [13] (cited as
Proposition 2 of [19]). It is also known for submeasures (see [3]).

Corollary 2.4. Let C be a σ-ring and µ : C → Pf (X) a monotone
increasing convergent set multifunction. Then µ is exhaustive if and
only if it is o-continuous.

In what follows, we give some sufficient conditions for the exhaus-
tivity of a set multifunction:

Theorem 2.5. Let µ : C → Pf (X) be a set multifunction.
i) If µ is h-σ-subadditive and of finite variation, then µ is exhaus-

tive.
ii) If C is the σ-ring generated by a δ-ring C1 and if µ is an in-

creasing convergent multisubmeasure of finite variation, then µ is ex-
haustive.

Proof. i) Let (An)n∈N∗ ⊂ C be pairwise disjoint. By the definition of
h-σ-subadditivity, since µ is of finite variation, then lim

n→∞
|µ(An)| = 0,

so µ is exhaustive.
ii) It is suficient to prove that µ is h-σ-subadditive. Let ε > 0 and

(An)n ⊂ C pairwise disjoint so that A =
∞∪

n=1
An ∈ C.

Since (An)n ⊂ C and C is the σ-ring generated by a δ-ring C1, then
for every n ∈ N∗ there exists (Bn

k )k ⊂ C1 so that Bn
k ↗ An. So,

An =
∞∪

k=1
Bn

k , for every n ∈ N∗.
Denote Ck =

∞∪
n=1

Bn
k , for every k ∈ N∗. Obviously, (Ck)k ⊂ C and

Ck ↗ A, so there is k0(ε) ∈ N∗ such that h(µ(Ck), µ(A)) < ε
2
, for

every k ≥ k0.

Because
n∪

i=1
Bi

k0
↗ Ck0 and µ is increasing convergent, there exists

n0(ε) ∈ N∗ so that h(µ(Ck0), µ(
n∪

i=1
Bi

k0
)) < ε

2
, for every n ≥ n0.
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On the other hand, for every n ≥ n0,

|µ(
n∪

i=1
Bi

k0
)| ≤

n∑
i=1

|µ(Bi
k0

)| ≤
∞∑

n=1

|µ(Bn
k0

)| ≤
∞∑

n=1

|µ(An)|.

Then, for every n ≥ n0,

|µ(Ck0)| ≤ h(µ(Ck0), µ(
n∪

i=1
Bi

k0
)) + |µ(

n∪
i=1

Bi
k0

)| < ε

2
+

∞∑
n=1

|µ(An)|.

Consequently,

|µ(A)| ≤ h(µ(Ck0), µ(A)) + |µ(Ck0)| <
∞∑

n=1

|µ(An)|+ ε,

for every ε > 0, so |µ(A)| ≤
∞∑

n=1

|µ(An)|. By i), the conclusion follows.

We note that, generally, not even for a multisubmeasure, exhaus-
tivity does not imply increasing convergence and the converse is also
not valid, as we observe from the following examples:

Example 2.6. I) There are increasing convergent multisubmea-
sures which are not exhaustive:

I) Let C ={A ⊂ R, A is finite} be a ring of subsets of T = R and
m : C → R+ be the set function defined for every A ∈ C by:

m(A) =

{
0, A = ∅
1 + cardA, A 6= ∅, A ⊂ R, A finite

(where card A represents the number of elements of A).
One can easily check that the multisubmeasure µ : C → Pf (R),

defined by µ(A) = [0,m(A)], for every A ∈ C is o-continuous, hence
increasing convergent, but it is not exhaustive.

II) There are exhaustive multisubmeasures which are not increasing
convergent:

Let C be the algebra {A ⊂ T , A is finite or cA is finite} of subsets of
an infinite, countable set T and the multisubmeasure µ : C → Pf (R),
defined for every A ∈ C by:

µ(A) =

{
{0}, A is finite

{0, 1}, cA is finite
.
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Then µ is exhaustive but it is not increasing convergent. Indeed, let
be the sequence of sets (An)n∈N∗ ⊂ C, defined by An = {x1, x2, . . . , xn},
for every n ∈ N∗. Obviously, An ↗ T = {x1, x2, . . . , xn, . . .} ∈
C, µ(An) = {0}, for every n ∈ N∗ and µ(T ) = {0, 1}, hence
lim

n→∞
h(µ(An), µ(T )) = |{0, 1}| = 1 6= 0, so µ is not increasing

convergent.
Now, we prove that µ is exhaustive. Let (Bn)n∈N∗ ⊂ C pairwise

disjoint. Since cBn ∪ cBm = T , for every m 6= n, then there can exist
only one set, for instance Bn0 ∈ C so that cBn0 is finite. Then Bn is
finite for every n > n0, so lim

n→∞
|µ(Bn)| = 0.

3. The semivariation of set multifunctions

In this section we study if the semivariation µ̂ of a set multifunc-
tion µ preserves the properties of µ. Also, an extension theorem by
preserving the properties (autocontinuity, exhaustivity and increasing
convergence) for monotone set multifunctions from a δ-ring to the gen-
erated σ-ring is established. Note that different types of extensions in
fuzzy measures theory were studied by Denneberg [2], Murofushi [15],
Pap [16], Wang and Klir [18] etc.

Let µ : C → Pf (X) be an arbitrary set multifunction.

Remark 3.1. i) µ̂ is monotone on P(T ).
ii) If µ is a multisubmeasure, one can easily check that µ̂ is a sub-

measure on C in the sense of Drewnowski [3]. Also, in this case
µ̂(A) ≤ µ̂(A\B) + µ̂(B), for every A ⊂ T and every B ∈ C, with
B ⊂ A.

In what follows, let be σ(C), the σ-ring generated by a ring C and
Cσ = {A ⊂ T ; there exists an increasing sequence of sets (An)n∈N∗ ⊂ C
with A =

∞⋃
n=1

An}.
It is easy to verify that C ⊂ Cσ, (Cσ)σ = Cσ and if C is a δ-ring, then

Cσ = σ(C).

First, we establish a result concerning the semivariation of increas-
ing convergent set multifunctions:
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Theorem 3.2. Let C be a δ-ring and µ : C → Pf (X) a set multi-
function. Then:

i) If µ is increasing convergent, then µ̂ is also increasing convergent
on Cσ;

ii) If µ is monotone, increasing convergent and uniformly autocon-
tinuous, then the same is µ̂ on Cσ;

iii) If, moreover, µ is a multisubmeasure, then µ̂ is a submeasure
on Cσ.

Proof. i) Let ε > 0 and (An)n∈N∗ ⊂ Cσ be an increasing sequence

of sets. Then A =
∞∪

n=1
An ∈ Cσ. Since (An)n∈N∗ ⊂ Cσ, then for every

n ∈ N∗, there exists an increasing sequence of sets (Bn
k )k ⊂ C so that

Bn
k ↗ An.

Consider Cn = ∪
i,k≤n

Bi
k, for every n ∈ N∗. Then Cn ∈ C, Cn ⊂ An

for every n ∈ N∗ and Cn ↗ A.
Let B ∈ C, with B ⊂ A. Because (Cn ∩ B)n ⊂ C, Cn ∩ B ↗ B and

µ is increasing convergent, there exists n0(ε) ∈ N∗ such that

h(µ(B), µ(Cn ∩B)) < ε, for every n ≥ n0.

Consequently,

|µ(B)| ≤ h(µ(B), µ(Cn∩B))+|µ(Cn∩B)| < ε+|µ(Cn∩B)| ≤ ε+µ̂(An),

which yields µ̂(A) ≤ ε + µ̂(An), for every n ≥ n0.
Since µ̂(An) ≤ µ̂(A), for every n ∈ N∗, then lim

n→∞
µ̂(An) = µ̂(A),

that is, µ̂ is increasing convergent on Cσ.
ii) Let ε > 0 and A ∈ Cσ. There is an increasing sequence

(An)n∈N∗ ⊂ C so that A =
∞∪

n=1
An. Since µ is uniformly autocon-

tinous, then for every n ∈ N∗ there is δ(ε) > 0 so that for every
C ∈ C, with |µ(C)| < δ, we have h(µ(An), µ(An ∪ C)) < ε

2
. Let

B ∈ Cσ, with µ̂(B) < δ. There is an increasing sequence (Bk)k∈N∗ ⊂ C
so that B =

∞∪
k=1

Bk. Obviously, |µ(Bk)| < δ, for every k ∈ N∗, so,

h(µ(An), µ(An ∪Bk)) < ε
2
, for every n ∈ N∗ and every k ∈ N∗. Then

|µ(An ∪Bk)| ≤ h(µ(An), µ(An ∪Bk)) + |µ(An| < ε

2
+ µ̂(A),

for every n ∈ N∗ and every k ∈ N∗, which, particularly, implies |µ(An∪
Bn)| < ε

2
+ µ̂(A), for every n ∈ N∗. By the increasing convergence of
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µ̂ on Cσ, there exists n0 ∈ N∗ so that µ̂(A ∪ B) < |µ(An ∪ Bn)| + ε
2
,

for every n ≥ n0. Then µ̂(A ∪ B) < ε + µ̂(A), that is, µ̂ is uniformly
autocontinuous on Cσ.

iii) Suppose µ is a multisubmeasure. Obviously, µ̂(∅) = 0 and µ̂ is
monotone on Cσ.

In order to prove that µ̂ is finitely subadditive on Cσ, we demonstrate

that, moreover, µ̂ is σ-subadditive on Cσ, that is, µ̂(A) ≤
∞∑

n=1

µ̂(An),

for every pairwise disjoint sequence of sets (An)n∈N∗ ⊂ Cσ, with A =
∞∪

n=1
An. Indeed, let (An)n∈N∗ ⊂ Cσ and A =

∞∪
n=1

An. Then A ∈ Cσ.

On the other hand, for every n ∈ N∗, there exists an increasing

sequence (Bn
k )k ⊂ C so that An =

∞∪
k=1

Bn
k . If Ck =

∞∪
n=1

Bn
k , for every

k ∈ N∗, then Ck ∈ Cσ, for every k ∈ N∗ and Ck ↗ A.
Since µ̂ is a submeasure on C, we get that

µ̂(
n∪

i=1
Bi

k) ≤
n∑

i=1

µ̂(Bi
k) ≤

∞∑
n=1

µ̂(Bn
k ) ≤

∞∑
n=1

µ̂(An),

for every n ∈ N∗ and k ∈ N∗.
Because the sequence (

n∪
i=1

Bi
k)n∈N∗ ⊂ C is increasing,

∞∪
i=1

Bi
k = Ck ∈

Cσ and µ̂ is increasing convergent on Cσ, then lim
n→∞

µ̂(
n∪

i=1
Bi

k) = µ̂(Ck).

Consequently, µ̂(Ck) ≤
∞∑

n=1

µ̂(An), for every k ∈ N∗.
On the other hand, µ̂ is increasing convergent on Cσ, (Ck)k ⊂ Cσ

and Ck ↗ A. So, lim
n→∞

µ̂(Ck) = µ̂(A), which yields µ̂(A) ≤
∞∑

n=1

µ̂(An),

as claimed.

Theorem 3.3. Let µ : C → Pf (X ) be a monotone set multifunc-
tion. Then µ is exhaustive on C if and only if µ̂ is exhaustive on
P(T ).

Proof. If µ̂ is exhaustive on P(T ), then µ̂|C = |µ| is also exhaustive
and the same is true for µ on C.

Conversely, let ε > 0 and (An)n∈N∗ ⊂ T be pairwise disjoint.
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By the definition of µ̂, for every n ∈ N∗, there exists Bn ⊂ An,
Bn ∈ C, so that

|µ(Bn)| ≤ µ̂(An) and |µ(Bn)| > µ̂(An)− 1

n
, for every n ∈ N∗.

Because µ is exhaustive and (Bn)n is also pairwise disjoint, then
lim

n→∞
|µ(Bn)| = 0 and by the last inequality we get lim

n→∞
µ̂(An) = 0,

hence µ̂ is exhaustive on P(T ).

Corollary 3.4. If C is a δ-ring and µ : C → Pf (X) is an exhaustive,
fuzzy multisubmeasure on C, then µ̂ is an exhaustive fuzzy submeasure
on Cσ.

Proof. Since µ is a fuzzy multisubmeasure, then it is increasing
convergent, so, by Theorem 3.2, µ̂ is increasing convergent on Cσ. Now,
because µ̂ is also exhaustive by Theorem 3.3, then µ̂ is o-continuous on
Cσ. Consequently, by Remark 3.1, µ̂ is an exhaustive fuzzy submeasure
on Cσ.

Note that µ̂ : Cσ → R+ because of its exhaustivity.

In the sequel, we shall prove that exhaustivity allows for any set A
of T , the approach by a set B of C, with the aid of semivariation.

Theorem 3.5. If µ : C → Pf (X) is an exhaustive set multifunction,
then for every A ⊂ T and every ε > 0, there exists B ∈ C, B ⊂ A, so
that µ̂(A\B) < ε.

Proof. Suppose that, on the contrary, there exist A ⊂ T and ε0 > 0
such that µ̂(A\B) ≥ ε0, for every B ∈ C, with B ⊂ A.

Let B = ∅. Then µ̂(A) ≥ ε0 and, by the definition of µ̂, there is
B1 ∈ C, B1 ⊂ A so that |µ(B1)| > ε0

2
.

Let B = B1. Then µ̂(A\B1) ≥ ε0, which implies the existence of a
set B2 ∈ C, such that B2 ⊂ A\B1 and |µ(B2)| > ε0

2
.

Let B = B1 ∪ B2 ∈ C. Then µ̂(A\(B1 ∪ B2)) ≥ ε0, so there is a set
B3 ∈ C, B3 ⊂ A\(B1 ∪B2) such that |µ(B3)| > ε0

2
.

By induction we obtain a pairwise disjoint sequence of sets
(Bn)n∈N∗ ⊂ C with |µ(Bn)| > ε0

2
, for every n ∈ N∗.

Consequently, lim
n→∞

|µ(Bn)| 6= 0, which is false because µ is exhaus-

tive.
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Corollary 3.6. If µ : C → Pf (X) is an exhaustive multisubmea-
sure, then:

i) µ̂(T ) < ∞;
ii) for every A ⊂ T , there exists B ∈ Cσ, B ⊂ A so that µ̂(A) = µ̂(B)

and µ̂(A\B) = 0;
iii) for every A ⊂ T, there exists an increasing sequence of sets

(Bn)n∈N∗ ⊂ C so that Bn ⊂ A, for every n ∈ N∗ and µ̂(A) =

lim
n→∞

µ̂(Bn) = µ̂(B), where B =
∞∪

n=1
Bn.

Proof. i) Let ε > 0. By Theorem 3.5, there exists for T a subset
B ∈ C, so that µ̂(T\B) < ε. By the definition of µ̂ we get that

µ̂(T ) ≤ µ̂(T\B) + µ̂(B) < ε + µ̂(B) = ε + |µ(B)|.
Because µ is exhaustive, it is also bounded, so there is M > 0 such

that |µ(B)| ≤ M . Consequently, µ̂(T ) < ε + M < ∞.
ii) Let A ⊂ T. Since µ is exhaustive, by Theorem 3.5 we get that for

every n ∈ N∗, there exists Bn ∈ C, Bn ⊂ A such that µ̂(A\Bn) < 1
n
.

Consider B =
∞∪

n=1
Bn. Then B ∈ Cσ, B ⊂ A and

0 ≤ µ̂(A\B) ≤ µ̂(A\Bn) <
1

n
, for every n ∈ N∗,

which implies µ̂(A\B) = 0.
On the other hand,

µ̂(A) ≤ µ̂(A\Bn) + µ̂(Bn), for every n ∈ N∗.
So,

µ̂(A) <
1

n
+ µ̂(B), for every n ∈ N∗,

and, because µ̂(B) ≤ µ̂(A), we finally get µ̂(A) = µ̂(B).
iii) Let A ⊂ T. Because µ is exhaustive, there exists a sequence

(Bn)n∈N∗ ⊂ C, with Bn ⊂ A, for every n ∈ N∗ and lim
n→∞

µ̂(A\Bn) = 0.

Without any loss of generality, we may suppose that (Bn)n∈N∗ is

an increasing one (if not, considering B1
n =

n∪
i=1

Bi, for n ∈ N∗, then

B1
n ⊂ A, (B1

n)n∈N∗ ⊂ C and µ̂(A\B1
n) ≤ µ̂(A\Bn), for every n ∈ N∗,

which implies lim
n→∞

µ̂(A\B1
n) = 0).

Then

µ̂(Bn) ≤ µ̂(A) ≤ µ̂(A\Bn) + µ̂(Bn), for every n ∈ N∗
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and, consequently,

µ̂(A) = lim
n→∞

µ̂(Bn) = lim
n→∞

|µ(Bn)|.
On the other hand, from the proof of ii), it follows µ̂(A) = µ̂(B),

where B =
∞∪

n=1
Bn =

∞∪
n=1

B1
n.

Consequently, lim
n→∞

µ̂(Bn) = µ̂(B). This equality shows that if a

multisubmeasure is exhaustive, then there is a sequence of sets on
which its semivariation is increasing convergent.

The following result shows that, if µ1 and µ2 are two exhaustive
multisubmeasures, then for the equality of µ̂1 and µ̂2 on P(T ), it is
sufficient they are equal on Cσ ⊂ P(T ).

Theorem 3.7. Let µ1, µ2 : C → Pf (X) be two exhaustive multi-
submeasures. If µ̂1 = µ̂2 on Cσ, then µ̂1 = µ̂2 on P(T ).

Proof. Let A ⊂ T be an arbitrary set. Because µ1 is exhaus-
tive, then for every n ∈ N∗, there exists B1

n ∈ C, B1
n ⊂ A such that

µ̂1(A\B1
n) < 1

n
.

Analogously, since µ2 is exhaustive, for every n ∈ N∗, there exists
B2

n ∈ C, B2
n ⊂ A, with µ̂2(A\B2

n) < 1
n
.

Let B1 =
∞∪

n=1
B1

n and B2 =
∞∪

n=1
B2

n. Then B1 ⊂ A,B2 ⊂ A and

B1, B2 ∈ Cσ.
Using the same arguments as in the proof of Corollary 3.6 ii), it also

easily follows that

µ̂1(B1) = µ̂1(A), µ̂1(A\B1) = 0, µ̂2(B2) = µ̂2(A) and µ̂2(A\B2) = 0.

Because A\(B1 ∪B2) ⊂ A\B1 and A\(B1 ∪B2) ⊂ A\B2, then

µ̂1(A\(B1 ∪B2)) = 0 and µ̂2(A\(B1 ∪B2)) = 0.

Let us prove now that µ̂1(A) = µ̂1(B1 ∪B2).
Indeed,

µ̂1(B1 ∪B2) ≤ µ̂1(A) ≤ µ̂1(A\(B1
n ∪B2

n)) + µ̂1(B
1
n ∪B2

n) ≤
≤ µ̂1(A\B1

n) + µ̂1(B1 ∪B2) < 1
n

+ µ̂1(B1 ∪B2),

for every n ∈ N∗, which implies that µ̂1(A) = µ̂1(B1 ∪B2).
Analogously, µ̂2(A) = µ̂2(B1 ∪ B2), and, since µ̂1 = µ̂2 on Cσ and

B1 ∪B2 ∈ Cσ, then µ̂1(A) = µ̂2(A). So, µ̂1 = µ̂2 on P(T ).
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We are now able to prove a theorem concerning the properties of
the extension of µ from C to Cσ.

Theorem 3.8. Let C be a δ-ring, X a Banach space and µ : C →
Pbf (X) an increasing convergent uniformly autocontinuous exhaustive
monotone set multifunction. Then:

i) µ uniquely extends to an increasing convergent uniformly auto-
continuous exhaustive monotone set multifunction µ∗ : Cσ → Pbf (X),
defined by:

µ∗(A) = lim
n→∞

µ(An) (with respect to the Hausdorff metric h),

for every A ∈ Cσ, where (An)n∈N∗ ⊂ C, An ↗ A;

ii) If µ is a multisubmeasure, then:

a) µ∗ is a fuzzy multisubmeasure;
b) |µ| : C → R+ is an increasing convergent, exhaustive submeasure,

which uniquely extends to the increasing convergent, exhaustive sub-
measure |µ∗| : Cσ → R+;

c) |µ∗(A)| = µ̂(A) = µ̂∗(A), for every A ∈ Cσ;
d) µ̂ = µ̂∗ on P(T ).

Proof. i) Let ε > 0 and A ∈ Cσ. There is an increasing sequence

of sets (An)n ⊂ C so that A =
∞∪

n=1
An. We prove that there exists

lim
n→∞

µ(An) (with respect to the Hausdorff metric h).

Indeed, because µ is exhaustive and uniformly autocontinuous, by
Theorem 2.1, we get that lim

n→∞
h(µ(An), µ(Am)) = 0, so (µ(An))n is

a Cauchy, hence a convergent sequence in the complete metric space
Pbf (X).

Denote

µ∗(A) = lim
n→∞

µ(An) (with respect to h), for every A ∈ Cσ.

Obviously, µ∗ : Cσ → Pbf (X).
We prove that the limit does not depend on (An)n, that is, if A ∈ Cσ

and (Am)m and (Bn)n are two increasing sequences of sets such that

A =
∞∪

m=1
An =

∞∪
n=1

Bn and if we denote µ∗1(A) = lim
n→∞

µ(Bn), then

µ∗(A) = µ∗1(A).
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Indeed, because Am ↗ A, there exists m0 ∈ N∗ so that
h(µ(Am), µ∗(A)) < ε

3
, for every m ≥ m0. Particularly,

h(µ(Am0), µ
∗(A)) < ε

3
.

Since Am0 ∩ Bn ↗ Am0 ∩ A = Am0 and µ is increasing convergent,

there exists n1 ∈ N∗ so that h(µ(Am0), µ(Am0 ∩ Bn)) < ε
3
, for every

n ≥ n1.
Also, because Bn ↗ A, there exists n2 ∈ N∗ such that

h(µ∗1(A), µ(Bn)) < ε
3
, for every n ≥ n2.

Consequently, if n3 = max{n1, n2}, then

e(µ∗(A), µ∗1(A)) ≤ e(µ∗(A), µ(Am0))+e(µ(Am0), µ(Am0∩Bn3))+

+e(µ(Am0 ∩Bn3), µ(Bn3)) + e(µ(Bn3), µ
∗
1(A)) ≤

≤ h(µ∗(A), µ(Am0)) + h(µ(Am0), µ(Am0 ∩Bn3))+

+h(µ(Bn3), µ
∗
1(A)) < ε

3
+ ε

3
+ ε

3
= ε.

Analogously, e(µ∗1(A), µ∗(A)) < ε, so µ∗(A) = µ∗1(A), for every A ∈
Cσ.

Note that, evidently, µ∗(∅) = {0} if µ(∅) = {0}.
If A,B ∈ Cσ are so that A ⊂ B, then there are (An)n and (Bn)n in

C, with An ↗ A and Bn ↗ B.
Consequently,

e(µ∗(A), µ∗(B)) ≤ e(µ∗(A), µ(An ∩Bn)) + e(µ(An ∩Bn), µ(Bn))+

+e(µ(Bn), µ∗(B)) ≤ h(µ∗(A), µ(An ∩Bn)) + h(µ(Bn), µ∗(B)).

Since An ∩ Bn ↗ A and Bn ↗ B, by the definition of µ∗ we immedi-
ately get that µ∗(A) ⊆ µ∗(B), so µ∗ is monotone on Cσ.

Now, we prove that µ∗ is increasing convergent. Let be (An)n ⊂ Cσ,

with An ↗ A =
∞∪

n=1
An. Because e(µ∗(An), µ∗(A)) = 0, for every

n ∈ N∗, it is sufficient to prove that for every ε > 0 there is n0 ∈ N∗
so that e(µ∗(A), µ∗(An)) < ε, for every n ≥ n0.

Since An ∈ Cσ, for every n ∈ N∗, there exists an increasing sequence

of sets (An
m)m ⊂ C, with An =

∞∪
m=1

An
m.

Let Cm = A1
m ∪ A2

m ∪ . . . ∪ Am
m. Then (Cm)m is increasing. Indeed,

Cm = A1
m ∪ A2

m ∪ . . . ∪ Am
m ⊂ A1

m+1 ∪ A2
m+1 ∪ . . . ∪ Am+1

m+1 = Cm+1,

because (An
m)m is increasing.
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Moreover, since A1
m ⊂ A1, A

2
m ⊂ A2, ...A

m
m ⊂ Am, we get An

m ⊂
Cm ⊂ Am, for every m ≥ n.

Consequently,

An =
∞∪

m=n
An

m ⊂ ∞∪
m=n

Cm ⊂ ∞∪
m=n

Am =
∞∪

n=1
An, for every n ∈ N∗;

hence,
∞∪

n=1
An =

∞∪
n=1

Cn = A.

On the other hand, because (Cn)n ⊂ C, we have

e(µ∗(A), µ∗(An)) ≤ e(µ∗(A), µ(Cn)) + e(µ(Cn), µ∗(An))

and µ∗(Cn) = µ(Cn), for every n ∈ N∗.
Then there is n0 ∈ N∗ so that

e(µ∗(A), µ∗(An)) ≤ h(µ∗(A), µ(Cn)) + e(µ∗(Cn), µ∗(An)) =

= h(µ∗(A), µ(Cn)) < ε,

for every n ≥ n0.
We prove that µ∗ is exhaustive on Cσ. Indeed, let (An)n ⊂ Cσ be

pairwise disjoint. For every n ∈ N∗, there exists (Ak
n)k ⊂ C such that

Ak
n ↗ An.
Since for every n ∈ N∗, µ∗(An) = lim

k→∞
µ(Ak

n), there is kn
0 ∈ N∗ so

that

|µ∗(An)| ≤ h(µ∗(An), µ(Akn
0

n )) + |µ(Akn
0

n )| < ε

2
+ |µ(Akn

0
n )|.

Because A
kn
0

n ∩ A
km
0

m ⊂ An ∩ Am = ∅, then A
kn
0

n ∩ A
km
0

m = ∅, m 6= n.

Since µ is exhaustive, then lim
n→∞

|µ(A
kn
0

n )| = 0.

Therefore, there is n0 ∈ N∗ such that |µ∗(An)| < ε
2

+ ε
2

= ε, for
every n ≥ n0, hence µ∗ is exhaustive on Cσ.

We prove now that µ∗ is uniformly autocontinuous. Let ε > 0 and
A ∈ Cσ. There is an increasing sequence (An)n ⊂ C, with An ↗ A.
Since µ is uniformly autocontinuous, then for every n ∈ N∗ there
exists δ(ε) > 0 such that for every C ∈ C, with |µ(C)| < δ, we have
h(µ(An ∪ C), µ(An)) < ε

3
. Let B ∈ Cσ, with |µ∗(B)| < δ

2
. There is an

increasing sequence (Bk)k ⊂ C, with Bk ↗ B. By the definition of µ∗,
µ∗(B) = lim

k→∞
µ(Bk), which implies the existence of a k1(ε) ∈ N∗ such

that h(µ∗(B), µ(Bk)) < δ
2
, for every k ≥ k1. Consequently, |µ(Bk)| <

δ, for every k ≥ k1. Then h(µ(An ∪Bk), µ(An)) < ε
3
, for every n ∈ N∗
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and every k ≥ k1. Particularly, h(µ(Ak ∪ Bk), µ(Ak)) < ε
3
, for every

k ≥ k1. On the other hand, we also have h(µ∗(A∪B), µ(Ak∪Bk)) < ε
3

and h(µ(Ak), µ
∗(A)) < ε

3
, for every k ≥ k2. Denote k0 = max{k1, k2}.

Then:
h(µ∗(A ∪B), µ∗(A)) ≤ h(µ∗(A ∪B), µ(Ak0 ∪Bk0)) +
+ h(µ(Ak0 ∪Bk0), µ(Ak0)) + h(µ(Ak0), µ

∗(A)) < ε.
Therefore, µ∗ is uniformly autocontinuous.

Now, we prove that the extension is unique. Suppose, by the con-
trary, that there is another increasing convergent, exhaustive, mono-
tone uniformly autocontinuous set multifunction µ∗1 : Cσ → Pbf (X)
which extends µ. Let be A ∈ Cσ and ε > 0.

There exists an increasing sequence (An)n ⊂ C, with An ↗ A.
Because µ∗ and µ∗1 are both increasing convergent, then there is a

common n0(ε) ∈ N∗ so that

h(µ∗(An), µ∗(A)) <
ε

2
and h(µ∗1(An), µ∗1(A)) <

ε

2
,

for every n ≥ n0.
Then, also,

h(µ∗(An0), µ
∗(A)) <

ε

2
and h(µ∗1(An0), µ

∗
1(A)) <

ε

2
.

Also, since µ(An0) = µ∗(An0) = µ∗1(An0), we get that

h(µ∗(A), µ∗1(A)) ≤ h(µ∗(A), µ(An0)) + h(µ(An0), µ
∗
1(A)) <

<
ε

2
+

ε

2
= ε.

So, h(µ∗(A), µ∗1(A)) < ε, for every ε > 0, hence, finally, µ∗(A) =
µ∗1(A), for every A ∈ Cσ.

ii) a) It is easy to verify that µ∗ is also a multisubmeasure. Accord-
ing to Theorem 1.6 and Theorem 2.2 ii), every exhaustive increasing
convergent multisubmeasure is o-continuous, hence fuzzy.

b) We observe that |µ∗| extends |µ| because |µ∗(A)| = |µ(A)|, for
every A ∈ C. Also, by Theorem 3.2, |µ| and |µ∗| are increasing con-
vergent submeasures on C, respectively, on Cσ.

Obviously, |µ| and |µ∗| are exhaustive on C, respectively, on Cσ, since
the same are µ and µ∗. It only remains to establish the uniqueness. For
this, let ν : Cσ → R+ be another increasing convergent and exhaustive
submeasure on Cσ, which extends |µ|. We prove that ν(A) = |µ∗(A)|,
for every A ∈ Cσ.
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Let ε > 0 and A ∈ Cσ be arbitrarily. There exists an increasing
sequence of sets (An)n∈N∗ ⊂ C, with An ↗ A.

Because ν is increasing convergent on Cσ, there exists n1(ε) ∈ N∗
such that |ν(A)− ν(An)| < ε

2
, for every n ≥ n1.

Analogously, for |µ∗|, there exists n2(ε) ∈ N∗ so that ||µ∗(A)| −
|µ∗(An)|| < ε

2
, for every n ≥ n2.

Then

|ν(A)− ν(An0)| <
ε

2
and ||µ∗(A)| − |µ∗(An0)|| <

ε

2
,

where n0 = max(n1, n2).
So, since An0 ∈ C, we have

|ν(A) −|µ∗(A)|| ≤ |ν(A)− ν(An0)|+ ||µ∗(A)| − |µ∗(An0)||+
+||µ∗(An0)| − ν(An0)| < ε + ||µ∗(An0)| − ν(An0)| = ε.

Consequently, ν(A) = |µ∗(A)|, for every A ∈ Cσ.
c) Applying Theorem 3.2 and Theorem 3.3, µ̂ is also an increas-

ing convergent and exhaustive submeasure on Cσ, which extends |µ|.
Consequently,

µ̂(A) = |µ∗(A)| = µ̂∗(A), for every A ∈ Cσ.

d) We use c) and Theorem 3.7.

Concluding remarks. In this paper we study exhaustivity and
the properties of semivariation for Pf (X)-valued set multifunctions,
where Pf (X) is the family of non-void, closed subsets of a real normed
space X. Several results concerning fuzzy set multifunctions are ob-
tained, some of them generalizing known results from single-valued
fuzzy measures theory, and an extension theorem by preserving ex-
haustivity, autocontinuity and increasing convergence is established
for monotone set multifunctions taking values in Pbf (X), the family
of non-void, closed, bounded subsets of a Banach space X.
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[9] Gavriluţ, A., Croitoru, A. - Pseudo-atoms and Darboux property for
fuzzy and non-fuzzy set multifunctions, Fuzzy Sets and Systems Journal,
161 (2010), 2897-2908.

[10] Guo, C., Zhang, D. - On set-valued fuzzy measures, Fuzzy Sets and
Systems 160 (2004), 13-25.

[11] Hu, S., Papageorgiou, N. S. - Handbook of Multivalued Analysis, vol. I,
Kluwer Acad. Publ., Dordrecht, 1997.

[12] Jiang, Q., Suzuki, H., Wang, Z., Klir, J.G. - Exhaustivity and absolute
continuity of fuzzy measures, Fuzzy Sets and Systems, 96 (1998), 231-238.

[13] Jiang, Q., Suzuki, H. - Lebesgue and Saks decompositions of σ-finite
fuzzy measures, Fuzzy Sets and Systems 75 (1995), 373-385.

[14] Jiang, Q., Suzuki, H. - Fuzzy measures on metric spaces, Fuzzy Sets and
Systems 83 (1996), 99-106.

[15] Murofushi, T. - Extensions of (weakly) null-additive, monotone set
functions from rings of subsets to generated algebras, Fuzzy Sets and
Systems 158 (2007), 2422-2428.

[16] Pap, E. - Null-additive Set Functions, Kluwer Academic Publishers, Dor-
drecht, 1995.

[17] Tan, C., Zhang, Q. - Some properties of the variations of non-additive
set functions on T-tribes, Fuzzy Sets and Systems 158 (2007), 2394-2412.

[18] Wang, Z., Klir, G.J. - Fuzzy Measure Theory, Plenum Press, New-York,
1992.

[19] Wu, C., Bo, S. – Pseudo-atoms of fuzzy and non-fuzzy measures, Fuzzy
Sets and Systems, 158 (2007), 1258-1272.



82 A.C.GAVRILUŢ
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