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ON ALMOST λ-CONTINUOUS FUNCTIONS

S. JAFARI, S. P. MOSHOKOA, K. R. NAILANA AND T. NOIRI

Abstract. In the paper we introduce a new class of functions be-
tween topological spaces, namely almost λ-continuous functions and
present some properties for these functions.

1. introduction

Maki [9] introduced the notion of Λ-sets in topological spaces. A
subset A of a topological space (X, τ) is called a Λ-set if it coincides
with its kernel (the intersection of all open supersets of A). In [1],
Arenas et al. introduced the notions of λ-open sets, and λ-closed sets
and presented fundamental results for these sets. The purpose of this
paper is to introduce the notion of an almost λ-continuous function
and investigate some of the properties for this class of functions.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or X and Y) are always
topological spaces on which no separation axioms are assumed unless
explicitly stated. We refer the reader to [[1],[2]] for a basic reference
on λ-open sets.
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Let A be a subset of X. Then A is said to be λ-closed [1] if A =
B ∩ C, where B is a Λ-set and C is a closed set. The complement of
a λ-closed set is called a λ-open set. Let x ∈ X and A be a subset of
X. Then x is said to be a λ-interior point of A if there exists a λ-open
set U containing x such that U ⊂ A. The set of all λ-interior points
of A is called the λ-interior of A and is denoted by Intλ(A) [2]. A
subset A of X is said to be regular open (respectively, regular closed)
if A = Int(Cl(A)) ( respectively, A = Cl(Int(A))). Let x ∈ X. Then
by O(X, x) we denote the set of all open sets in X that contains x.
Furthermore, by λO(X, x) (resp. RO(X, x)), we denote the set of all
λ-open (resp. regular open) sets that contain x. A function f : X → Y
is λ-continuous [1] if f−1(V ) is λ-closed in X for every closed set V in
Y .

Observe that every open set in X is λ-open, but not conversely.
Also every continuous function is λ-continuous but not conversely [1].

3. Main results

We begin with

Definition 3.1. A function f : X → Y is almost λ-continuous
(briefly, a.λ.c.)at x ∈ X if for each V ∈ RO(Y, f(x)), there exists
U ∈ λO(X, x) such that f(U) ⊂ V. If f is almost λ-continuous at
every point of X, then it is called almost λ-continuous.

Note that every regular open set is open, and thus λ-continuity
implies almost λ-continuity. We provide an example of a function
which is almost λ-continuous but not continuous.
Example 3.1 [1]

The classical Dirichelet function f : R → R, where R is the usual
real line with the usual topology:

f(x) =

{
1 if x ∈ Q,
0 otherwise.

This function f is λ-continuous but not continuous.
Example 3.2
Let X = {a, b} with topologies τ = indiscrete topology and σ =
{∅, {b}, X}. Define f : (X, τ) → (X, σ) by f(a) = a and f(b) = b.
This function is almost λ-continuous but it is neither λ-continuous nor
continuous.
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Example 3.3 Let X = {a, b, c} with topologies τ = {∅, {c}, {a, b, c}}
and σ = {∅, {b}, {a, b}, {b, c}, {a, b, c}}. Define f : (X, τ) → (X, σ) by
f(x) = x for every x ∈ X. This function is almost λ-continuous but
it is neither λ-continuous nor continuous.

In fact, we have the following implications:

continuity ⇒ λ-continuity ⇒ almost λ-continuity.

Recall [13] that a subset A of X is δ-open if for each x ∈ A, there
exists a regular open set U such that x ∈ U ⊂ A. The complement of
a δ-open set is said to be δ-closed. The intersection of all δ-closed sets
containing A is called the δ-closure of A and it is denoted by Clδ(A).

The next two results characterize almost λ-continuous functions.

Theorem 3.2. For a function f : X → Y, the following are equivalent:
(a) f is a.λ.c.;
(b) for each x ∈ X and each open set V containing f(x), there exists

λ-open set U containing x such that f(U) ⊂ Int(Cl(V ));
(c) f−1(F ) is λ-closed in X for every regular closed set F in Y ;
(d) f−1(V ) is λ-open in X for every regular open set V in Y.

Proof. The proof is obvious and thus omitted.

Theorem 3.3. For a function f : (X, τ) → (Y, σ), the following are
equivalent:

(a) f is a.λ.c.;
(b) f(Clλ(A)) ⊂ Clδ(f(A)) for every subset A of X;
(c) Clλ(f

−1(B)) ⊂ f−1(Clδ(B)) for every subset B of Y ;
(d) f−1(F ) is λ-closed in X for every δ-closed set F of Y ;
(e) f−1(V ) is λ-open in X for ever δ-open set V of Y.

Proof. (a) ⇒ (b). Let A be a subset of X. Since Clδ(f(A)) is δ-closed
in Y , it is denoted by ∩{Fα : α ∈ ∇}, where Fα is regular closed in
Y . The set f−1(Clδ(f(A))) is λ-closed (Theorem 3.2) and contains
A, also f−1(Clδ(f(A))) = ∩{f−1(Fα) : α ∈ ∇}. Hence Clλδ(A) ⊂
f−1(Clδ(f(A))). Therefore we obtain f(Clλ(A)) ⊂ Clδ(f(A)).

(b) ⇒ (c) Let B be a subset of Y. We have f(Clλ(f
−1(B))) ⊂

Clδ(f(f−1(B))) ⊂ Clδ(B) and hence Clλ(f
−1(B)) ⊂ f−1(Clδ(B)).

(c) ⇒ (d) Let F be any δ-closed set of Y . We have Clλ(f
−1(F )) ⊂

f−1(Clδ(F )) = f−1(F ) and hence f−1(F ) is λ-closed in X.
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(d) ⇒ (e) Let V be any δ-open set of Y . Then Y − V is δ-closed.
We have f−1(Y − V ) = X − f−1(V ) is δ-closed in X. Hence f−1(V )
is δ-open in X.

(e) ⇒ (a) Let V be any regular open set in Y . Since V is δ-open
in Y , we have f−1(V ) is λ-open in X and hence by Theorem 3.2 f is
a.λ.c.

Theorem 3.4. Let f : (X, τ) → (Y, σ) be a function and g : (X, τ) →
(X×Y, τ ×σ) the graph function defined by g(x) = (x, f(x)) for every
x ∈ X. If g is a.λ.c., then f is a.λ.c.

Proof. Let x ∈ X and V ∈ RO(Y, f(x)). Then g(x) = (x, f(x)) ∈
X × V . Observe that X × V ∈ RO(X × Y, τ × σ). If g is a.λ.c., then
there exists U ∈ λO(X, x) such that g(U) ⊂ X × V . It follows that
f(U) ⊂ V , hence f is a.λ.c.

We recall that the space X is called a λ-space [1] if the set of all λ-
open subsets form a topology on X. Clearly a space X is a λ- space if
and only if the intersection of two λ-open sets is λ-open. An example
of a λ-space is a T 1

2
-space, where a space X is called T 1

2
[5] if every

singleton is open or closed .

Theorem 3.5. Let f : (X, τ) → (Y, σ) be a function and g : (X, τ) →
(X×Y, τ ×σ) the graph function defined by g(x) = (x, f(x)) for every
x ∈ X. If X is a λ-space, then g is a.λ.c. if and only if f is a.λ.c..

Proof. We only prove the sufficiency. Let x ∈ X and W ∈ RO(X ×
Y, g(x)). Then there exist regular open sets U1 and V in X and Y,
respectively such that U1×V ⊂ W. If f is a.λ.c., then there exists a λ-
open set U2 in X such that x ∈ U2 and f(U2) ⊂ V . Put U = (U1∩U2).
Then U is λ-open and g(U) ⊂ U1 × V ⊂ W. Thus g is a.λ.c. This
together with the proof of Theorem 3.4 completes our proof.
Example 3.2 Let X be the set of non-negative integers with the
topology τ whose open sets are those that contain 0 and have a finite
complement. Let Y be the set of non-negative reals with the usual
topology which we denote by σ. Then X is a λ-space [2]. If the function
f : X → Y is a.λ.c., then the graph function g : (X, τ) → (X×Y, τ×σ)
is a.λ.c. In particular Theorem 3.5 holds.

Definition 3.6. A function f : X → Y is pre − λ-open if the image
of each λ-open set is λ-open.
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Definition 3.7. A function f : X → Y is weakly λ-continuous (
briefly, w.λ.c.) [3] if and only if for each point x ∈ X and every
V ∈ O(Y, f(x)) there exists U ∈ λO(X, x) such that f(U) ⊂ Cl(V ).

Observe that a.λ.c. implies w.λ.c. In fact, from Theorem 3.2 we have
the following: λ-continuity implies almost λ-continuity and almost λ-
continuity implies weak λ-continuity.

Definition 3.8. A function f : X → Y is called almost λ-open if the
image of a λ-open set is open in Y .

Proof. If f : X → Y is almost λ-open and w.λ.c, then f is a.λ.c.

Definition 3.9. [13] Let F be a filter base. Then F is said to δ-
converge to x ∈ X if for every open set U containing x, there exists
B in F such that B ⊂ Int(Cl(U)).

Definition 3.10. Let F be a filter base. Then F is said to λ-converge
to a point x ∈ X if for any U ∈ λO(X, x) there exists B in F such
that B ⊂ U .

Theorem 3.11. If a function f : X → Y is a.λ.c., then for each point
x ∈ X and each filter base F in X that λ-converges to x, the filter
f(F) is δ-convergent to f(x).

Proof. Suppose that x ∈ X and a filter base F in X that λ-converges
to x. Suppose that f is a.λ.c. Then for each V ∈ RO(Y, f(x)) there
exists U ∈ λO(X, x) such that f(U) ⊂ V . Then there exists B ⊂ F
such that B ⊂ U , hence f(B) ⊂ f(U). It follows that f(B) ⊂ V. This
shows that f(F) is δ-convergent to f(x).

For a space (Y, σ) we denote by σs the semiregular topology of σ
generated by regular open sets of (Y, σ). For ease of notation we simply
denote the semiregularization of (Y, σ) by Ys.

Corollary 3.12. Let X be a space such that every λ-open set is open
and a function f : X → Y be a.λ.c. Then for each point x ∈ X and
each filter base F in X we have F is λ-converging to x, if and only if
the filter f(F) is δ-convergent to f(x).

Corollary 3.13. Let X be a space such that every λ-open set is open.
Then a function f : X → Y is a.λ.c if and only if f : X → Ys is
continuous.
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Observe that generally O(X) ⊂ λO(X). Thus f : X → Y is a.λ.c.
if and only if f is almost continuous in the sense of Singal, whenever
every λ-open set of X is open. Now let f, g : X → Y be functions. If
X is such that every λ-open set is open, Y is Hausdorff and f and g
are a.λ.c functions, then the set E = {x ∈ X : f(x) = g(x)} is closed
in X. This is indeed Theorem 4 in [8].

Definition 3.14. [2] A space X is said to be λ− T2 if for every pair
of distinct points x and y in X there exist disjoint λ-open sets U and
V such that x ∈ U and y ∈ V.

Observe that λ− T2 is equivalent with T0 (see [7]).

Theorem 3.15. If a function f : X → Y is an a.λ.c. injection and
Y is Hausdorff, then X is λ− T2.

Proof. Suppose that f is an almost λ-continuous injection. Note that
Ys is Hausdorff. Let x and y be distinct points in X, then f(x) 6=
f(y). Hence there exist disjoint open sets V and W of Ys such that
f(x) ∈ V and f(y) ∈ W. Therefore we obtain f−1(V ) ∈ λO(X, x),
f−1(W ) ∈ λO(X, y) and f−1(V ) ∩ f−1(W ) = ∅.
Definition 3.16. For a function f : X → Y , the graph G(f) =
{(x, f(x)) : x ∈ X} is said to be strongly almost λ-closed if for each
(x, y) ∈ X × Y − G(f), there exist U ∈ λO(X, x) and V ∈ RO(Y, y)
such that (U × V ) ∩G(f) = ∅.
Theorem 3.17. A function f : X → Y has the strongly almost λ-
closed graph if and only if for each x ∈ X and y ∈ Y such that
f(x) 6= y, there exist U ∈ λO(X, x) and V ∈ RO(Y, y) such that
f(U) ∩ V = ∅.
Proof. It is an immediate consequence of the above definition.

Definition 3.18. A space X is called λ-compact [2] if every cover of
X by λ-open sets has a finite subcover.

It should be mentioned that λ-compact is called λO-compact in [6].

Definition 3.19. Let A be a subset of X, then we say that A is λ-
compact relative to X if every cover of A by λ-open sets of X has a
finite subcover.

Let A be a subset of X, we say that A is N -closed relative to X
[4] if every cover of A by regular open sets of X has a finite subcover.
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Furthermore, X is called nearly compact [12] if every regular open
cover of X has a finite subcover .

Theorem 3.20. If f : X → Y is a.λ.c. and K is λ-compact relative
to X, then f(K) is N-closed relative to Y.

Proof. Let {Gα : α ∈ ∇} be any cover of f(K) by regular open sets
of Y . Then {f−1(Gα) : α ∈ ∇} is a cover of K by λ-open sets of X.
Hence there exists a finite subset ∇0 of ∇ such that K ⊂ ∪{f−1(Gα) :
α ∈ ∇0}. Therefore, we obtain f(K) ⊂ {Gα : α ∈ ∇0}. This shows
that f(K) is N -closed relative to Y .

Corollary 3.21. If f : X → Y is an a.λ.c. surjection and X is λ-
compact, then Y is nearly compact.

Definition 3.22. [10] A function f : X → Y is said to be δ-
continuous if for each x ∈ X and open set V containing f(x), there
exists an open set U in X containing x such that f(Int(Cl(U))) ⊂
Int(Cl(V )).

Theorem 3.23. If f : X → Y is a.λ.c. and g is δ-continuous, then
g ◦ f : X → Y is a.λ.c.

Proof. The proof is obvious and is omitted.

Theorem 3.24. If f : X → Y is a pre-λ-open surjection and g : Y →
Z is a function such that g ◦ f : X → Z is a.λ.c., then g is a.λ.c.

Proof. Let y ∈ Y and x ∈ X such that f(x) = y. Let G ∈ RO(Z, (g ◦
f)(x)). Then there exists U ∈ λO(X, x) such that g(f(U)) ⊂ G. Since
f is pre-λ-open in Y , we have that g is a.λ.c. at y.

Theorem 3.25. The set of all points x of X at which the function
f : X → Y is not a.λ.c. is identical with the union of the λ-boundaries
of the inverse of regular open subsets of Y containing f(x).

Proof. Suppose that f is not a.λ.c. at x ∈ X, then there exists V ∈
RO(Y, f(x)) such that for every U ∈ λO(X, x), f(U) ∩ (Y − V ) 6= ∅.
This means that for every U ∈ λO(X, x), we must have U ∩ (X −
f−1(V ) 6= ∅. Hence, it follows that x ∈ Clλ(X − f−1(V )). But x ∈
f−1(V ) and hence x ∈ Clλ(f

−1(V )). Thus x ∈ Frλ(f
−1(V )). Suppose

that f is a.λ.c. at x. Then there exists U ∈ λO(X, x) such that
f(U) ⊂ V1. Then , we have: x ∈ U ⊂ f−1(f(U)) ⊂ f−1(V1). This
shows that x is a λ-interior point of f−1(V1). Therefore, we have
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x /∈ Clλ(X − f−1(V1)) and x /∈ Frλ(f
−1(V1)). This is a contradiction.

This means that f is not a.λ.c.
Let A be a subset of X. Then A is said to be H-closed [13] or

quasi-H-closed relative to X [11] if for every cover {Ui : i ∈ ∇} of
A by open sets of X, there exists a finite subset ∇0 of ∇ such that
A ⊂ ∪{Cl(Ui) : i ∈ ∇0}.
Theorem 3.26. If f : X → Y is weakly λ-continuous and K is λ-
compact relative to X, then f(K) is quasi-H-closed relative to Y.

Proof. The proof is similar to that of Theorem 3.20

Lemma 3.27. Let X be λ-compact. If A ⊂ X is λ-closed, then A is
λ-compact relative to X.

Proof. Let {Gα : α ∈ ∇} be a cover of A by λ-open sets of X. Note
that (X − A) is λ-open and that the set (X − A) ∪ {Gα : α ∈ ∇} is
a cover of X by λ-open sets. Since X is λ-compact, the exists a finite
subset ∇0 of ∇ such that the set (X − A) ∪ {Gα : α ∈ ∇0} is a cover
of X by λ-open sets in X. Hence {Gα : α ∈ ∇0} is a finite cover of A
by λ-open sets in X.

Theorem 3.28. Let f : X → Y be an a.λ.c. bijection. If X is λ-
compact and Y is Hausdorff, then f is almost λ-open.

Proof. Suppose that U is a λ-open subset of X. Then X−U is λ-closed.
By Lemma 3.27, X−U is λ-compact relative to X. Therefore f(X−U)
is quasi-H-closed relative to Y . Since Y is Hausdorff, Y − f(U) is
closed in Y . Hence, f(U) is open in Y .
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