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ON ALMOST A-CONTINUOUS FUNCTIONS

S. JAFARI, S. P. MOSHOKOA, K. R. NAILANA AND T. NOIRI

Abstract. In the paper we introduce a new class of functions be-
tween topological spaces, namely almost A-continuous functions and
present some properties for these functions.

1. INTRODUCTION

Maki [9] introduced the notion of A-sets in topological spaces. A
subset A of a topological space (X, 7) is called a A-set if it coincides
with its kernel (the intersection of all open supersets of A). In [1],
Arenas et al. introduced the notions of A-open sets, and A-closed sets
and presented fundamental results for these sets. The purpose of this
paper is to introduce the notion of an almost A-continuous function
and investigate some of the properties for this class of functions.

2. PRELIMINARIES

Throughout this paper, (X,7) and (Y,0) (or X and Y) are always
topological spaces on which no separation axioms are assumed unless
explicitly stated. We refer the reader to [[1],[2]] for a basic reference
on A-open sets.
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Let A be a subset of X. Then A is said to be A-closed [1] if A =
BN C, where B is a A-set and C'is a closed set. The complement of
a A-closed set is called a A-open set. Let z € X and A be a subset of
X. Then z is said to be a A-interior point of A if there exists a A\-open
set U containing x such that U C A. The set of all A-interior points
of A is called the A-interior of A and is denoted by Inty(A) [2]. A
subset A of X is said to be regular open (respectively, regular closed)
if A= Int(CI(A)) ( respectively, A = Cl(Int(A))). Let x € X. Then
by O(X,z) we denote the set of all open sets in X that contains x.
Furthermore, by AO(X,z) (resp. RO(X,z)), we denote the set of all
A-open (resp. regular open) sets that contain z. A function f : X — Y
is A-continuous [1] if f=!(V') is A-closed in X for every closed set V' in
Y.

Observe that every open set in X is A-open, but not conversely.
Also every continuous function is A-continuous but not conversely [1].

3. MAIN RESULTS
We begin with

Definition 3.1. A function f : X — Y is almost \-continuous
(briefly, a.\.c.)at x € X if for each V € RO(Y, f(x)), there exists
U € NO(X,z) such that f(U) C V. If f is almost A-continuous at
every point of X, then it is called almost A-continuous.

Note that every regular open set is open, and thus A-continuity
implies almost A-continuity. We provide an example of a function
which is almost A-continuous but not continuous.

Example 3.1 [1]

The classical Dirichelet function f : R — R, where R is the usual

real line with the usual topology:

1 it xeQ,
flz) = { 0 otherwise.

This function f is A-continuous but not continuous.

Example 3.2

Let X = {a,b} with topologies 7 = indiscrete topology and o =
{0,{b}, X}. Define f : (X,7) — (X,0) by f(a) = a and f(b) = b.
This function is almost A\-continuous but it is neither A-continuous nor
continuous.
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Example 3.3 Let X = {a,b,c} with topologies 7 = {0, {c}, {a, b, c}}
and o = {0, {b}, {a,b},{b,c},{a,b,c}}. Define f: (X,7) — (X,0) by
f(x) = x for every x € X. This function is almost A-continuous but
it is neither A-continuous nor continuous.

In fact, we have the following implications:

continuity = A-continuity = almost A-continuity.

Recall [13] that a subset A of X is d-open if for each x € A, there
exists a regular open set U such that x € U C A. The complement of
a d-open set is said to be d-closed. The intersection of all d-closed sets
containing A is called the J-closure of A and it is denoted by Cls(A).

The next two results characterize almost A-continuous functions.

Theorem 3.2. For a function f : X — Y, the following are equivalent:
(a) fisa.Nc.;
(b) for each x € X and each open set V' containing f(x), there exists
X-open set U containing x such that f(U) C Int(ClL(V));
(¢) f7UEF) is X-closed in X for every reqular closed set F in'Y;
(d) f=Y(V) is A-open in X for every reqular open set V in'Y.

Proof. The proof is obvious and thus omitted. []

Theorem 3.3. For a function f : (X,7) — (Y,0), the following are
equivalent:

(a) fisa.Nc.;

(b) f(CI\(A)) C Cls(f(A)) for every subset A of X;

(c) Clx(f~Y(B)) C f~Y(Cls(B)) for every subset B of Y;

(d) f7Y(F) is A-closed in X for every d-closed set F of Y

(e) f7YV) is A-open in X for ever §-open set V of Y.

Proof. (a) = (b). Let A be a subset of X. Since Cls(f(A)) is d-closed
in Y, it is denoted by N{F, : a € V}, where F, is regular closed in
Y. The set f~1(Cls(f(A))) is A-closed (Theorem 3.2) and contains
A also f71(Cls(f(A))) = N{f Y (F,) : a € V}. Hence Cl\6(A) C
“H(Cls(f(A))). Therefore we obtain f(Cly(A)) C Cl(;(f(A))
( ) = (c) Let B be a subset of Y. We have f(Cl,\( (B))) c
Cls(f(f~(B))) C Cls(B) and hence CL\(f~'(B)) C (Ol(g( ))-
( ) = (d) et F be any 0-closed set of Y. We have Cl(f~Y(F)) C
Y(Cl5(F)) = f~Y(F) and hence f~!(F) is A-closed in X.
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(d) = (e) Let V' be any d-open set of Y. Then Y — V is d-closed.
We have f~1(Y — V) = X — f~1(V) is d-closed in X. Hence f~1(V)
is d-open in X.

(e) = (a) Let V' be any regular open set in Y. Since V is d-open
in Y, we have f~!(V) is Ad-open in X and hence by Theorem 3.2 f is
a..c.

L]

Theorem 3.4. Let f: (X,7) — (Y, 0) be a function and g : (X, 7) —
(X XY, 7 x0) the graph function defined by g(z) = (z, f(x)) for every
x e X. If g isalc., then f is a.\.c.

Proof. Let x € X and V € RO(Y, f(z)). Then g(z) = (z, f(x)) €
X x V. Observe that X x V€ RO(X xY,7 x o). If g is a.\.c., then
there exists U € AO(X, z) such that g(U) C X x V. It follows that
f(U) C V, hence [ is a.\.c.

We recall that the space X is called a A-space [1] if the set of all A-
open subsets form a topology on X. Clearly a space X is a A- space if
and only if the intersection of two A-open sets is A-open. An example
of a A\-space is a T% -space, where a space X is called T% [5] if every

singleton is open or closed .

Theorem 3.5. Let f: (X,7) — (Y, 0) be a function and g : (X,7) —
(X XY, 7 Xx0) the graph function defined by g(x) = (z, f(x)) for every
x € X. If X is a A\-space, then g is a.\.c. if and only if f is a.\.c..

Proof. We only prove the sufficiency. Let x € X and W € RO(X x
Y,g(z)). Then there exist regular open sets U; and V in X and Y,
respectively such that Uy x V' C W. If f is a.\.c., then there exists a A-
open set Uy in X such that x € Uy and f(Us) C V. Put U = (U;NUs).
Then U is A-open and ¢g(U) C Uy x V. .C W. Thus ¢ is a.A.c. This
together with the proof of Theorem 3.4 completes our proof. []
Example 3.2 Let X be the set of non-negative integers with the
topology 7 whose open sets are those that contain 0 and have a finite
complement. Let Y be the set of non-negative reals with the usual
topology which we denote by 0. Then X is a A-space [2]. If the function
f: X — Yisa.\.c., then the graph function g : (X,7) — (X XY, 7x0)
is a.\.c. In particular Theorem 3.5 holds.

Definition 3.6. A function f : X — Y is pre — X-open if the image
of each \-open set is A-open.
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Definition 3.7. A function f : X — Y is weakly \-continuous (

briefly, w.\.c.) [3] if and only if for each point x € X and every
V e O(Y, f(x)) there exists U € NO(X, z) such that f(U) C CI(V).

Observe that a.A.c. implies w.\.c. In fact, from Theorem 3.2 we have
the following: A-continuity implies almost A-continuity and almost \-
continuity implies weak A-continuity.

Definition 3.8. A function f: X — Y is called almost A-open if the
image of a \-open set is open in Y .

Proof. If f: X — Y is almost A\-open and w.\.c, then f is a.A.c. [(J

Definition 3.9. [13] Let F be a filter base. Then F is said to J-
converge to x € X if for every open set U containing x, there exists
B in F such that B C Int(Cl(U)).

Definition 3.10. Let F be a filter base. Then F is said to A-converge
to a point x € X if for any U € NO(X, z) there exists B in F such
that B C U.

Theorem 3.11. If a function f : X — Y isa.\.c., then for each point
x € X and each filter base F in X that A-converges to x, the filter
f(F) is §-convergent to f(x).

Proof. Suppose that x € X and a filter base F in X that A-converges
to x. Suppose that f is a.A.c. Then for each V' € RO(Y, f(z)) there
exists U € AO(X,z) such that f(U) C V. Then there exists B C F
such that B C U, hence f(B) C f(U). It follows that f(B) C V. This
shows that f(F) is d-convergent to f(z).

For a space (Y,0) we denote by o the semiregular topology of o
generated by regular open sets of (Y, o). For ease of notation we simply
denote the semiregularization of (Y, o) by Y.

Corollary 3.12. Let X be a space such that every \-open set is open
and a function f: X — Y be a.\.c. Then for each point x € X and
each filter base F in X we have F is A-converging to x, if and only if
the filter f(F) is d-convergent to f(x).

Corollary 3.13. Let X be a space such that every A-open set is open.
Then a function f : X — Y is a)Xc if and only if f : X — Y, is
continuous.
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Observe that generally O(X) € AO(X). Thus f: X — Y is a.\.c.
if and only if f is almost continuous in the sense of Singal, whenever
every A-open set of X is open. Now let f,g: X — Y be functions. If
X is such that every A-open set is open, Y is Hausdorff and f and ¢
are a.\.c functions, then the set £ = {x € X : f(z) = g(x)} is closed
in X. This is indeed Theorem 4 in [8].

Definition 3.14. [2] A space X is said to be A — Ty if for every pair
of distinct points x and y in X there exist disjoint A-open sets U and
V such that x € U and y € V.

Observe that A\ — T is equivalent with Tj (see [7]).

Theorem 3.15. If a function f : X — Y 1is an a.\.c. injection and
Y is Hausdorff, then X is A\ — Ts.

Proof. Suppose that f is an almost A-continuous injection. Note that
Y, is Hausdorff. Let z and y be distinct points in X, then f(z) #
f(y). Hence there exist disjoint open sets V' and W of Y; such that
f(x) € V and f(y) € W. Therefore we obtain f~1(V) € AO(X, ),
F7YW) € NO(X,y) and f~H(V)N fHW) =0. O

Definition 3.16. For a function f : X — Y, the graph G(f) =
{(z, f(z)) : x € X} is said to be strongly almost \-closed if for each

(x,y) € X XY — G(f), there exist U € N\O(X,z) and V € RO(Y,y)
such that (U x V)NG(f) = 0.

Theorem 3.17. A function f : X — Y has the strongly almost \-
closed graph if and only if for each x € X and y € Y such that
flz) # vy, there exist U € NO(X,z) and V € RO(Y,y) such that
fFo)ynv=0.

Proof. 1t is an immediate consequence of the above definition. [J

Definition 3.18. A space X is called A\-compact 2] if every cover of
X by A-open sets has a finite subcover.

It should be mentioned that A-compact is called AO-compact in [6].

Definition 3.19. Let A be a subset of X, then we say that A is \-
compact relative to X if every cover of A by A-open sets of X has a
finite subcover.

Let A be a subset of X, we say that A is N-closed relative to X
[4] if every cover of A by regular open sets of X has a finite subcover.
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Furthermore, X is called nearly compact [12] if every regular open
cover of X has a finite subcover .

Theorem 3.20. If f : X — Y s a.A.c. and K is A-compact relative
to X, then f(K) is N-closed relative to'Y.

Proof. Let {G, : a € V} be any cover of f(K) by regular open sets
of Y. Then {f~}(G,) : @ € V} is a cover of K by M\-open sets of X.
Hence there exists a finite subset Vg of V such that K C U{f~(G,) :
a € Vo}. Therefore, we obtain f(K) C {G, : @ € Vo}. This shows
that f(K) is N-closed relative to Y. [J

Corollary 3.21. If f : X — Y 1is an a.A.c. surjection and X is \-
compact, then Y s nearly compact.

Definition 3.22. [10] A function f : X — Y s said to be J-
continuous if for each x € X and open set V' containing f(x), there
exists an open set U in X containing x such that f(Int(ClL(U))) C
Int(CL(V)).

Theorem 3.23. If f : X — Y is a.\.c. and g is d-continuous, then
gof: X —Y isalc

Proof. The proof is obvious and is omitted. []

Theorem 3.24. If f : X — Y is a pre-A-open surjection and g : Y —
Z 1is a function such that go f : X — Z is a.\.c., then g is a.\.c.

Proof. Let y € Y and = € X such that f(z) =y. Let G € RO(Z,(g o
f)(z)). Then there exists U € N\O(X, x) such that g(f(U)) C G. Since
f is pre-A-open in Y, we have that ¢ is a.\.c. at y. [J

Theorem 3.25. The set of all points x of X at which the function
f: X =Y isnota.\c. isidentical with the union of the A-boundaries
of the inverse of reqular open subsets of Y containing f(z).

Proof. Suppose that f is not a.\.c. at x € X, then there exists V' €
RO(Y, f(x)) such that for every U € NO(X,x), f(U)N(Y = V) # 0.
This means that for every U € MNO(X,x), we must have U N (X —
F7HV) # 0. Hence, it follows that x € Cl\(X — f~%(V)). But z €
f71(V) and hence x € Cl\(f~*(V)). Thus z € Fry(f~%(V)). Suppose
that f is a.A.c. at x. Then there exists U € AO(X,x) such that
f(U) € Vi. Then , we have: x € U C f~Y(f(U)) € f~%(V1). This
shows that x is a A-interior point of f~(V}). Therefore, we have



100 S. JAFARI, S. P. MOSHOKOA, K. R. NAILANA AND T. NOIRI

r ¢ Cly(X — f~1(V1)) and = ¢ Fry(f~*(V1)). This is a contradiction.
This means that f is not a.\.c. [J

Let A be a subset of X. Then A is said to be H-closed [13] or
quasi-H-closed relative to X [11] if for every cover {U; : i € V} of
A by open sets of X, there exists a finite subset V of V such that

Theorem 3.26. If f : X — Y is weakly A-continuous and K is \-
compact relative to X, then f(K) is quasi-H-closed relative to Y.

Proof. The proof is similar to that of Theorem 3.20 [

Lemma 3.27. Let X be A\-compact. If A C X is A-closed, then A is
A-compact relative to X.

Proof. Let {G, : a € V} be a cover of A by A-open sets of X. Note
that (X — A) is A-open and that the set (X — A) U{G, : a« € V} is
a cover of X by A-open sets. Since X is A-compact, the exists a finite
subset Vi of V such that the set (X — A) U{G, : a € Vy} is a cover
of X by A-open sets in X. Hence {G,, : @ € Vy} is a finite cover of A
by A-open sets in X. [J

Theorem 3.28. Let f : X — Y be an a.A.c. bygection. If X is \-
compact and Y 1s Hausdorff, then f is almost \-open.

Proof. Suppose that U is a A-open subset of X. Then X —U is A-closed.
By Lemma 3.27, X —U is A-compact relative to X. Therefore f(X—U)
is quasi-H-closed relative to Y. Since Y is Hausdorff, Y — f(U) is
closed in Y. Hence, f(U) is open in Y. [
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