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STRONGLY AND PERFECTLY CONTINUOUS
MULTIFUNCTIONS

J.K. KOHLI AND C.P. ARYA

Abstract.The notions of strong continuity of Levine (Amer. Math.
Monthly 67(1960), 269) and perfect continuity due to Noiri (Indian
J. Pure Appl. Math. 15(3) (1984), 241-250) are extended to the
framework of multifunctions. Basic properties of strongly continu-
ous and upper (lower) perfectly continuous multifunctions are studied
and their place in the hierarchy of variants of continuity of multifunc-
tions is discussed. The class of upper (lower) perfectly continuous
multifunctions properly contains the class of strongly continuous mul-
tifunctions and is strictly contained in the class of upper (lower) cl-
supercontinuous multifunctions (Applied Gen. Topol.)[5]. Examples
are included to reflect upon the distinctiveness of the notions so intro-
duced from the ones that already exist in the mathematical literature.
In the process we extend several known results in the literature includ-
ing those of Ekici, Singh and others to the realm of multifunctions.

1. Introduction

Noiri [14] introduced the concept of a perfectly continuous function.
————————————–
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paraLindelöf space, cl-paracompact space, nonmingled multifunction.
(2000)Mathematics Subject Classification: 54C05, 54C10,
54C60, 54D20.

103



104 J.K. KOHLI AND C.P. ARYA

Properties of perfectly continuous functions are further elabo-
rated in [11]. The class of perfectly continuous functions properly
contains the class of strongly continuous functions of Levine [13]
and is strictly contained in the class of cl-supercontinuous (≡clopen
continuous) functions introduced by Reilly and Vamanamurthy [15]
and further studied by Singh [16]. In this paper we extend the notions
of strong continuity and (almost) perfect continuity of functions to
the framework of multifunctions, and elaborate on their place in
the hierarchy of strong variants of continuity of multifunctions that
already exist in the mathematical literature. In the process we extend
several known results in the literature including those of Singh [16],
Ekici [2] and others to the realm of multifunctions. Section 2 is
devoted to preliminaries and basic definitions, wherein we introduce
the notions of strongly continuous multifunctions, upper (lower) per-
fectly continuous multifunctions and upper (lower) almost perfectly
continuous multifunctions and discuss the interrelations that exist
among them and other strong variants of continuity of multifunctions
that already exist in the literature. Examples are included to reflect
upon the distinctiveness of the notions so introduced from the ones
that already exist in the mathematical literature. In Section 3 we
discuss basic properties of strongly continuous multifunctions, and
basic properties of upper (almost) perfectly continuous multifunctions
are elaborated in Section 4, while lower (almost) perfectly continuous
multifunctions are dealt with in Section 5.

2. Preliminaries and basic definitions

Throughout the paper we essentially follow the notations and ter-
minology of Górniewicz [4]. Let ϕ : X ( Y be a multifunction from
a topological space X into a topological space Y . For a subset B of
Y the set ϕ−1

+ (B) = {x ∈ X : ϕ(x) ∩B 6= ∅} is called large inverse
image [4]1 of B and the set ϕ−1

− (B) = {x ∈ X : ϕ(x) ⊂ B} is called
small inverse image [4] of B. The multifunction ϕ is called upper
semicontinuous (respectively lower semicontinuous) if ϕ−1

− (U)
(respectively ϕ−1

+ (U)) is an open subset of X for every open set U in

1However, what we call “large inverse image ϕ−1
+ (B)” some authors call it ’lower

inverse image’ and denote it by ϕ−(B); and similarly they call “small inverse image
ϕ−1
− (B)” as ’upper inverse image’ and employ the notation ϕ+(B) for the same.
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Y. A subset A of a space X is said to be regular open if it is the
interior of its closure, i.e. A = A

◦
. The complement of a regular open

set is referred to as regular closed . A space X is said to have an
(almost) partition topology ([17] [20]) if every (regular) open set
in X is closed. A space X is said to be extremally disconnected
[3] if the closure of every open set is open in X. It turns out that
an almost partition topology is precisely an extremally disconnected
topology.

2.1. Definitions. A space X is said to be
(i) mildly compact [19] if every clopen cover of X has a finite sub-
cover. In [18] Sostak calls mildly compact spaces as clustered spaces;
(ii) cl-paracompact [5] (cl-paraLindelöf [5]) if every clopen cover
of X has locally finite (locally countable) open refinement which cov-
ers X; and
(iii) a P-space [3] if every Gδ set in X is open in X.

2.2. Definition. ([5] [16]) The graph Γϕ of a multifunction ϕ : X (
Y is said to be cl-closed with respect to X if for each (x, y) ∈
(X × Y )\Γϕ there exist a clopen set U containing x and an open set
V containing y such that (U × V ) ∩ Γϕ = ∅.

2.3. Definition. [10] A subspace S of a space X is said to be δ-
embedded in X if every regular open set in S is the intersection of a
regular open set in X with S, or equivalently every regular closed set
in S is the intersection of a regular closed set in X with S.

2.4. Definitions. A multifunction ϕ : X ( Y from a topological
space X into a topological space Y is said to be
(i) upper cl-supercontinuous [5] (upper z-supercontinuous ([1]
[9])) at x ∈ X if for each open set V with ϕ(x) ⊂ V , there exists a
clopen (cozero) set U containing x such that ϕ(U) ⊂ V ;
(ii) lower cl-supercontinuous [5] (lower z-supercontinuous([1]
[9])) at x ∈ X if for each open set V with ϕ(x) ∩ V 6= ∅, there exists
a clopen (cozero) set U containing x such that ϕ(z)∩ V 6= ∅ for each
z ∈ U ;
(iii) upper almost cl-supercontinuous ([6] [10] (upper almost
z-supercontinuous ([8] [12])) at x ∈ X if for each regular open set
V with ϕ(x) ⊂ V, there exists a clopen (cozero) set U containing x
such that ϕ(U) ⊂ V ; and
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(iv) lower almost cl-supercontinuous ([6] [10]) (lower almost
z-supercontinuous ([8] [12])) at x ∈ X if for each regular open set
V with ϕ(x)∩ V 6= ∅, there exists a clopen (cozero) set U containing
x such that ϕ(z)∩V6= ∅ for each z ∈ U.

2.5. Definitions. A multifunction ϕ : X ( Y from a topological
space X into a topological space Y is said to be
(i) strongly continuous if ϕ−1

− (B) is clopen in X, equivalently
ϕ−1

+ (B) is clopen in X for every subset B of Y ;
(ii) upper (almost) perfectly continuous if ϕ−1

− (U) is clopen in
X for every (regular) open subset U of Y ;
(iii) lower (almost) perfectly continuous if ϕ−1

+ (U) is clopen in
X for every (regular) open subset U of Y ;
(iv) upper (almost) completely continuous [7] if ϕ−1

− (U) is a
regular open set in X for every (regular) open set U in Y ; and
(v) lower (almost) completely continuous [7] if ϕ−1

+ (U) is a
regular open set in X for every (regular) open set U in Y.

The following diagram well illustrates the interrelations that
exist among various strong variants of continuity of multifunctions
defined in Definitions 2.4 and 2.5.

Figure 1
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However, none of the above implications is reversible as is well il-
lustrated by the examples in the sequel.

2.6. Example. Let X = {a, b, c} be endowed with the topology =X =
{∅, X, {a}, {b, c}, {c}, {a, c}} and let Y = {x, y} be equipped with
the topology =Y = {∅, Y, {x}}. Define a multifunction ϕ : X (
Y by ϕ(a) = {x}, ϕ(b) = {y}, ϕ(c) = {x, y}. Clearly ϕ is upper
perfectly continuous. But ϕ−1

− ({y}) = {b} is not clopen, and so the ϕ
multifunction is not strongly continuous.

2.7. Example. Let X = {a, b, c} be equipped with the topology
=X = {∅, X, {b}, {b, c}, {c}, {a, b}} and let Y = {x, y} be endowed
with the topology =Y = {∅, Y, {x}}. Define a multifunction ϕ : X (
Y by ϕ(a) = {x}, ϕ(b) = {x, y}, ϕ(c) = {y}. Clearly ϕ is lower
perfectly continuous, ϕ−1

− ({x}) = {a} is not clopen, and so the multi-
function ϕ is not strongly continuous.

2.8. Example. Let X = Y = R, the set of real numbers and let =
be the upper limit topology [20] on X and let U the usual topology
on Y. Define a multifunction ϕ : X ( Y by ϕ(x) = {x} for each
x ∈ X. Then ϕ is upper (lower) cl-supercontinuous but ϕ is not upper
(lower) perfectly continuous. Moreover, ϕ is not upper (lower) almost
perfectly continuous.

2.9. Example. Let X = {a, b, c} be endowed with the topology
=X = {∅, X, {a}} and let Y = {x, y, z} be given the topology
=Y = {∅, Y, {x}}. Define ϕ : X ( Y by ϕ(a) = {x, y}, ϕ(b) = {x},
ϕ(c) = {y, z}. Clearly ϕ is upper almost cl-supercontinuous but ϕ
is not upper cl-supercontinuous, since {x} is an open set in Y but
ϕ−1
− ({x}) = {b} is not cl-open in X. Moreover, ϕ is not lower cl-

supercontinuous. Further observe that ϕ is upper (lower) almost per-
fectly continuous but not upper (lower) perfectly continuous.

2.10. Example. Let X be a completely regular space which is not
zero dimensional. Then every upper (lower) semicontinuous multi-
function ϕ : X ( Y is upper (lower) z-supercontinuous but not nec-
essarily upper (lower) cl-supercontinuous.
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2.11. Example. Let X = {a, b, c, d} be equipped with the topology
=X = {∅, X, {c}, {a, b}, {a, b, c}} and let Y = {p, q, r, s} be endowed
with topology =Y = {∅, Y, {p}, {r}, {p, q}, {p, r}, {p, q, r}, {p, r, s}}.
Define ϕ : X ( Y by ϕ(a) = {q}, ϕ(b) = {p, q}, ϕ(c) = {p},
ϕ(d) = {p}. The sets {r} and {p, q} are regular open sets. Clearly
ϕ is upper (lower) almost z-supercontinuous but not upper (lower)
z-supercontinuous.

3. Strongly continuous multifunctions

3.1. Theorem. If ϕ : X ( Y is a strongly continuous multifunction
and ϕ : Y ( Z is any multifunction, then ψoϕ is strongly continuous.

3.2. Theorem. Let ϕ : X ( Y be strongly continuous and let A ⊂
X. Then ϕ|A : A ( Y is strongly continuous.

Proof. Let B be a subset of Y . Since ϕ is strongly continuous, ϕ−1
− (B)

is clopen in X. Again since (ϕ|A)−1
− (B) = A ∩ ϕ−1

− (B) is clopen in A,
the multifunction ϕ|A : A ( Y is strongly continuous.

3.3. Theorem. Let ϕ : X ( Y and ψ : X ( Y be two strongly
continuous multifunctions. Then ϕ ∪ ψ : X ( Y defined by
(ϕ ∪ ψ)(x) = ϕ(x) ∪ ψ(x) for each x ∈ X, is strongly continuous.
Proof. Let B be a subset of Y. Since ϕ and ψ are strongly continu-
ous, ϕ−1

− (B) and ψ−1
− (B) are clopen sets in X. Since (ϕ ∪ ψ)−1

− (B) =

ϕ−1
− (B)∩ψ−1

− (B) and since finite intersection of clopen sets is clopen,
(ϕ ∪ ψ)−1

− (B) is clopen in X. Thus ϕ ∪ ψ is strongly continuous.

4. Upper(almost) perfectly continuous multifunctions

4.1. Theorem. A multifunction ϕ : X ( Y is upper (almost) per-
fectly continuous if and only if for every (regular) closed set A ⊂ Y
the set ϕ−1

+ (A) is a clopen subset of X.
Proof. Suppose ϕ : X ( Y is upper (almost) perfectly con-
tinuous. Let A be a (regular) closed subset of Y. Then Y − A
is a (regular) open set in Y. Since ϕ is upper (almost) perfectly
continuous,ϕ−1

− (Y − A) = X − ϕ−1
+ (A) is clopen in X and so ϕ−1

+ (A)
is clopen in X.
Conversely suppose that ϕ−1

+ (A) is clopen in X for every (regular)
closed A ⊂ Y. Let U be a (regular) open subset of Y. Then Y −U is a
(regular) closed subset of Y. By hypothesis, ϕ−1

+ (Y −U) = X−ϕ−1
− (U)
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is clopen in X and so ϕ−1
− (U) is clopen in X. Thus ϕ is upper (almost)

perfectly continuous.

4.2. Theorem. Let ϕ : X ( Y and ψ : Y ( Z be multifunctions.
The following statements are true.
(a) If ϕ is upper perfectly continuous and ψ is upper semicontinuous,
then the multifunction ψ ◦ ϕ is upper perfectly continuous.
(b) If ϕ is upper almost perfectly continuous and ψ is upper com-
pletely continuous, then ψ ◦ ϕ is upper perfectly continuous.
(c) If ϕ is upper almost perfectly continuous and ψ is upper almost
completely continuous, then their composition ψ ◦ ϕ is upper almost
perfectly continuous.
(d) If ϕ is upper perfectly continuous and ψ is upper almost continu-
ous, then ψ ◦ ϕ is upper almost perfectly continuous.
Proof. The assertions (b) and (c) are proved in [7]. To prove (a)
let B be an open subset of Z. Since ψ is upper semicontinuous,
ψ−1
− (B) is open in Y. Again since ϕ is upper perfectly continuous,

ϕ−1
− (ψ−1

− (B)) = (ψ ◦ ϕ)−1
− (B) is clopen in X and so ψ ◦ ϕ is upper

perfectly continuous.
(d) Let B be a regular open subset of Z. Since ψ is upper almost
continuous, ψ−1

− (B) is open in Y. Again since ϕ is upper perfectly con-

tinuous, ϕ−1
− (ψ−1

− (B)) = (ψ ◦ ϕ)−1
− (B) is clopen in X and so ψ ◦ ϕ is

upper almost perfectly continuous.

4.3. Corollary. If ϕ : X ( Y is upper perfectly continuous and if
Z is a superspace of Y, then ψ : X ( Z defined by ψ(x) = ϕ(x) for
each x ∈ X is upper perfectly continuous.
Proof. This is immediate in view of Theorem 4.1 and the fact that
ψ = ı ◦ ϕ, where ı denotes the inclusion mapping which is upper
semicontinuous.

The following theorem embodies a sufficient condition for the
preservation of upper almost perfectly continuity under the expansion
of range.

4.4. Theorem. Let ϕ : X ( Y be an upper almost perfectly con-
tinuous multifunction and let Z be the superspace of Y such that the
intersection of every regular open in Z with Y is a regular open set
in Y. Then the multifunction ψ : X ( Z defined by ψ(x) = ϕ(x) for
each x ∈ X is upper almost perfectly continuous.
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Proof. Let W be a regular open set in Z. By hypothesis, W ∩ Y is
regular open set in Y. Again since ϕ : X ( Y is upper almost per-
fectly continuous, ϕ−1

− (W ∩Y ) is a clopen set in X. Now it is clear that
ψ−1
− (W ) = ϕ−1

− (W ∩ Y ) and so ψ : X ( Z is upper almost perfectly
continuous.

4.5. Theorem. If ϕ : X ( Y is upper perfectly continuous and
ϕ(X) is endowed with the subspace topology, then the multifunction
ϕ : X ( ϕ(X) is upper perfectly continuous.
Proof. This is immediate in view of the fact that for every open set
V ⊂ Y, ϕ−1

− (V ) = ϕ−1
− (V ∩ ϕ(X)).

4.6. Theorem. If a multifunction ϕ : X ( Y is upper almost per-
fectly continuous and ϕ(X) is δ-embedded in Y, then the multifunction
ϕ : X ( ϕ(X) is also upper almost perfectly continuous.
Proof. Let V be a regular open set in ϕ(X). Since ϕ(X) is δ-
embedded in Y, there exist a regular open set W in Y such that
V = W ∩ϕ(X). Since ϕ is upper almost perfectly continuous, ϕ−1

− (W )
is clopen in X. Now ϕ−1

− (V ) = ϕ−1
− (W ∩ ϕ(X)) = ϕ−1

− (W ) and hence
ϕ is upper almost perfectly continuous.

4.7. Theorem. Let ϕ : X ( Y be an upper (almost) perfectly
continuous multifunction and let A ⊂ X. Then the multifunction
ϕA = ϕ|A : A ( Y is upper (almost) perfectly continuous.
Proof. Let U be a (regular) open set in Y. Since ϕ is upper (al-
most) perfectly continuous, ϕ−1

− (U) is clopen in X. Since (ϕA)−1
− (U) =

A∩ϕ−1
− (U), which is clopen in A and so ϕA is upper (almost) perfectly

continuous.

4.8. Theorem. Let Ω = {Xα : α ∈ Λ} be a locally finite clopen cover
of X and let ϕ : X ( Y be a multifunction. For each α ∈ Λ, let
ϕα = ϕ|Xα

: Xα ( Y be the restriction of ϕ to Xα. Then ϕ is upper
(almost) perfectly continuous if and only if each ϕα is upper (almost)
perfectly continuous.
Proof. Necessity is easy to see. To prove sufficiency, let V be a (regu-
lar) open set in Y. Then ϕ−1

− (V ) =
⋃

α∈Λ(ϕα)−1
− (V ) =

⋃
α∈Λ(ϕ−1

− (V )∩
Xα). Since each ϕ−1

− (V ) ∩ Xα is clopen in Xα and hence in X. Thus
ϕ−1
− (V ) is open being the union of clopen sets. In view of local finite-

ness of Ω, the collection {ϕ−1
− (V ) ∩ Xα : α ∈ Λ} is a locally finite

collection of clopen sets. Therefore ϕ−1
− (V ) is also closed being the
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union of a locally finite collection of clopen sets and hence clopen.
Consequently, ϕ is upper (almost) perfectly continuous.

4.9. Theorem. Let ϕ : X ( Y and ψ : X ( Y be two upper
(almost) perfectly continuous multifunctions. Then ϕ ∪ ψ : X ( Y
defined by (ϕ∪ψ)(x) = ϕ(x)∪ψ(x) for each x ∈ X, is upper (almost)
perfectly continuous.
Proof. Let U be a (regular) open set in Y. Since ϕ and ψ are upper
(almost) perfectly continuous, ϕ−1

− (U) and ψ−1
− (U) are clopen sets in

X. Again since (ϕ ∪ ψ)−1
− (U) = ϕ−1

− (U) ∩ ψ−1
− (U) and since the finite

intersection of clopen sets is clopen, (ϕ∪ψ)−1
− (U) is clopen in X. Thus

ϕ ∪ ψ is upper (almost) perfectly continuous.

4.10. Theorem. Let ϕ : X ( Y be upper perfectly continuous.
Then [ϕ−1

+ (B)]cl ⊂ ϕ−1
+ (B) for every subset B of Y.

Proof. Let B be any subset of Y. Then B is a closed subset of Y.
Since ϕ is upper perfectly continuous, ϕ−1

+ (B) is clopen in X. Again

since ϕ−1
+ (B) ⊂ ϕ−1

+ (B), [ϕ−1
+ (B)]cl ⊂ [ϕ−1

+ (B)]cl = ϕ−1
+ (B).

4.11. Remark. Converse of Theorem 4.10 is not true. For example,
let X = Y = R, the set of real numbers and let = be the upper
limit topology on X and let U be the usual topology on Y. Define
ϕ : X ( Y by ϕ(x) = {x} for each x ∈ X. Then it is easily verified
that for every subset B of Y, [ϕ−1

+ (B)]cl ⊂ ϕ−1
+ (B) but ϕ is not upper

perfectly continuous.

4.12. Theorem. Let ϕ : X ( Y be a multifunction and let g : X (
X × Y defined by g(x) = {x} × ϕ(x) for each x ∈ X be the graph
multifunction. If g is upper (almost) perfectly continuous, then ϕ is
upper (almost) perfectly continuous and the space X is equipped with
an (almost) partition topology.
Proof. Suppose that g is upper (almost) perfectly continuous. By
Theorem4.1 the multifunction ϕ = py ◦ g is upper (almost) perfectly
continuous, where py : X × Y −→ Y denotes the projection mapping
which is upper semicontinuous as well as upper almost completely
continuous. Now to show that X is endowed with an (almost) partition
topology, let U be a (regular) open set in X. Then U×Y is a (regular)
open set in X × Y. Since g is upper (almost) perfectly continuous,
g−1
− (U × Y ) is clopen in X. It is easily verified that g−1

− (U × Y ) = U,



112 J.K. KOHLI AND C.P. ARYA

and so U is clopen in X. Thus X is endowed with an (almost) partition
topology.

4.13. Theorem. If ϕ : X ( Y is an upper (almost) perfectly con-
tinuous multifunction where Y is a regular space and ϕ(x) is closed
for each x ∈ X, then the graph Γϕ of ϕ is a cl-closed subset of X × Y
with respect to X.
Proof. Let (x, y) /∈ Γϕ. Then y /∈ ϕ(x). Since Y is a regular space,
there exist disjoint open sets Vy and Vϕ(x) containing y and ϕ(x),
respectively. It is easily verified that the sets Vy and Vϕ(x) may be
chosen to be regular open. Since ϕ is upper (almost) perfectly con-
tinuous, Ux = ϕ−1

− (Vϕ(x)) is a clopen set containing x. We assert that
(Ux× Vy)∩ Γϕ = ∅. For, if (h, k) ∈ (Ux× Vy)∩ Γϕ, then h ∈ ϕ−1

− (Vx),
k ∈ Vy and k ∈ ϕ(h). Hence ϕ(h) ⊂ Vϕ(x) and k ∈ ϕ(h) ∩ Vy which
contradicts the fact that Vy and Vϕ(x) are disjoint. Thus the graph Γϕ

is cl-closed in X × Y with respect to X.

4.14. Theorem. Let ϕ : X ( Y be an upper perfectly continuous
multifunction such that ϕ(x) is compact for each x ∈ X. If A is a
mildly compact set in X, then ϕ(A) is compact.
Proof. Let Ω be an open cover of ϕ(A) .Then Ω is also an open
cover of ϕ(a) for each a ∈ A. Since each ϕ(a) is compact, there
exists a finite subset βa ⊂ Ω such that ϕ(a) ⊂ ⋃

B∈βa
B = Va(say).

Again since ϕ is upper perfectly continuous, Ua = ϕ−1
− (Va) a clopen

set containing a. Let Q = {Ua | a ∈ A}. Then Q is a clopen
covering of A. Since A is mildly compact, there exists a finite subset
{a1, ..., an} of A such that A ⊂ ⋃n

i=1 Uai
⊂ ⋃n

i=1 ϕ−1
− (Vai

). Therefore
ϕ(A) ⊂ ϕ(

⋃n
i=1 ϕ−1

− (Vai
)) =

⋃n
i=1 ϕ(ϕ−1

− (Vai
)) ⊂ ⋃n

i=1 Vai
, where

Vai
=

⋃
B∈βai

B, i = 1, ..., n and each βai
is finite. Thus ϕ(A) is

compact.

We may recall that a multifunction ϕ : X ( Y is called non-
mingled [21] if for x, y ∈ X, x 6= y the image sets ϕ(x) and ϕ(y) are
either disjoint or identical.

4.15. Theorem. Let ϕ : X ( Y be a closed, open and upper per-
fectly continuous nonmingled multifunction such that ϕ(x) is para-
compact for each x ∈ X. If A is cl-paracompact, then ϕ(A) is para-
compact.
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Proof. Let Ψ be an open cover of ϕ(A). Then Ψ is also an open cover
of ϕ(x) for each x ∈ A. Since ϕ(x) is paracompact, Ψ has a locally
finite open refinement Ψx such that ϕ(x) ⊂ ⋃

Ψx = Vx(say). Since ϕ
is upper perfectly continuous, Ux = ϕ−1

− (Vx) is a clopen set containing
x. Now {Ux | x ∈ A} is a clopen cover of A. Since A is cl- para-
compact, it has a locally finite open refinement Ω = {Wα | α ∈ Λ}
such that A ⊂ ⋃

α∈Λ Wα. So for each α ∈ Λ there exists xα ∈ A
such that Wα ⊂ Uxα and hence ϕ(Wα) ⊂ ϕ(Uxα) ⊂ ⋃

Ψxα . Let
<α = {ϕ(Wα) ∩ V | V ∈ Ψxα}, and let < = {R | R ∈ <α,
α ∈ Λ}. We shall show that < is a locally finite open refinement
of Ψ which covers ϕ(A). Since ϕ is open, each ϕ(Wα) is open and so
each R ∈ < is open. Let R ∈ <. Then R ∈ <α for some α ∈ Λ,
i.e. R = ϕ(Wα) ∩ V ⊂ V ⊂ U for some U ∈ Ψ. This shows that <
is an open refinement of Ψ. Now to show that < is locally finite, let
y ∈ ϕ(A). Then y ∈ ϕ(x) for some x ∈ A. Since Ω is locally finite,
for each x ∈ A we can choose an open neighborhood Gx of x which
intersects only finitely many members Wα1 ,Wα2 ...,Wαn of Ω. It fol-
lows that H0 = ϕ(Gx) is an open neighborhood of y which intersects
only finitely many members ϕ(Wα1), ϕ(Wα2)..., ϕ(Wαn) of the family
{ϕ(Wα) | α ∈ Λ}. Furthermore, each <αk

(k = 1, ..., n) is locally finite,
hence there exists an open neighborhood Hk (k = 1, ..., n) of y which
intersects only finitely many members of <αk

(k = 1, ..., n). Finally let
H =

⋂n
k=1 Hk. Then H is an open neighborhood of y which intersects

at most finitely many members of <. Hence < is locally finite. Thus
ϕ(A) ⊂ ϕ(

⋃
α∈Λ Wα) ⊂ ⋃

α∈Λ ϕ(Wα) ⊂ ⋃
α∈Λ(

⋃<α)=
⋃{R : R ∈ <}.

So < is a locally finite open refinement of Ψ which covers ϕ(A) and
thus ϕ(A) is paracompact.

4.16. Corollary. Let ϕ : X ( Y be a closed, open, upper perfectly
continuous, nonmingled multifunction from a space X onto Y such
that ϕ(x) is a paracompact set in Y for each x ∈ X. If X is a cl-
paracompact space, then Y is paracompact.

4.17. Theorem. ϕ : X ( Y be a closed, open, and upper perfectly
continuous, nonmingled multifunction from a space X into a P-space
Y such that ϕ(x) is paraLindelöf. If A is a cl− paraLindelöf, then so
is ϕ(A).
Proof. of Theorem 4.17 is similar to that of Theorem 4.15 and hence
omitted.
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4.18. Theorem. Let ϕ : X ( Y be an upper (almost) perfectly
continuous multifunction such that ϕ(x)∩ϕ(y) = ∅ for each x 6= y in
X and ϕ(x) is closed for each x ∈ X. If Y is a normal space, then X
is an ultra Hausdorff space.
Proof. Let x, y ∈ X, x 6= y. Then ϕ(x) ∩ ϕ(y) = ∅. Since Y is
normal, there exist disjoint open sets U1 and V1 containing ϕ(x) and

ϕ(y) respectively. Then U = U1
◦

and V = V1
◦

are disjoint regular
open sets containing ϕ(x) and ϕ(y), respectively. Since ϕ is upper
(almost) perfectly continuous, ϕ−1

− (U) and ϕ−1
− (V ) are disjoint clopen

sets containing x and y respectively and so X is ultra Hausdorff.

4.19. Theorem. Let ϕ, ψ : X ( Y be upper (almost) perfectly con-
tinuous multifunctions from a topological space X into a normal space
Y such that ϕ(x) and ψ(x) are closed for each x ∈ X. Then the set
E = {x ∈ X : ϕ(x) ∩ ψ(x) 6= ∅} is a cl-closed subset of X.
Proof. To prove that E is a cl-closed, we shall show that X \ E is
cl-open. To this end, let x ∈ X \ E. Then ϕ(x) ∩ ψ(x) = ∅. Since
Y is normal, there exist disjoint open sets U1 and V1 containing ϕ(x)

and ψ(x) respectively. Then U = U1
◦

and V = V1
◦

are disjoint regular
open sets containing ϕ(x) and ψ(x) respectively. Since ϕ and ψ are up-
per (almost)perfectly continuous, ϕ−1

− (U) and ψ−1
− (V ) are clopen sets

containing x. Let G1 = ϕ−1
− (U) and G2 = ψ−1

− (V ). Then G = G1 ∩G2

is a clopen set containing x. Since U and V are disjoint, G ⊂ X \ E
and hence X \ E is cl-open.

4.20. Theorem. Let ϕ : X ( Y be an upper (almost) perfectly
continuous multifunction from a topological space X into a normal
space Y such that ϕ(x) is closed for each x ∈ X. Then the set A =
{(x, y) ∈ X ×X : ϕ(x) ∩ ϕ(y) 6= ∅} is a cl-closed subset of X ×X.
Proof. Let (x, y) /∈ A. Then ϕ(x)∩ϕ(y) = ∅. Since Y is normal, there
exist disjoint open sets U and V containing ϕ(x) and ϕ(y) respectively.
As in the proof of Theorem 4.19 the sets U and V may be taken to be
regular open. Since ϕ is upper (almost) perfectly continuous, ϕ−1

− (U)
and ϕ−1

− (V ) are disjoint clopen sets containing x and y respectively.
Let G1 = ϕ−1

− (U) and G2 = ϕ−1
− (V ). Then G1 ×G2 is a clopen set in

X × X containing (x, y). We claim that (G1 × G2) ∩ A = ∅. For if
(G1×G2)∩A 6= ∅. Then (x, y) ∈ G1×G2 and (x, y) ∈ A. This in turn
implies that U and V are not disjoint which is a contradiction. Thus
(G1 ×G2) ∩ A = ∅ and so G1 ×G2 ⊂ X ×X \ A. Hence X ×X \ A
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being the union of clopen sets is cl-open and so A is a cl-closed subset
of X ×X.

5. Lower (almost) perfectly continuous multifunctions

5.1. Theorem. A multifunction ϕ : X ( Y is lower (almost) per-
fectly continuous if and only if for every (regular) closed set A ⊂ Y
the set ϕ−1

− (A) is a clopen subset of X.
Proof is similar to that of theorem 4.1 except for obvious modifica-
tions and hence omitted.

5.2. Theorem. Let ϕ : X ( Y and ψ : Y ( Z be multifunctions.
The following statements are true.
(a) If ϕ lower perfectly continuous and ψ is lower semicontinuous mul-
tifunction, then the multifunction ψ ◦ ϕ is lower perfectly continuous.
(b) If ϕ is lower almost perfectly continuous and ψ is lower completely
continuous, then ψ ◦ ϕ is lower perfectly continuous.
(c) If ϕ is lower almost perfectly continuous and ψ is lower almost
completely continuous, then their composition ψ ◦ ϕ is lower almost
perfectly continuous.
(d) If ϕ is lower perfectly continuous and ψ is lower almost continuous,
then ψ ◦ ϕ is lower almost perfectly continuous.
Proof. The assertion (b) and (c) are dealt with in [7]. To prove
(a) let B be an open subset of Z. Since ψ is lower semicontinuous,
ψ−1

+ (B) is open in Y. Again since ϕ is lower perfectly continuous,

ϕ−1
+ (ψ−1

+ (B)) = (ψ ◦ ϕ)−1
+ (B) is clopen in X and so ψ ◦ ϕ is lower

perfectly continuous.
(d) Let B be a regular open subset of Z. Since ψ is lower almost
continuous, ψ−1

+ (B) is open in Y. Again since ϕ is lower perfectly con-

tinuous, ϕ−1
+ (ψ−1

+ (B)) = (ψ ◦ ϕ)−1
+ (B) is clopen in X and so ψ ◦ ϕ is

lower almost perfectly continuous.

5.3. Theorem. Let ϕ : X ( Y be a (almost) lower perfectly continu-
ous multifunction and let A ⊂ X. Then the multifunction ϕ|A : A ( Y
is lower (almost) perfectly continuous.
Proof is similar to that of Theorem 4.7 except for obvious changes.

5.4. Theorem. If ϕ : X ( Y and ψ : X ( Y are lower (al-
most) perfectly continuous multifunctions, then the multifunction
ϕ ∪ ψ : X ( Y defined by (ϕ ∪ ψ)(x) = ϕ(x) ∪ ψ(x) for each x ∈ X,
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is lower (almost) perfectly continuous.
Proof is similar to that of Theorem 4.9 except for obvious modifica-
tions.

5.5. Corollary. If a multifunction ϕ : X ( Y is lower almost per-
fectly continuous and ϕ(X) is δ-embedded in Y, then the multifunction
ϕ : X ( ϕ(X) is lower almost perfectly continuous.
Proof. Let V be a regular open set in ϕ(X). Since ϕ(X) is δ-
embedded, there exist a regular open set W in Y such that V =
W ∩ ϕ(X). Since ϕ is lower almost perfectly continuous, ϕ−1

+ (W ) is
clopen in X. Now ϕ−1

+ (V ) = ϕ−1
+ (W ∩ ϕ(X)) = ϕ−1

+ (W ) and hence ϕ
is lower almost perfectly continuous.
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[1] M. Akdaǧ, On upper and lower z-supercontinuous multifunctions,
Kyungpook Math. J. 45(2005), 221-230.

[2] E. Ekici, Generalizations of perfectly continuous, regular set con-
nected and clopen functions, Acta Math. Hungar. 107(3) (2005), 193-205.

[3] L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nos-
trand Company, New York, 1960.
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[12] J.K. Kohli, D. Singh and R. Kumar, Generalizations of z-
supercontinuous functions and Dδ-supercontinuous functions, Appl.
Gen. Top. 33(7) (2008), 1097-1108.

[13] N. Levine, Strong continuity in topological spaces, Amer. Math.
Monthly, 67(1960), 269.

[14] T. Noiri, Supercontinuity and some strong forms of continuity, Indian
J. Pure Appl. Math. 15(3) (1984), 241-250.



STRONGLY AND PERFECTLY CONTINUOUS MULTIFUNCTIONS 117

[15] I.L. Reilly and M.K. Vamanamurthy, On super continuous mappings,
Indian J. Pure Appl. Math 14(6) (1983), 767-772.

[16] D. Singh, cl-supercontinuous functions, Applied General Topology 8(2)
(2007), 293-300.

[17] D. Singh, Almost perfectly continuous functions, Quaestiones Math.,
33(2010), 211-221.

[18] A. Sostak, On a class of topological spaces containing all bicompact
and connected spaces, General Topology and its Relation to Modern Anal-
ysis and Algebra IV: Proceedings of the 4th Prague topological symposium,
(1976) part B 445-451.

[19] R. Staum, The algebra of bounded continuous functions into non
Archimedean field, Pacific J. Math. 50(1) (1974), 169-185.

[20] L. Steen and J.A. Seebach, Jr., Counterexamples in Topology, Springer
Verlag, New York, 1978.

[21] G.T. Whyburn, Continuity of multifunctions, Proc. N. A. S., 54 (1965),
1494-1501.

Department of Mathematics,
Hindu college, University of Delhi,
Delhi-110007.
Email: jk kohli@yahoo.com

Chaman Prakash Arya,
Department of Mathematics,
University of Delhi, Delhi-110007.
Email:carya28@gmail.com


