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RELATED FIXED POINT THEOREMS FOR
MAPPINGS SATISFYING CONTRACTIVE

CONDITIONS OF INTEGRAL TYPE

ALIOUCHE ABDELKRIM AND BRIAN FISHER

Abstract. We prove related fixed point theorems for mappings sat-
isfying contractive conditions of integral type in two complete metric
spaces which generalize Theorem 1 of [4] and Theorem 2 of [5].

1. Introduction

The following Theorems were proved by [4] and [5] respectively.

Theorem 1. Let (X, d) and (Y, ρ) be complete metric spaces, let T be
a mapping of X into Y and let S be a mapping of Y into X satisfying
the inequalities

ρ(Tx, TSy) ≤ c max{d(x, Sy), ρ(y, Tx), ρ(y, TSy)},
d(Sy, STx) ≤ c max{ρ(y, Tx), d(x, Sy), d(x, STx)}

for all x in X and y in Y , where 0 ≤ c < 1. Then, ST has a unique
fixed point u in X and TS has a unique fixed point v in Y. Further,
Tu = v and Sv = u.

————————————–
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Theorem 2. Let (X, d) and (Y, ρ) be complete metric spaces, let T be
a continuous mapping of X into Y and let S be a mapping of Y into
X satisfying the inequalities

d(STx, STx′) ≤ c max{d(x, x′), d(x, STx), d(x′, STx′), ρ(Tx, Tx′)},
d(TSy, TSy′) ≤ c max{ρ(y, y′), ρ(y, TSy), ρ(y′, TSx′), d(Sy, Sy′)}
for all x, x′ in X and y, y′ in Y , where 0 ≤ c < 1. Then, ST has a
unique fixed point z in X and TS has a unique fixed point ω in Y.
Further, Tz = ω and Sω = z.

Several authors proved fixed point and common fixed point theo-
rems in metric spaces, see [1], [2], [3], [6] and [7].

It is our purpose in this paper to prove related fixed point theorems
for mappings satisfying contractive conditions of integral type in two
complete metric spaces. Our theorems generalize Theorem 1 of [4] and
Theorem 2 of [5].

2. Main Results

Now, we prove the following a related fixed point Theorem in two
complete metric spaces.

Theorem 3. Let (X, d) and (Y, ρ) be complete metric spaces, T a
mapping of X into Y and S a mapping of Y into X satisfying the
inequalities

(2.1)

∫ d(Sy,STx)

0

ϕ(t)dt ≤ c

∫ max{ρ(y,Tx),d(x,Sy),d(x,STx)}

0

ϕ(t)dt,

(2.2)

∫ ρ(Tx,TSy)

0

ϕ(t)dt ≤ c

∫ max{d(x,Sy),ρ(y,Tx),ρ(y,TSy)}

0

ϕ(t)dt

for all x in X and y in Y , where 0 ≤ c < 1 and ϕ : R+ → R+ is
non-increasing, a Lebesgue integrable mapping which is summable in
each compact subset of R+ and such that

(2.3)

∫ ε

0

ϕ(t)dt > 0 for each ε > 0.

Then, ST has a unique fixed point u in X and TS has a unique fixed
point v in Y. Further, Tu = v and Sv = u.
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Proof. Let x0 be an arbitrary point in X. We define the sequences
{xn}and {yn} in X and Y inductively by

(2.4) xn = Syn and yn = Txn−1, for n = 1, 2, ....

If xn = xn+1 for some n, we can put u = xn and then putting
v = Tu, we obtain STu = u and TSv = v. Similarly, if yn = yn+1 for
some n, we can put v = yn and then putting u = Sv, we get STu = u
and TSv = v. We will now suppose that xn 6= xn+1 and yn 6= yn+1 for
n = 0, 1, 2, ....

Using (2.1) and (2.4) we have
∫ d(xn,xn+1)

0

ϕ(t)dt =

∫ d(Syn,STxn)

0

ϕ(t)dt

≤ c

∫ max{ρ(yn,Txn),d(xn,Syn),d(xn,STxn)}

0

ϕ(t)dt

= c

∫ max{ρ(yn,yn+1),0,d(xn,xn+1)}

0

ϕ(t)dt.

Then

(2.5)

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ c

∫ ρ(yn,yn+1)

0

ϕ(t)dt.

Using inequality (2.2) and (2.4) we get
∫ ρ(yn,yn+1)

0

ϕ(t)dt =

∫ ρ(Txn−1,TSyn)

0

ϕ(t)dt

≤ c

∫ max{d(xn−1,Syn),ρ(yn,Txn−1),ρ(yn,TSyn)}

0

ϕ(t)dt

= c

∫ max{d(xn−1,xn),0,ρ(yn,yn+1)}

0

ϕ(t)dt

and so

(2.6)

∫ ρ(yn,yn+1)

0

ϕ(t)dt ≤ c

∫ d(xn−1,xn)

0

ϕ(t)dt.

Using (2.5) and (2.6) we obtain
∫ d(xn,xn+1)

0

ϕ(t)dt ≤ c2

∫ d(xn−1,xn)

0

ϕ(t)dt
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and ∫ ρ(yn,yn+1)

0

ϕ(t)dt ≤ c2

∫ d(yn−1,yn)

0

ϕ(t)dt.

By induction, it follows that

(2.7)

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ c2n

∫ d(x0,x1)

0

ϕ(t)dt

and

(2.8)

∫ ρ(yn,yn+1)

0

ϕ(t)dt ≤ c2n

∫ ρ(y0,y1)

0

ϕ(t)dt.

Let m,n ∈ N such that m > n. Using the triangular inequality, we
have

d(xn, xm) ≤
m−1∑
i=1

d(xi, xi+1).

Since ϕ is non-increasing, it follows that

(2.9)

∫ d(xn,xm)

0

ψ(t)dt ≤
m−1∑
i=n

∫ d(xi,xi+1)

0

ψ(t)dt.

Using (2.7) and (2.9) we get
(2.10)∫ d(xn,xm)

0

ψ(t)dt ≤
∞∑

i=n

c2i

∫ d(x0,x1)

0

ψ(t)dt =
c2n

1− c2

∫ d(x0,x1)

0

ψ(t)dt.

Taking the limit as m,n → ∞ in (2.10), it follows that {xn} is a
Cauchy sequence in X. Similarly, we can prove that {yn} is a Cauchy
sequence in Y . Since (X, d) and (Y, ρ) are complete, {xn} and {yn}
converge to limits u and v respectively.

If u 6= Sv, using (2.1) we get
∫ d(Sv,u)

0

ϕ(t)dt = lim
n→∞

∫ d(Sv,STxn−1)

0

ϕ(t)dt

≤ c lim
n→∞

∫ max{ρ(v,yn),d(xn−1,Sv),d(xn−1xn)}

0

ϕ(t)dt

= c

∫ d(u,Sv)

0

ϕ(t)dt

<

∫ d(u,Sv)

0

ϕ(t)dt,
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a contradiction. Hence∫ d(u,Sv)

0

ϕ(t)dt = 0

and (2.3) implies that Sv = u. If Tu 6= v, using (2.2) we have
∫ ρ(Tu,v)

0

ϕ(t)dt = lim
n→∞

∫ ρ(Tu,TSyn−1)

0

ϕ(t)dt

≤ c lim
n→∞

∫ max{d(u,xn−1),ρ(yn−1,Tu),ρ(yn−1,yn)}

0

ϕ(t)dt

= c

∫ ρ(v,Tu)

0

ϕ(t)dt

<

∫ ρ(v,Tu)

0

ϕ(t)dt,

a contradiction and so Tu = v. Then, STu = Sv = u and TSv =
Tu = v.

To prove the uniqueness, suppose that ST has a second distinct
fixed point u′.

Using inequality (2.1) we obtain
∫ d(u,u′)

0

ϕ(t)dt =

∫ d(Sv,STu′)

0

ϕ(t)dt (2.11)

≤ c

∫ max{ρ(v,Tu′),d(u′,Sv),d(u′,STu′)}

0

ϕ(t)dt

= c

∫ ρ(Tu,Tu′)

0

ϕ(t)dt.

Using inequality (2.2) we have
∫ ρ(Tu,Tu′)

0

ϕ(t)dt =

∫ ρ(Tu,TSTu′)

0

ϕ(t)dt (2.12)

≤ c

∫ max{d(u,STu′),ρ(Tu′,Tu),ρ(Tu′,TSTu′)}

0

ϕ(t)dt

= c

∫ d(u,u′)

0

ϕ(t)dt.
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Using (2.11) and (2.12) we get

∫ d(u,u′)

0

ϕ(t)dt ≤ c2

∫ d(u,u′)

0

ϕ(t)dt

<

∫ d(u,u′)

0

ϕ(t)dt,

a contradiction and so u = u′. We can prove similarly that v is the
unique fixed point of TS.

This completes the proof of the Theorem.

Remark 1. If ϕ(t) = 1 in Theorem 3, we obtain Theorem 1 of [4].

If (X, d) = (Y, ρ) in Theorem 3, we get the following Corollary.

Corollary 1. Let (X, d) be a complete metric space, and S, T be
mappings of X into itself satisfying the inequalities

∫ d(Sy,STx)

0

ϕ(t)dt ≤ c

∫ max{d(y,Tx),d(x,Sy),d(x,STx)}

0

ϕ(t)dt,

∫ d(Tx,TSy)

0

ϕ(t)dt ≤ c

∫ max{d(x,Sy),d(y,Tx),d(y,TSy)}

0

ϕ(t)dt,

for all x, y in X, where 0 ≤ c < 1 and ϕ satisfies (2.3). Then, ST has
a unique fixed point u in X and TS has a unique fixed point v in X.
Further, Tu = v and Sv = u.

If S = T in Corollary 1 we obtain the following Corollary.

Corollary 2. Let (X, d) be a complete metric space and T be a map-
ping of X into itself satisfying the inequality

∫ d(Tx,T 2y)

0

ϕ(t)dt ≤ c

∫ max{d(x,Ty),d(y,Tx),d(y,T 2y)}

0

ϕ(t)dt,

for all x, y in X, where 0 ≤ c < 1 and ϕ satisfies (2.3). Then, T has
a unique fixed point u in X

3. An Other related fixed point Theorem

Now, we prove an other related fixed point Theorem in two complete
metric spaces.
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Theorem 4. Let (X, d) and (Y, ρ) be complete metric spaces, T a
mapping of X into Y and S a mapping of Y into X satisfying the
inequalities
(3.1)∫ d(STx,STx′)

0

ϕ(t)dt ≤ c

∫ max{d(x,x′),d(x,STx),d(x′,STx′),ρ(Tx,Tx′)}

0

ϕ(t)dt,

(3.2)∫ ρ(TSy,TSy′)

0

ϕ(t)dt ≤ c

∫ max{ρ(y,y′),ρ(y,TSy),ρ(y′,TSy′),d(Sy,Sy′)}

0

ϕ(t)dt

for all x, x′ in X and y, y′ in Y , where 0 ≤ c < 1 and ϕ satisfies (2.3).
If T or S is continuous, then ST has a unique fixed point u in X and
TS has a unique fixed point v in Y. Further, Tu = v and Sv = u.

Proof. Let x0 be an arbitrary point in X. As in Theorem 5, we define
the sequences {xn}and {yn} in X and Y inductively by (2.4). If xn =
xn+1 and yn = yn+1 for some n = 0, 1, 2, ..., we can put u = xn

and v = yn. Now, we suppose that xn 6= xn+1 and yn 6= yn+1 for all
n = 0, 1, 2, ...

Using (3.1) and (2.4) we have

∫ d(xn,xn+1)

0

ϕ(t)dt =

∫ d(STxn−1,STxn)

0

ϕ(t)dt

≤ c

∫ max{d(xn−1,xn),d(xn−1,STxn−1),d(xn,STxn),ρ(Txn−1,Txn)}

0

ϕ(t)dt

= c

∫ max{d(xn−1,xn),d(xn,xn+1),ρ(yn,yn+1)}

0

ϕ(t)dt.

Then

(3.3)

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ c

∫ max{d(xn−1,xn),ρ(yn,yn+1)

0

ϕ(t)dt.
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Using inequality (3.2) and (2.4) we get

∫ ρ(yn,yn+1)

0

ϕ(t)dt =

∫ ρ(TSyn−1,TSyn)

0

ϕ(t)dt

≤ c

∫ max{ρ(yn−1,yn),ρ(yn−1,TSyn−1),ρ(yn,TSyn),d(Syn−1,Syn)}

0

ϕ(t)dt

= c

∫ max{ρ(yn−1,yn),ρ(yn,yn+1),d(xn−1,xn)}

0

ϕ(t)dt.

Therefore

(3.4)

∫ ρ(yn,yn+1)

0

ϕ(t)dt ≤ c

∫ max{d(xn−1,xn),ρ(yn−1,yn)}

0

ϕ(t)dt.

Using (3.3) and (3.4) we obtain

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ c

∫ max{d(xn−1,xn),ρ(yn−1,yn)}

0

ϕ(t)dt.

By induction, it follows that

(3.5)

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ cn

∫ max{d(x0,x1),ρ(y0,y1)}

0

ϕ(t)dt.

Similarly, we get

(3.6)

∫ ρ(yn,yn+1)

0

ϕ(t)dt ≤ cn

∫ max{d(x0,x1),ρ(y0,y1)}

0

ϕ(t)dt.

As in the proof of Theorem 3, it follows that {xn} is a Cauchy
sequence in X. Similarly, we can prove that {yn} is a Cauchy sequence
in Y . Since (X, d) and (Y, ρ) are complete, {xn} and {yn} converge to
u and v respectively. Suppose that T is continuous. It follows that

lim
n→∞

Txn−1 = Tu = v = lim
n→∞

yn.
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If u 6= Sv, using (3.1) we get

∫ d(Sv,u)

0

ϕ(t)dt = lim
n→∞

∫ d(STu,STxn−1)

0

ϕ(t)dt

≤ c lim
n→∞

∫ max{d(u,xn−1),d(u,STu),d(xn−1,STxn−1),ρ(Tu,Txn−1)}

0

ϕ(t)dt

= c

∫ d(u,Sv)

0

ϕ(t)dt

<

∫ d(u,Sv)

0

ϕ(t)dt,

a contradiction. Hence, Sv = u = STu.
If v 6= Tu, using (3.2) we have

∫ ρ(Tu,v)

0

ϕ(t)dt = lim
n→∞

∫ ρ(TSv,TSyn−1)

0

ϕ(t)dt

≤ c lim
n→∞

∫ max{ρ(v,yn−1),ρ(v,TSv),ρ(yn−1,TSyn−1),d(Sv,Syn−1)}

0

ϕ(t)dt

= c

∫ ρ(v,Tu)

0

ϕ(t)dt

<

∫ ρ(v,Tu)

0

ϕ(t)dt,

a contradiction. Therefore, Tu = v = TSv. Similarly, The same
results hold if S is continuous instead of T . To prove the uniqueness,
suppose that ST has a second distinct fixed point u′.

Using inequality (3.1) we obtain

∫ d(u,u′)

0

ϕ(t)dt =

∫ d(STu,STu′)

0

ϕ(t)dt (3.7)

≤ c

∫ max{d(u,u′),d(u,STu),d(u′,STu′),ρ(Tu,Tu′)}

0

ϕ(t)dt

= c

∫ ρ(Tu,Tu′)

0

ϕ(t)dt.



22 ALIOUCHE ABDELKRIM AND BRIAN FISHER

Using inequality (3.2) we have
∫ ρ(Tu,Tu′)

0

ϕ(t)dt =

∫ ρ(TSv,TSTu′)

0

ϕ(t)dt (3.8)

≤ c

∫ max{ρ(v,Tu′),ρ(v,TSv),ρ(Tu′,TSTu′),d(Sv,STu′)}

0

ϕ(t)dt

= c

∫ d(u,u′)

0

ϕ(t)dt.

Using (3.7) and (3.8) we get
∫ d(u,u′)

0

ϕ(t)dt ≤ c2

∫ d(u,u′)

0

ϕ(t)dt

<

∫ d(u,u′)

0

ϕ(t)dt,

a contradiction. Therefore, u = u′. We can prove similarly that v is a
fixed point of TS.

This completes the proof of the Theorem.

Remark 2. If ϕ(t) = 1 in Theorem 4, we obtain Theorem 2 of [5].

If (X, d) = (Y, ρ) in Theorem 4, we get the following Corollary.

Corollary 3. Let (X, d) be a complete metric space, S, T be mappings
of X into itself satisfying the inequalities

∫ d(STx,STy)

0

ϕ(t)dt ≤ c

∫ max{d(x,y),d(x,STx),d(y,STy),d(Tx,Ty)}

0

ϕ(t)dt,

∫ d(TSx,TSy)

0

ϕ(t)dt ≤ c

∫ max{d(x,y),d(x,TSx),d(y,TSy),d(Sx,Sy)}

0

ϕ(t)dt

for all x, y in X, where 0 ≤ c < 1 and ϕ satisfies (2.3). If T or S is
continuous, then ST has a unique fixed point u in X and TS has a
unique fixed point v in X. Further, Tu = v and Sv = u.

If S = T in Corollary 3 we have the following Corollary.

Corollary 4. Let (X, d) be a complete metric space and T be a con-
tinuous mapping of X into itself satisfying the inequality

∫ d(T 2x,T 2y)

0

ϕ(t)dt ≤ c

∫ max{d(x,y),d(x,T 2x),d(y,T 2y),d(Tx,Ty)}

0

ϕ(t)dt
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for all x, y in X, where 0 ≤ c < 1 and ϕ satisfies (2.3). Then, T has
a unique fixed point u in X.
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