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ORLICZ-POINCARÉ INEQUALITIES AND
EMBEDDINGS OF ORLICZ-SOBOLEV SPACES

ON METRIC SPACES

MARCELINA MOCANU

Abstract. The main result of this paper shows that an Orlicz-
Sobolev space with zero boundary values on a doubling metric mea-
sure space with homogeneous dimension s, corresponding to an Orlicz
function generalizing tq with q < s, is continuously embedded in an
Orlicz space generalizing Lq∗ , where q∗ = sq

s−q
. In order to prove this

embedding result, we use an optimal result of Heikkinen [18] describing
sharp self-improving properties of Orlicz-Poincaré inequalities in con-
nected metric spaces. We also prove an Orlicz-Poincaré inequality for
functions vanishing on large subsets of balls and some counterparts of
the results mentioned above for Orlicz-Sobolev spaces of HajÃlasz type.

1. Introduction

During the last fifteen years, the theory of Sobolev spaces has been
extended to the setting of metric measure spaces, including the study
of HajÃlasz spaces [12], Newtonian spaces [27], Cheeger spaces [9].

————————————–
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This extension was motivated by the study of several aspects of
geometric analysis and nonlinear potential theory, such as quasi-
conformal theory on Carnot groups, nonlinear potential theory with
weighted Sobolev spaces, analysis on fractals, potential theory on in-
finite graphs. Recently, the theory of Orlicz-Sobolev spaces has been
also extended to metric measure spaces [1], [29].

Sobolev inequalities and Sobolev-Poincaré inequalities play a very
important role in proving regularity properties, such as Harnack’s
inequality and Hölder continuity, for solutions to nonlinear degenerate
elliptic equations, as well for minimizers of variational integrals of
Dirichlet type. It is known that every Euclidean space Rn supports a
(1, 1)−Poincaré inequality, therefore, by Hölder’s inequality, supports
a (1, p)−Poincaré inequality for every p with 1 ≤ p < ∞. The
classical Sobolev embedding theorem for exponent below the dimen-
sion says that W 1,p (Rn) continuously embeds in Lnp/(n−p) (Rn) if
1 ≤ p < n. The corresponding Sobolev-Poincaré inequality shows that

(
1

µ(B)

∫
B

|u− uB|
np

n−p dµ

)(n−p)/np

≤ c(n, p)diam (B)

(
1

µ(B)

∫
B

|∇u|p dµ

)1/p

,

for every u ∈ W 1,p (B), where 1 ≤ p < n and B ⊂ Rn is a ball.
Throughout this paper we deal with a metric measure space

(X, d, µ), which is a metric space (X, d) equipped with a Borel regular
outer measure µ, that is finite and positive on balls.

Poincaré inequalities in doubling metric measure spaces have several
self-improving features.

In a doubling measure space a weak (1, q)−Poincaré inequality im-
plies a Sobolev-Poincaré inequality called weak (t, q)−Poincaré in-
equality, for some t > 1, as it was proved by HajÃlasz and Koskela
[13]. Let (X, d, µ) be a doubling metric measure space with a ho-
mogeneous dimension s. Assume that the pair (u, g) satisfies a weak
(1, q)−Poincaré inequality in X, with constants cP > 0 and τ ≥ 1 .
Then for every 1 ≤ t ≤ sq

s−q
if q < s and for every t ≥ 1 if q ≥ s the

pair (u, g) satisfies the weak (t, q)−Poincaré inequality
(1.1)


 1

µ(B)

∫

B

|u− uB|t dµ




1/t

≤ cr


 1

µ((1 + δ) τB)

∫

(1+δ)τB

gqdµ




1/q

,
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for every ball B = B(x, r) in X. Here δ > 0 is a constant and
c = c (s, Cs, CP , τ , δ) does not depend neither on B, nor on the pair
(u, g).

Moreover, if q > s then u has a locally Hölder continuous represen-
tative satisfying

|u(x)− u(y)| ≤ Crs/qd(x, y)1−s/q

(
1

µ(B(a,5τr))

∫
5τB

gqdµ

)1/q

for all x, y ∈ B, where B is an arbitrary ball of radius r and C > 0 is
a constant.

Tuominen introduced in [29] the Orlicz-Sobolev counterparts of the
weak (1, p)−Poincaré inequality and of the weak (p, p)−Poincaré in-
equality, namely the weak (1, Φ)−Poincaré inequality and the weak
(Φ, Φ)−Poincaré inequality, respectively. By Jensen’s inequality, it
follows that a (1, Φ)−Poincaré inequality follows

Heikinnen has proved in [18] that Orlicz-Sobolev inequalities have
sharp self-improving properties in connected metric spaces, extending
the above result of HajÃlasz and Koskela, but also some sharp inequal-
ities proved by Cianchi for Orlicz-Sobolev spaces on Rn in [6],[7],[8].

The aim of this paper is to prove a result similar to a generaliza-
tion of the weak (q, q)−Poincaré inequality for Newtonian spaces for
boundary values, in the case when the exponent q is smaller that the
homogeneous dimension s of the doubling metric space. This result
shows that an Orlicz-Sobolev space with zero boundary values, corre-
sponding to an Orlicz function generalizing tq with q < s, is continu-
ously embedded in an Orlicz space generalizing Lq∗ , where q∗ = sq

s−q

is the Sobolev conjugate of q. We compare this embedding result to
a (Φ, Φ)−Poincaré inequality for Orlicz-Sobolev functions with zero
boundary values, proved in [23]. Our main tool here is a part of
the result of Heikinnen [18, Theorem 1.7]. The main result, Theo-
rem 2 is based on an auxiliary result, Theorem 1 which provides an
Orlicz-Poincaré inequality for Orlicz-Sobolev functions vanishing on
large subsets of balls. Theorem 1 is a partial extension to the Orlicz-
Sobolev spaces of Lemma 2.1 proved in [21] for Newtonian spaces.
Finally, we prove some counterparts of Theorem 1 and Theorem 2 for
Orlicz-Sobolev spaces of HajÃlasz type, using a (Φ, Φ)−Orlicz-Sobolev
inequality proved by Aı̈ssaoui in [3].
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2. Preliminaries

Let us recall some important notions from the theory of Orlicz
spaces [25]. A function Ψ : [0,∞] → [0,∞] is called a Young function
if it has the form

Ψ (t) =

t∫

0

ψ(s)ds, t ∈ [0,∞),

where ψ : [0,∞] → [0,∞] is increasing, left-continuous, neither iden-
tically zero nor identically infinite on (0,∞). An N−function is a
continuous Young function Ψ : [0,∞] → [0,∞] satisfying Ψ(t) = 0

only if t = 0, lim
t→∞

Ψ(t)
t

= ∞ and lim
t→0

Ψ(t)
t

= 0.

For each Young function Ψ, the complementary function Ψ̂ is defined
by

Ψ̂ (s) = sup {st−Ψ(t) : t ≥ 0} .

The complementary function Ψ̂ of a Young function Ψ is also a

Young function, and Ψ is the complementary function of Ψ̂.
A Young function Ψ : [0,∞) → [0,∞) said to to satisfy a

∆2−condition if there is a constant CΦ > 0 such that Φ(2t) ≤ CΦΦ(t)
for every t ∈ [0,∞). A Young function satisfying a ∆2−condition
is called doubling (globally). Every doubling Young function is
strictly increasing and continuous. The ∆2−condition for an increas-
ing Young function Φ implies the power growth estimate: Φ(λt) ≤
CΦλlog2 CΦΦ(t), for all λ ≥ 1, t ≥ 0.

Let Ψ : [0,∞] → [0,∞] be a Young function. Let (X,A, µ) be a
measure space with µ a complete and σ−finite measure and let Ω ⊂ X
be an open set.

The Orlicz space LΨ(Ω) is defined by

LΨ(Ω) =



u : Ω → [−∞,∞] : u measurable,

∫

Ω

Ψ(λ |u|)dµ < ∞ for some λ > 0



 .

The Orlicz space LΨ(Ω) is a Banach space with the Luxemburg norm
defined by

‖u‖LΨ(Ω) = inf



k > 0 :

∫

Ω

Ψ

( |u|
k

)
dµ ≤ 1



 .
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An equivalent norm on LΨ(Ω), called the Orlicz norm, is defined by

|u|LΨ(Ω) = sup





∫

Ω

|uv| dµ : v : Ω → [−∞,∞],

∫

Ω

Ψ(|v|)dµ ≤ 1



 .

Recall the following formulas for the Luxemburg norm, respectively
for the Orlicz norm of a characteristic function . Let Φ be a Young

function and let Φ̂ be its complementary Young function. Suppose
that A ⊂ X with 0 < µ (A) < ∞. Then the Luxemburg norm of χA is

(2.1) ‖χA‖LΦ (X) = 1/Φ−1

(
1

µ(A)

)

and the Orlicz norm of χA is

(2.2) |χA|LΦ̂(X) = µ(A)Φ−1

(
1

µ(A)

)
,

We use the strongest form of the generalized Hölder’s inequality for

a pair of complementary Young functions Φ and Φ̂ [26, Theorem 8,
page 17]:

(2.3)

∫

X

|u(x)v(x)| dµ ≤ ‖u‖LΦ(X) |v|LΦ̂(X)

Remark 1. Since µ is finite on balls, for every doubling N−function
Φ : [0,∞) → [0,∞) we have LΦ(X) ⊂ L1

loc(X), by [25, Proposition
3.1.7].

Definition 1. The measure µ on the metric space (X, d, µ) is said to
be doubling if there is a constant Cd ≥ 1 such that

(2.4) µ(B(x, 2r)) ≤ Cdµ(B(x, r))

for every ball B(x, r) ⊂ X.

For every doubling measure µ there are some positive constants Cs

and s so that

(2.5)
µ(B(x, r))

µ(B(x0, r0))
≥ Cs

(
r

r0

)s

,

for all 0 < r ≤ r0 and x ∈ B(x0, r0). Here s is called a homogeneous
dimension of the metric measure space X.
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The doubling property of the measure allows several extensions the
setting of metric measure spaces of some classical results, such as Vitali
covering theorem, Lebesgue’s differentiation theorem and the maximal
function theorem [16]. In harmonic analysis, doubling metric measure
spaces are extensively used and are called homogeneous spaces [10].

We cannot speak of weak partial derivatives for a real function de-
fined on a general metric space. A substitute for the norm of the
gradient in analysis on metric measure spaces is the concept of upper
gradient, introduced by Heinonen and Koskela in [17]. Let u be a
real-valued function on a metric measure space X. A Borel function
g : X → [0, +∞] is said to be an upper gradient of u in X if

(2.6) |u(γ(1))− u(γ(0))| ≤
∫

γ

g ds,

for every compact rectifiable path γ : [0, 1] → X.
Upper gradients are unstable under changes µ−a.e. and under lim-

its, therefore a more general notion of weak upper gradient, which
is more flexible, is more apropriate for the purposes of the analysis
on metric measure spaces [15]. The notion of weak upper gradient is
defined with respect to a Banach function space and is essential in in-
troducing and studying some Sobolev-type spaces on metric measure
spaces.

Let (X, Σ, µ) be a complete σ−finite measure space and M+(X)
be the collection of all measurable functions f : X → [0, +∞]. Let
N : M+(X) → [0,∞] be a Banach function norm [4]. The collec-
tion B of the µ−measurable functions f : X → [−∞, +∞] for which
N(|f |) < ∞ is called a Banach function space on X. For f ∈ B define
‖f‖B = N(|f |). Then (B, ‖·‖B) is a complete normed space. Some
important examples of Banach function spaces are Lebesgue spaces,
Orlicz spaces, Lorentz spaces and Marcinkiewicz spaces.

Let (B, ‖·‖B) be a Banach function space corresponding to a metric
measure space (X, d, µ).

A function g : X → [0,∞] is said to be a HajÃlasz gradient of u if
there exists a set E ⊂ X with µ(E) = 0 such that |u(x)− u(y)| ≤
d(x, y)[g(x) + g(y)] for every x, y ∈ X r E. The Sobolev-type space
M1,B(X) is defined to be the space of functions u ∈ B having a HajÃlasz
gradient in B. The space M1,B(X) is a Banach space with the norm
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‖u‖M1,B(X) = ‖u‖B +inf ‖g‖B, where the infimum is taken over all the
HajÃlasz gradients g of u satisfying g ∈ B.

The spaces M1,B(X) were introduced for the first time for B = Lp

by HajÃlasz [12], starting from a Lipschitz-like pointwise estimate for
Sobolev functions on Euclidean domains, and the extension to the case
B = LΨ has been made by Aı̈ssaoui [3].

The notion of modulus of a path family is indispensable in order
to define the extensions to metric measure spaces, based on upper
gradients,of Sobolev spaces and Orlicz-Sobolev spaces.

Definition 2. Let Γ be a family of paths in X. The B−modulus of the
family Γ, denoted by MB(Γ) is definde to be the number inf ‖ρ‖B ,where
the infimum is taken over all Borel functions ρ : X → [0, +∞] such

that

∫

γ

ρds ≥ 1 for all locally rectifiable paths γ ∈ Γ.

B−modulus is an outer measure on the family of all paths in X [24].
The notion of modulus is fundamental for quasiconformal theory, both
in the Euclidean setting and in the metric measure space setting.

Definition 3. Let u be a real-valued function on a metric measure
space X. A Borel function g : X → [0, +∞] is a B−weak upper
gradient of u if (2.6) holds for all compact rectifiable paths γ : [0, 1] →
X except for a path family Γ0 in X with MB (Γ0) = 0.

The collection Ñ1,B(X) of all functions u ∈ B having a B−weak

upper gradient g ∈ B is a vector space. For u ∈ Ñ1,B(X) de-
fine ‖u‖1,B = ‖u‖B + infg ‖g‖B, where the infimum is taken over
all B−weak upper gradients g ∈ B of u. The seminormed space

(Ñ1,B(X), ‖·‖1,B) is turned into a normed space via the equivalence

relation: u ∼ v ⇔ ‖u− v‖1,B = 0. It turns out that N1,B(X) =

Ñ1,B(X)/ ∼ is a Banach space with the norm ‖u‖N1,B := ‖u‖1,B [24].

The space N1,B(X) was introduced and studied for the first time for
B = Lp (X) by Shanmugalingam [28], as a Sobolev-type space called
Newtonian space, which is denoted by N1,p(X). The extension to the
case B = LΨ (X) was made by Tuominen [29] and by Aı̈ssaoui [1], by
introducing and studying the Orlicz-Sobolev space N1,Ψ (X).

Note that in the case where X = Ω ⊂ Rn is a domain and
B = LΨ(X), with Ψ a doubling Young function, it turns out that
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N1,B(X) = W 1,Ψ(Ω) as Banach spaces and the norms are equivalent
[29, Theorem 6.19].

A capacity with respect to the space N1,B(X), called B−capacity,
is defined by

CapB(E) = inf{‖u‖N1,B : u ∈ N1,B(X), u ≥ 1 on E}.
The B−capacity CapB is an outer measure on X and represents the
correct gauge for distinguishing between two functions in N1,B(X)
[24]. In the case B = LΨ(X) the B−capacity is denoted by CapΨ and
is called Ψ−capacity [29].

We will use Orlicz-Sobolev spaces with zero boundary values
N1,Ψ

0 (E) with E ⊂ X [23]. We define the Banach-Sobolev spaces

with zero boundary values N1,B
0 (E) with E ⊂ X, where B is a Ba-

nach function space. In the case B = LΨ (X) we denote N1,B
0 (E) by

N1,Ψ
0 (E).
In the setting of metric measure spaces various Sobolev-type spaces

with zero boundary values have been introduced, as follows: HajÃlasz-
Sobolev spaces M1,p

0 by Kilpeläinen, Kinnunen and Martio in [19],
Newtonian space N1,p

0 by Shanmugalingam in [28], [27], Orlicz-Sobolev

spaces M1,Φ
0 , N1,Φ

0 by Aı̈ssaoui [2] and Banach-Sobolev spaces M1,B
0 ,

N1,B
0 in [24].

Denote by Ñ1,B
0 (E) be the collection of functions u : E → R for

which there exists u ∈ Ñ1,B(X) such that u = u µ−a.e. on E and

CapB({x ∈ X\E : u(x) 6= 0}) = 0. If u, v ∈ Ñ1,B
0 (E) define u ' v if

u = v µ−a.e. on E. Then ' is an equivalence relation. We consider

the quotient space N1,B
0 (E) = Ñ1,B

0 (E)/ '. A norm on N1,B
0 (E) is

unambiguously defined by ‖u‖N1,B
0 (E) := ‖u‖N1,B(X).

For u : E → R we denote by ũ the extension by zero to X, defined
by ũ(x) = u(x) if x ∈ E and ũ(x) = 0 if x ∈ X \ E.

If u ∈ Ñ1,B(X) corresponds to u ∈ Ñ1,B
0 (E) as in the above defini-

tion, define ˜̃u(x) = u(x) if x ∈ E and ˜̃u(x) = 0 if x ∈ X \ E. Since
˜̃u = u in the complement of a set of B−capacity zero, it follows that
˜̃u ∈ Ñ1,B(X) and ˜̃u defines the same equivalence class in N1,B(X) as
u.

Roughly speaking, for an open set E we have u ∈ N1,B
0 (E) if u has

an extension belonging to N1,B(X) and vanishing on the boundary of
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E. Every Lipschitz function with compact support in an open set
Ω ⊂ X belongs to N1,B

0 (Ω). It turns out that N1,B
0 (E) is a closed

subspace of the Banach space N1,B(X).
Similarly, we can generalize the definition given by Aı̈ssaoui in [2] to

the Orlicz-Sobolev space with zero boundary values M1,Φ
0 (E), based

on the notion of HajÃlasz gradient. A capacity with respect to the space
M1,B(X) is defined by

CB(E) = inf{‖u‖N1,B : u ∈ M1,B(X), u ≥ 1 on a neighborhood of E}.
A function u : X → [−∞,∞] is said to be CB-quasicontinuous in X
if for every ε > 0 there is a set E ⊂ X such that CB(E) < ε and the
restricion of u to X \ E is continuous.

We say that u ∈ M1,B
0 (E) if there is a CB-quasicontinuous func-

tion u ∈ M1,B(E) such that u = u µ−a.e. on E and CB({x ∈
X\E : u(x) 6= 0}) = 0. In the case B = LΦ (X) we have

M1,B
0 (E) = M1,Φ

0 (E).
In the classical theory of Sobolev spaces on Rn, a (1, p)−Poincaré

inequality provides a control on the average oscillation of a function
on a ball in terms of the average value of the p-th power of the gradi-
ent. The (1, p)−Poincaré inequality was extended to metric measure
spaces, being an important tool in dealing with quasiconformal theory
and nonlinear potential theory in this general setting.

Denote the mean value of a function u ∈ L1(A) over A by uA :=

1
µ(A)

∫

B

udµ, where 0 < µ(A) < ∞. For a ball B = B(x, r) we denote

τB = B(x, τr).

Definition 4. [14] Let Ω be an open subset of the metric measure space
X. A pair formed by u ∈ L1

loc(Ω) and a Borel measurable function
g : Ω → [0,∞] is said to satisfy a weak (1, p)−Poincaré inequality,
1 ≤ p < ∞, in Ω if there exist some constants CP > 0 and τ ≥ 1 such
that for every ball B = B(x, r) satisfying τB ⊂ Ω,

1

µ(B)

∫

B

|u− uB| dµ ≤ CP r


 1

µ(τB)

∫

τB

gp dµ




1/p

.

It is said that Ω supports a weak (1, p)−Poincaré inequality if the
above inequality holds for every u ∈ L1

loc(Ω) and every upper gradi-
ent g of u, with fixed constants CP and τ . We may replace in the
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above definition upper gradients by p−weak upper gradients, since
every p−weak upper gradient can be approximated in Lp−norm by a
sequence of upper gradients [15, Lemma 2.4].

The weak (1, p)− Poincaré inequality has been generalized for
Orlicz-Sobolev spaces by Tuominen, as follows:

Definition 5. [29, Definition 5.2] Let Φ : [0,∞) → [0,∞) be a strictly
increasing Young function and Ω ⊂ X an open set. We say that a
function u ∈ L1

loc(Ω) and a Borel measurable non-negative function
g on Ω satisfy a (1, Φ)−weak Poincaré inequality in Ω if there exist
some constants CP,Φ > 0 and τ ≥ 1 such that

(2.7)
1

µ(B)

∫

B

|u− uB| dµ ≤ CP,ΦrΦ−1


 1

µ(τB)

∫

τB

Φ(g)dµ


 .

for each ball B = B(x, r) satisfying τB ⊂ Ω. It is said that Ω supports
a weak (1, Ψ)−Poincaré inequality if the above inequality holds for
each function u ∈ L1

loc(Ω) and every upper gradient g of u, with fixed
constants.

Remark 2. Every Φ−weak upper gradient can be approximated in
LΦ−norm by a sequence of upper gradients [29, Lemma 4.3]. If Φ is
doubling, we may replace in the above definition upper gradients by
Φ−weak upper gradients.

Suppose that X supports a weak (1, Φ)−Poincaré inequality. Then
small spheres in X are non-empty: for each x ∈ X and every
r > 0 such that B (x, r) 6= X, there is a point on the sphere
S (x, r) = {y ∈ X : d (y, x) = r}. If S (x, r) would be empty, then
the ball B (x, r) would be pathwise disconnected from X \ B (x, r).
The characteristic function u = χB(x,r) would have zero as a Φ−weak
upper gradient, since for every path γ : [0, 1] → X we have either
{γ (0), γ (1))} ⊂ B (x, r) or {γ (0), γ (1))} ⊂ X \ B (x, r), therefore
|u (γ (1))− u (γ (0))| = 0. Let B = B (x,R), where R > r is such

that B (x,R) \ B (x, r) 6= ∅. Then uB = µ(B(x,r))
µ(B)

< 1. By the weak

(1, Φ)−Poincaré inequality for the pair (u, g) on B, where u = χB(x,r)

and g = 0, we have

∫

B

|u− uB| dµ ≤ 0. Then u = uB µ − a.e. on B,

which is false, since u = 1 on the set of positive measure B (x, r). It
follows that S (x, r) is non-empty.
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3. Poincaré inequalities for Orlicz-Sobolev functions
with zero boundary values and an embedding result

Let s > 1. Denote s′ = s
s−1

. In the following, we assume that Φ is
a Young function satisfying

(3.1)

1∫

0

(
t

Φ(t)

)s′−1

dt < ∞ and

∞∫

1

(
t

Φ(t)

)s′−1

dt = ∞,

As in [5] and [18], consider Ψs(r) =




r∫

0

(
t

Φ(t)

)s′−1

dt




1/s′

. Then,

define Φs = Φ ◦Ψ−1
s .

The following result is a part of Theorem 1.7 in [18, Theorem
1.7], which extends to Orlicz-spaces the result of HajÃlasz and Koskela
[13, Theorem 5.1] saying that ” in a doubling measure space a weak
(1, p)−Poincaré inequality implies a weak (t, p)−Poincaré inequality”,
where t is smaller than a homogeneous dimension of the doubling met-
ric space.

Lemma 1. [18, Theorem 1.7] Assume that (X, d, µ) is doubling and
supports a weak (1, Φ)−Poincaré inequality 2.7). Let s be a homoge-
neous dimension of (X, d, µ). Let B be a ball of radius r,let δ > 0 and
let τ be the constant from the weak (1, Φ)−Poincaré inequality and

B̂ = (1 + δ)τB.

If the Young function Φ satisfies (3.1), then N1,Φ(B̂) ⊂ LΦs(B).

Moreover, for every u ∈ N1,Φ(B̂) and every Φ−weak upper gradient g
of u, we have

(3.2) ‖u− uB‖LΦs(B) ≤ crµ(B)−1/s ‖g‖LΦ(B̂) .

Here c = c (s, Cs, CP,Φ, τ , δ) > 0 is a constant.

Remark 3. In the classical case of Lebesgue spaces, Φ(t) = tp, with
p ≥ 1, satisfies conditions (3.1) if and only if p < s. In this case we

have Ψs(r) = k1r
(s−p)/s, where k1 =

(
s−1
s−p

)(s−1)/s

. Hence we obtain

Φs(t) = ktsp/(s−p), where k = k
sp/(p−s)
1 .
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Theorem 1. Let X be a doubling metric measure space, with a homo-
geneous dimension s, supporting a weak (1, Φ)−Poincaré inequality,
where the Young function Φ satisfies (3.1). Assume that there exists
a decreasing function ϕ : (0, 1] → [1,∞) with ϕ (t) > 1 for every
0 < t < 1, such that Φ−1

s (λt) ≥ λϕ (λ) Φ−1
s (t) for all λ ∈ (0, 1] and

t ∈ [0,∞). Let B be a ball of radius r, δ > 0 and let τ be the constant

from the weak (1, Φ)−Poincaré inequality and B̂ = (1+δ)τB. Suppose
that u ∈ N1,Φ(X) and g is a Φ−weak upper gradient of u in X. Let
A = {x ∈ B : u(x) 6= 0}. If µ(A) ≤ γµ(B) for some γ with 0 < γ < 1,
then there is a constant C > 0 so that

(3.3) ‖u‖LΦs (B) ≤ Crµ(B)−1/s ‖g‖LΦ(B̂)

The constant C depends only on ϕ (γ) and on the constant c of (3.2).

Proof. By the subadditivity of Luxemburg’s norm,

(3.4) ‖u‖LΦs (B) ≤ ‖u− uB‖LΦs (B) + ‖uB‖LΦs (B) .

By (2.1),

(3.5) ‖uB‖LΦs(B) =
|uB|

Φ−1
s

(
1

µ(B)

) ≤ 1

µ (B) Φ−1
s

(
1

µ(B)

)
∫

B

|u| dµ =

=
1

µ (B) Φ−1
s

(
1

µ(B)

)
∫

A

|u| dµ.

Using Hölder’s inequality (2.3) and the monotonicity of Luxemburg’s
norm, we get ∫

A

|u| dµ ≤ ‖u‖LΦs (B) |χA|LΦ̂s(X)
.

Using (2.1), this implies

(3.6)

∫

A

|u| dµ ≤ µ(A)Φ−1
s

(
1

µ(A)

)
‖u‖LΦs (B) .

Using (3.4), (3.5) and (3.6), we obtain

(3.7)


1−

Θs

(
1

µ(A)

)

Θs

(
1

µ(B)

)

 ‖u‖LΦs (B) ≤ ‖u− uB‖LΦs (B) .
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Here we denoted Θs(t) = 1
t
Φ−1

s (t). Since the function Φs is con-
vex, the function Θs is decreasing. By our assumption, Φ−1

s (λt) ≥
λϕ (λ) Φ−1

s (t) for all λ ∈ (0, 1] and t ∈ [0,∞). It follows that
Θs(λt) ≥ λΘs(t) whenever λ ∈ (0, 1] and t ∈ [0,∞). In particular,

Θs

(
1

µ(B)

)
≥ Θs

(
γ

µ(A)

)
≥ ϕ (γ) Θs

(
1

µ(A)

)
. Then (3.7) implies

‖u‖LΦs (B) ≤
ϕ (γ)

ϕ (γ)− 1
‖u− uB‖LΦs (B) .

By Heikkinen’s result (3.2), the above inequality implies

‖u‖LΦs(B) ≤ Crµ(B)−1/s ‖g‖LΦ(B̂) ,

where C = c ϕ(γ)
ϕ(γ)−1

.

Corollary 1. Let X be a doubling metric measure space, with a ho-
mogeneous dimension s and supporting a weak (1, q)−Poincaré in-
equality, where 1 ≤ q < s. Let B be a ball of radius r. Suppose
that u ∈ N1,q(X) and g is a q−weak upper gradient of u in X. Let
A = {x ∈ B : u(x) 6= 0}. If µ(A) ≤ γµ(B) for some γ with 0 < γ < 1,
then there is a constant C ′ > 0 so that

(3.8)


 1

µ(B)

∫

B

|u|q∗ dµ




1
q∗

≤ C ′r


 1

µ(B̂)

∫

B̂

|g|q dµ




1/q

.

Here q∗ = sq
s−q

and B̂ = (1 + δ)τB, where δ > 0 and τ are as in

(1, q)−Poincaré inequality (1.1). The constant C ′ depends only on
s, q, γ and on cP of the (1, q)−Poincaré inequality .

Proof. Take Φ(t) = tq in the above theorem. Since 1 ≤ q < s, con-
ditions (3.1) are satisfied. We have Φs(t) = k (s, q) tq

∗
, where k (s, q) =(

s−q
s−1

) q(s−1)
s−q . By (3.3), (k (s, q))1/q∗ ‖u‖Lq∗ (B) ≤ Crµ(B)−1/s ‖g‖Lq(B̂),

hence


 1

µ(B)

∫

B

|u|q∗ dµ




1
q∗

≤ (k (s, q))−1/q∗ Cr


 1

µ(B)

∫

B̂

|g|q dµ




1/q

.



154 MARCELINA MOCANU

By the doubling property of the measure (2.4), µ(B̂) ≤
Cd ((1 + δ)τ)log2 Cd . Then the above inequality implies (3.8), where

C ′ = (k (s, q))−1/q∗ C
(
Cd ((1 + δ)τ)log2 Cd

)1/q

.

Note that, by Hölder’s inequality, (3.8) implies


 1

µ(B)

∫

B

|u|t dµ




1
t

≤ C ′r


 1

µ(B̂)

∫

B̂

|g|q dµ




1/q

for all 1 ≤ t ≤ q∗. This shows that Theorem 1 partially extends
Lemma 2.1 of [21] from Newtonian spaces to Orlicz-Sobolev spaces.
The term ”partially” refers to the fact that in Lemma 2.1 of [21] the
case t > q∗ was also covered. On the other hand, in Lemma 2.1 of
[21] it was assumed that u ∈ N1,p (X) for some p > q, but it suffices
to assume that u ∈ N1,q (X).

Remark 4. We assumed in Theorem 1 that there exists a decreasing
function ϕ : (0, 1] → [1,∞) with ϕ (t) > 1 for every 0 < t < 1, such
that

(3.9) Φ−1
s (λt) ≥ λϕ (λ) Φ−1

s (t)

for all λ ∈ (0, 1] and t ∈ [0,∞). This condition is satisfied in the

classical case, where Φ(t) = tq, since then Φ−1
s (λt)

λΦ−1
s (t)

= λ(1−q∗)/q∗ is

decreasing in λ > 0 and is greater than 1 for all λ ∈ (0, 1].

Lemma 2.1. of [21] implies the following Poincaré inequality for
Newton-Sobolev functions with zero boundary values [21, p. 407]:

there exists c > 0 such that for every ball B = B (z, r) with 0 <
r < diam(X)/3 and every u ∈ N1,q

0 (B) we have

 1

µ(B)

∫

B

|u|t dµ




1/t

≤ cr


 1

µ(B)

∫

B

|gu|q dµ




1/q

Here 1 ≤ t ≤ sq
s−q

if q < s and t ≥ 1 if q ≥ s.

We extend the above inequality to the setting of Orlicz-Sobolev
spaces. We need a result that guarantees that, extending with zero a
weak upper gradient of a function in an Orlicz-Sobolev space with zero
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boundary values, we get a weak upper gradient of a representative of
the extension with zero of the function.

Recall that a metric space is called proper if every closed ball is
compact.

Lemma 2. [23] If Φ : [0,∞) → [0,∞) is a doubling N−function
and X is proper, doubling and supporting a weak (1, Φ)−Poincaré

inequality, then LipC (Ω) is a dense subspace of N1,Φ
0 (Ω), for every

open set Ω ⊂ X.

A consequence of the above density result is

Corollary 2. [23]. If u ∈ N1,Φ
0 (Ω) has an upper gradient g ∈ LΦ (Ω)

in the open set Ω, then the function g̃ is a Φ−weak upper gradient of
˜̃u in X.

Theorem 2. Let X be a doubling metric measure space, with a homo-
geneous dimension s, proper and supporting a weak (1, Φ)−Poincaré
inequality, where Φ is a doubling N−function satisfying (3.1). As-
sume that there exists a decreasing function ϕ : (0, 1] → [1,∞) with
ϕ (t) > 1 for every 0 < t < 1, such that Φ−1

s (λt) ≥ λϕ (λ) Φ−1
s (t)

for all λ ∈ (0, 1] and t ∈ [0,∞). Let B be a ball of radius r,with

0 < r <diam(X)/3. Suppose that u ∈ N1,Φ
0 (B) and g is a Φ−weak

upper gradient of u in B.Then

(3.10) ‖u‖LΦs(B) ≤ Crµ(B)−1/s ‖g‖LΦ(B) .

Here C > 0 is the constant of (3.3).

Proof. We may assume without loss of generality that g is
an upper gradient of u in B. Indeed, assume that (3.10) holds
under this assumption. For every Φ−weak upper gradient g of u
in B there is a decreasing sequence of upper gradients (gn)n≥1 of
u in B, such that lim

n→∞
‖gn − g‖LΦ(X) = 0. By our assumption,

‖u‖LΦs (B) ≤ Crµ(B)−1/s ‖gn‖LΦ(B) for every n ≥ 1 and letting n tend

to infinity we get (3.10).
Let g̃ be the extension with zero of g to X. Let u ∈ N1,Φ(X) such

that u = u µ−a.e. on B and CapΦ({x ∈ X \ B : u(x) 6= 0}) = 0.
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Define ˜̃u(x) = u(x) if x ∈ B and ˜̃u(x) = 0 if x ∈ X \ B. Then ˜̃u = u
in N1,Φ(X). According to Corollary 2, g̃ is a Φ−weak upper gradient

of ˜̃u in X.
Denote B = B (z, r). Since X supports a weak (1, Φ)−Poincaré

inequality and B (z, 2r) 6= X, it follows that the sphere S(z, 2r)
is non-empty. Let y ∈ S (z, 2r). Since B (y, r) ⊂ B (z, 3r) ∩
(X \B (z, r)), clearly µ (B (z, 3r)) ≥ µ (B (z, r)) + µ (B (y, r)). By
(2.5), µ (B (y, r)) ≥ Cs3

−sµ (B (z, 3r)). The latter two inequalities
imply µ (B (z, r)) ≤ (1− Cs3

−s) µ (B (z, 3r)). Denoting A = {x ∈
B (z, 3r) : u(x) 6= 0}, we have A ⊂ B (z, r). Then

µ(A) ≤ γµ(B (z, 3r)),

where γ = (1− Cs3
−s), 0 < γ < 1.

By Theorem 1,∥∥∥˜̃u
∥∥∥

LΦs (B(z,3r))
≤ Crµ(B (z, 3r))−1/s ‖g̃‖LΦ(B(z,3(1+δ)τr)) .

Taking account that
∥∥∥˜̃u

∥∥∥
LΦs (B(z,3r))

= ‖u‖LΦs (B(z,r)), that

‖g̃‖LΦ(B(z,3(1+δ)τr)) = ‖g‖LΦ(B(z,r)) and µ(B (z, 3r))−1/s <

µ(B (z, 3r))−1/s, the above inequality yields (3.10).

Remark 5. Theorem 2 says that N1,Φ
0 (B) ⊂ LΦs(B) as a continuous

embedding, under the given assumptions.

Next we compare inequality (3.10) with the following
(Φ, Φ)−Poincaré inequality proved in [23, Theorem 2]:

(3.11)

∫

Ω

Φ

( |u|
r

)
dµ ≤ C

∫

Ω

Φ(g)dµ.

Inequality (3.11) holds under the following assumptions. X is a
proper metric space, equipped with a doubling measure, supporting
a weak (1, Ψ)−Poincaré inequality for some strictly increasing Young
function Ψ. Here Φ is a doubling N− function, such that Φ◦Ψ−1 is an

N−function satisfying a ∇2-condition. Ω = B(x, r) with r < diam(X)
3

,

u ∈ N1,Ψ
0 (Ω) and g ∈ LΨ(Ω) is Ψ−weak upper gradient of u in Ω. The

constant C > 0 does not depend on u or on Ω.
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Theorem 2 of [23] implies the following inequality:

(3.12) ‖u‖LΦ(Ω) ≤ C0 diam(Ω) ‖g‖LΦ(Ω) .

Here the Young functions Φ, Ψ and the metric measure space X
satisfy the conditions stated above. Ω is a bounded open non-empty
set with diam(Ω) < diam(X)/3, u ∈ N1,Φ

0 (Ω) and g ∈ LΦ(Ω) is
a Ψ−weak upper gradient of u in Ω.The constant C0 > 0 does not
depend on u or on Ω.

Definition 6. Let Φ1, Φ2 : [0,∞) be Young functions. It is said that
Φ2 dominates Φ1 near infinity if there exist two positive constants c, T
such that

Φ1 (t) ≤ Φ2 (ct) for all t ≥ T .

Lemma 3. [25] Let Φ1, Φ2 : [0,∞) be Young functions. If µ (X) < ∞
and Φ2 dominates Φ1 near infinity, then LΦ2 (X) is continuously em-
bedded in LΦ1 (X). Moreover, there exists a constant M > 0 depend-
ing only on Φ1 and Φ2 such that ‖u‖LΦ1 (X) ≤ M ‖u‖LΦ2 (X) for all

u ∈ LΦ2 (X).

Lemma 4. Let Φ be a Young function satisfying (3.1) for some s > 1.
Then

a) Φs dominates Φ near infinity;
b) There exists a constant M = M (Φ1,Φ2) > 0 such that for every

bounded open set Ω in a metric measure space X,

‖u‖LΦ(Ω) ≤ M ‖u‖LΦs (Ω)

for all u ∈ LΦs (Ω) .

Proof.
a) The function Ψs is concave, therefore Ψs(t)

t
is decreasing on (0,∞).

Taking T = 1 and c = Ψs (1), we have Ψs(t) ≤ ct for all t ≥ T , hence
Φ(t) = Φs (Ψs(t)) ≤ Φs(ct) for all t ≥ T .

b) Let Ω ⊂ X be a bounded open set. Since µ (Ω) < ∞ and Φs

dominates Φ near infinity, LΦs (Ω) ⊂ LΦ (Ω). Moreover, the above
lemma shows that there exists M = M (Φ, s) > 0, not depending on
Ω, such that ‖u‖LΦ(Ω) ≤ M ‖u‖LΦs (Ω) for all u ∈ LΦs (Ω) .

Corollary 3. Under the assumptions of Theorem 2, there exists a
constant M > 0, depending only on Φ and s, such that
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(3.13) ‖u‖LΦ(B) ≤ MCrµ(B)−1/s ‖g‖LΦ(B) .

for every ball B of radius r,with 0 < r <diam(X)/3, whenever u ∈
N1,Φ

0 (B) and g is a Φ−weak upper gradient of u in B.

Note that inequalities (3.13) and (3.12) for Ω = B a ball of radius r
display some similarities, although different sets of assumptions have
been used in their proofs. Inequality (3.12) is more convenient for
applications to variational problems, since the coefficient of ‖g‖LΦ(Ω)

in right hand side does not depend on Ω. For balls with the measure
big enough, inequality (3.13) implies inequality (3.12) for Ω = B a
ball of radius r. For balls with the measure small enough, inequality
(3.12) for Ω = B a ball of radius r implies inequality (3.13).

We will prove some results similar to Theorem 1 and Theorem 2 for
HajÃlasz type Orlicz-Sobolev spaces.

The starting point is the following (Φ, Φ)−Orlicz-Sobolev inequality
proved by Aı̈ssaoui in [3], that plays here the role of (3.1).

Lemma 5. [3, Proposition 3.9] If Φ is an N−function, then for every
function u ∈ M1,Φ(X) with a HajÃlasz gradient g ∈ LΦ(X) and for
every measurable set E ⊂ X with 0 < µ(E) < ∞,

(3.14) ‖u− uE‖LΦ(E) ≤ 2 diam (E) ‖g‖LΦ(E) .

Compared to (3.14) inequality (3.1) has been obtained at the ex-
pense of many additional assumptions and has a much more compli-
cated proof.

Proposition 1. Let X be a metric measure space. Assume that Φ is
a strictly increasing Young function for which there exists a decreasing
function ϕ : (0, 1] → [1,∞) with ϕ (t) > 1 for every 0 < t < 1, such
that Φ−1

s (λt) ≥ λϕ (λ) Φ−1
s (t) for all λ ∈ (0, 1] and t ∈ [0,∞).

Let Ω be an open bounded non-empty set. Suppose that u ∈ N1,Φ(X)
and g is a Φ−weak upper gradient of u in X. Let A = {x ∈ Ω : u(x) 6=
0}. If µ(A) ≤ γµ(B) for some γ with 0 < γ < 1, then

(3.15) ‖u‖LΦ(Ω) ≤ 2
ϕ (γ)

ϕ (γ)− 1
diam (Ω) ‖g‖LΦ(Ω) .
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Proof. As in the proof of Theorem 1, we obtain

(3.16)


1−

Θ
(

1
µ(A)

)

Θ
(

1
µ(Ω)

)

 ‖u‖LΦ(Ω) ≤ ‖u− uΩ‖LΦ(Ω) .

Here we denoted Θ(t) = 1
t
Φ−1 (t).

By our assumptions on Φ−1 and A, Θ
(

1
µ(Ω)

)
≥ Θ

(
γ

µ(A)

)
≥

ϕ (γ) Θ
(

1
µ(A)

)
, therefore (3.16) implies

‖u‖LΦ(Ω) ≤
ϕ (γ)

ϕ (γ)− 1
‖u− uΩ‖LΦ(Ω) .

Using (3.14) the above inequality implies (3.15).

Corollary 4. Let X and Φ be as in the above Proposition. Assume
that the sphere S (x,R) is nonempty whenever B (x,R) 6= X. Suppose
that B = B (z, r) ⊂ X is a ball with 0 < r < diam(X)/3. If u ∈
M1,Φ

0 (B) and g ∈ LΦ(X) is a HajÃlasz gradient in X of the extension
u ∈ M1,Φ(X) of u, then

(3.17) ‖u‖LΦ(B(z,r)) ≤ 12
ϕ (γ)

ϕ (γ)− 1
r ‖g‖LΦ(B(z,3r))

Proof. For u ∈ M1,Φ
0 (B) consider the extension u ∈ M1,Φ(X) of u

such that u = u µ−a.e. in B and CΦ ({x ∈ X \B : u (x) 6= 0}) = 0.
Denote by g a Hajlasz gradient of u in X. Since CΦ(E) = 0 implies
µ (E) = 0, by [3, Lemma 5.1], we have u = 0 µ−a.e. in X \B. Denote
A = {x ∈ B (z, 3r) : u(x) 6= 0}. There exists a set A1 ⊂ B (z, 3r) with
µ (A1) = 0 such that A ⊂ B (z, r) ∪ A1, hence µ(A) ≤ µ(B (z, r)).

As in the proof of Theorem 2, taking a point y ∈ S (z, 2r) we con-
clude that

µ(B (z, r)) ≤ γµ(B (z, 3r)),

where γ = (1− Cs3
−s), 0 < γ < 1. Then µ(A) ≤ γµ(B (z, 3r)).

By the above Proposition, ‖u‖LΦ(B(z,3r)) ≤ 12r ϕ(γ)
ϕ(γ)−1

‖g‖LΦ(B(z,3r)).

But ‖u‖LΦ(B(z,3r)) = ‖u‖LΦ(B(z,R)), therefore (3.17 ) follows.
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Remark 6. If u ∈ M1,Φ
0 (B) has a HajÃlasz gradient g ∈ LΦ(B), it

is not true in general that the extension to X with zero g̃ of g is a
HajÃlasz gradient of u. If under some additional assumptions on the
balls in X the extension property from Corollary 2 would be true for
M1,Φ

0 , then we would obtain from (3.17 )

‖u‖LΦ(B(z,r)) ≤ 12
ϕ (γ)

ϕ (γ)− 1
r ‖g‖LΦ(B(z,r)).
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Poincaré inequalities in connected metric measure spaces, Preprint
327, Department of Mathematics and Statistics, University of Jyväskylä,
2006.
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