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LIPSCHITZ CONTINUITY FOR MULTI-SUBLINEAR
COMMUTATOR OF SOME INTEGRAL OPERATOR

CHEN QIONG AND LIU LANZHE

Abstract: In this paper, we will study the continuity for some
multi-sublinear commutator related to certain integral operator and
to a vector Lipschiz function, on Lebesgue spaces, Triebel-Lizorkin
spaces, Hardy space and Herz-Hardy spaces.

1. INTRODUCTION

Let T be a Calderén-Zygmund operator. A well known result of
Coifman, Rochberg and Weiss (see [4]) states that the commutator
16, T)(f)(x) = b(z)T(f)(x) — T(bf)(z) (where b € BMO) is bounded
on LP(R™) for 1 < p < oo. Chanillo (see [2]) proves a similiar re-
sult when 7" is replaced by the fractional operators. In [6][14], Janson
and Paluszynski study these result for the Triebel-Lizorkin spaces and
the case b € Lipg, where Lipg is the homogeneous Lipschitz space.
In this paper, we will introduce some multi-sublinear commutator re-
lated to certain integral operator, then prove the continuity for the
multilinear commutator and b on Triebel-Lizorkin space, Hardy space
and Herz-Hardy space, where b € Lipg. The integral operators include
the Littlewood-Paley operator, Marcinkiewicz operator and Bochner-
Riesz operator.

Keywords and phrases: Multi-sublinear commutator; Integral
operator; Triebel-Lizorkin space; Herz-Hardy space; Herz space;
Lipschitz space.
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226 C.QIONG AND L.LANZHE

2. DEFINITIONS AND RESULTS

Throughout this paper, M(f) will denote the Hardy-Littlewood
maximal function of f, and write M,(f) = (M(f?))}? for 0 < p < oo,
( will denote a cube of R™ with side parallel to the axes. Let fo =
QI f, f(x)dz and f#(z) = supgs, |Q [, [F(y) — foldy. Denote
the Hardy spaces by HP(R™). It is well known that H?(R")(0 < p < 1)
has the atomic decomposition characterization (see [10][15]). For
G >0andp>1, let FI;@"X’ be the homogeneous Tribel-Lizorkin space.
The Lipschitz space Lipz(R") is the space of functions f such that

1/1|zips = sup 1/ (@) = F(y)l < 00

syern v —ylP
Ay

Definition 1. Let 0 < p, ¢ < o0, @ € R, By = {z € R",|z| <
28y A = Bi\Bi_1 and Y, = xa; for k € Z, where yp denote the
characteristic function of the set E.

1) The homogeneous Herz space is defined by

KgP(RY) = {f € L (R"\{0}) : ||fl| gz < 00},

where
oo

1/p
2. 2’““p|\kawzq] ;

k=—00

lliegr =

2) The nonhomogeneous Herz space is defined by
KGPRY) = {f € LLoo(R") : [[fllxger < 00},

where
o0

1/p
|1l geor = [Z 25| | Fxul b + ||fxBO||fzq] .

k=1
Definition 2. Let a € R, 0 < p,q < o0.
(1) The homogeneous Herz type Hardy space is defined by
HEZPR") ={f € 8"): G(f) € KJ"(R")},
and

A mier = G| gors
(2) The nonhomogeneous Herz type Hardy space is defined by

HEZP(R") = {f € ") : G(f) € K;?(R")},
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and
[l arer = |G ko

where G(f) is the grand maximal function of f.

The Herz type Hardy spaces have the atomic decomposition char-
acterization.

Definition 3. Let a € R, 1 < ¢ < oo. A function a(z) on R"
is called a central («,q)-atom (or a central (a,q)-atom of restricted
type), if

1) Suppa C B(0,r) for some r > 0 (or for some r > 1),

%) lallee < [B(O,1)| /",

3)  Jgna(z)zdz =0 for [n| < [a —n(l—1/q)].

Let (z,y,t) — Fy(z,y) be a locally integrable function from R" x
R" x [0, +00) — R'. Set, for every bounded and compactly supported
function f,

F(f)(x) = / Fy(e,y) f(y)dy

n

and

F@ = [ I - bRy
Let H be the Banach space H = {h : ||h|| < oo} of real functions
defined on [0, +00) such that, for fixed f and fixed x € R™, Fy(f)(z)

and F?(f)(z) can be viewed as mappings from [0, +00) to H.

Definition 4. Suppose b; (j = 1,--- ,m) are fixed locally integrable
functions on R™. The multi-sublinear commutator related to Fj is
defined by

Ty(f) () = [|FE(f)(@)]],

where F} satisfies: for fixed € > 0

1 Fe (2, y)]| < Cla —y[™
and
|1F(y, z) — Fi(z, o)l| + ||[Fi(z, y) — Fy(z, 2)|| < Cly — 2|z — 2[ 7",
if 2|y — z| < |z — z|. We also define that T'(f)(x) = ||F:(f)(2)]|.

Note that, for fixed ¢ € [0, +00), if by = ... = b,,, then F? is the
m order commutator related to F; (see [1][14]). It is well known that
commutators are of great interest in harmonic analysis and have been
widely studied by many authors (see [1-4][6-9][11][14][16]). Our main
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purpose is to establish the boundedness of the multi-sublinear com-
mutator Tj on Triebel-Lizorkin space, Hardy space and Herz-Hardy
space.

Given a positive integer m and 1 < j < m, we set |]5||Lipﬁ =
[T;2, 1165l 2ips and denote by C7* the family of all finite subsets o =
{o(1),--+,0(j)} of {1,---,m} of j different elements. For o € CT", set
o ={1,--,m}\o. Forb = (by, -, by) and ¢ = {o(1),--,0(j)} € C",
set ba - (ba(l)a Y ba(j))a ba = ba(l) T ba(j) and ||ba||Lip5 = ||ba'(1)||Lipg :
0o || ins-

Now we state our theorems as follows.

Theorem 1. Let 0 < § < min(l,e/m), 1 < p < oo, b =
(b1, ,by) with b; € Lipg(R") for 1 < j < m. Suppose that Ty
1s the multi-sublinear commutator as in Definition 4 such that T is
bounded on L"(R™) for any 1 <r < oo. Then

(a) Ty is bounded from LP(R™) to F;,”ﬂ’oo(R").

(b) Ty is bounded from LP(R") to LI(R") for 1/p —1/q = mfB/n
and 1/p > mf@/n.

Theorem 2. Let 0 < § < 1, max(n/(n + mpB),n/(n + me)) <
p<1,1/g=1/p—mpB/n, b= (b, ,by) with b; € Lipg(R™) for
1 < j < m. Suppose that Ty is the multi-sublinear commutator as in
Definition 4 such that T is bounded on L"(R™) for any 1 < r < oc.
Then Ty is bounded from HP(R™) to LI(R").

Theorem 3. Let 0 < < 1,0 < p < o0, 1 < q1,¢ < 00,
/g1 — 1/qge = mB/n, n(1 = 1/q1) < a < n(l —1/q) + mB, b =
(b1, ,by) with b; € Lipg(R") for 1 < j < m. Suppose that Ty
is the multi-sublinear commutator as in Definition 4 such that T is
bounded on L"(R™) for any 1 < r < oo. Then Ty is bounded from
HEKSP(R™) to K&P(R™).

3. PROOF OF THEOREMS

We will need the following lemmas.
Lemma 1.([14]) For 0 < f <1, 1 < p < 00, we have

1
SlclgplQP—Jrﬁ/n/Q’f(x)—fcﬂdI

1
supinf—/ |f(x) — c|dzx
€eQ © |Q|1+ﬁ/n Q

fllsp =
Lp

Lr
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Lemma 2.([14]) For 0 < <1, 1 < p < oo, we have

1
1l = supW / £(@) — folde

1/p
~ sup flz) — f pd:c) .
e (g e - sa
Lemma 3.([2]) For 1 <r < oo and > 0, let

My (1)) = sup (ot [ Lty "

TEQ
suppose that r <p < /n, and 1/q =1/p — 3/n, then

1M (F)lza < Cl[f] o
Lemma 4.( [14]) Let Q1 C Qs, then

[far = faul < ClI i, Qa1
Lemma 5. ( [5],[13]) Let 0 < p < o0, 1 < ¢ < o0 and
a>n(l—1/q). A temperate distribution f belongs to HK?’p(R”)(or
HEKXP(R™)) if and only if there exist central (a,q)-atoms(or cen-
tral (o, q)-atoms of restricted type) a; supported on B; = B(0,27)
and constants \j, D |\j[P < oo such that f = Y777 Aa; (or
f=22720Aa;) in the S™ sense, and

1/p
e geen (o | [l rregr) ~ (ZWI”) :

_ Proof of Theorem 1. (a). Fix a cube Q = (xg, [) and T € Q. Set
bg = ((b1)q, -+, (bm)q), where (bj)q = |QI™" [, ;(y)dy, 1 < j < m.
\R{rite f=f+ f2, where fi = fXxaq, f2 = fon\2Q, we have
= Je 11 x)—(bj)cz)—(bj(y)—(b) ))Ft(mvy)f(y)d?/:
= Z;n:o dec;”( ) ( ( fmn
= (b)) Q)oeFy(w,y) fy)dy =
= (b1(@) = (b1)Q) - -+ (bm(®) = (b)) F1(f) (x) +
FCA( = (el G bl
+ 70 o een (F1) I (b(2) =b0)o fan (Bly) = bo)ox Ful, y) f (y)dy =
= (b1(®) = (b1)Q) - -+ (bm(®) — (b)) Fi( ))( ) +
_l’_

f
+ (=DM E((br = (b)) -~ (b = (bm)@) f1) (%)
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+ (=)™ E((b1 = (b1)@) - - - (b — (b)) f2)(x) +
+ZT:11 secm md

(-
T() @) = T(((b)g = ba) -+ (bu)g = bn) o) a0
< (@) = Fl((b)g — b) -+ (b — b)) (o)
< 1o = () tonle) — (b)) LN @

+Z Z 1(B(x) = bo)o Fu((B = Bo)oe /) (@)|

+HFt((b1_(bl)Q>"'(bm_(b Jo) f1) (@)l

H[F (b1 = (b1)@) -+ - (b — (b)) f2) () — Fi((b1 —
(01)Q) - -+ (b — (b)) f2) (o)
. = I(z) + L(z) + I3(z) + I4(z),

Q—b bm)o — bm) f2)(xo)|dx
i T )+ (Bl = b 2)(w0)

1
|Q|1+w;5/11($)dx |Q’1+”;f /QI?(x)dﬁ—l-

1 1
—— | I(x)dx + — /14(x)dx
QI+ Jo QI+ Ja

= I+1T+1IT+1V.

IN

For I, by using Lemma 2, we have

1
I < |Q|1+ 3 21615 |bl( ) (51)Q| o |bm(l’) — (bm)Q| /Q |T(f)(l‘)|dx
S CHbHszﬁ |Q|1+mﬁ ’Q‘ n / ‘T ‘d{E

< COllB]|2ips M(T()) ().

Fix 1 < r < p. For II, let u,p’ be the integers such that
w+p =m, 0<pu<m, 0 <y < m By using the Holder’s
inequality, the boundedness of T on L" and Lemma 2, we get

1< Y7 Y gecn lQ‘Hmﬁ Jol(6(x) = 50)o || T((b = bg)oe f)(x)|dx

<O Srr ﬁ<fQ|b _be'dI) (ST B ) atr)
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< O Sy —ar (Jolb) — ol de) " (J,106) - Fo)we sl ds)

1/
< O S — el Q1% 1l Q1 1017 (Jy (@) )
< CHbHszﬁ M, (f)(z ) For I11, by Holder’s inequality, we have

117

m 1/r
|meﬁ( - 0 <>mﬁ Q-

m 1/r
1
o™ ([ 1T - wastor dw)
7=1

1
< ’Q|1+mﬁ |Q|1 1/7”||b|| 7,p5|Q| n (/ |f ()| dx)
< O[]l ipy My (f)(E).

IN

For IV, since |zg — y| = |z — y| for y € (2Q)¢, by Lemma 4, we have
Li(x) < [ 1@, y) — Fe(zo, )I1f () TTIL, 105 () — (b5)qldy

= Cf o [zo = [flwo =y~ | f(y)] HT& 1b;(y) — (bj)eldy

Zk 1 fngQ\ng ‘:UO 1" |x0—y\ (nte) ‘f( )| H;nzl ’bj(y)_(bj)Q‘dy
C 3 2712 Q1 Lo FWITTL (105(0) = (Bj)arsrgl +
(bj)2w1 — (b)) dy

SOl k€|2k+1Q| 1Bl aps M (£) ()

< C||li||szﬂ|Q| P M(f)(F) S, 2ok

< Clbllin, | QI M(f)(), s0

|/\|

IV < C|[]| piny M () (F).

We put these estimates together, by using Lemma 1 and taking the
supremum over all ) such that x € (), we obtain

IT5(F) @) ggnsce < ClIBl|ipg 1] 10-

This completes the proof of (a).
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(b). By some argument as in proof of (a), we have

& @ =T =8 (bl b s

: |@|/h d“|@\/[2 d“|@|/[3 d“r@|/f4

< C||bHsz5( mf,1 (T(f>) + Mmﬁ r(f) + Mmﬁ r(f) + Mmﬁ 1(
thus
(TN < ClIbl|ips (Mg 1 (T(f)) + Mg (f) + Mimsa(f))-
By using Lemma 3 and the boundedness of T" we have
1T5(ls < CITH) s
ClO Lips (| Mimp 1 (T ()N Lo + [ Mg (f)|2a + [[ Mg (f)]20)
ClI e

This completes the proofs of (b) and of Theorem 1.
Proof of Theorem 2. It suffices to show that there exists a con-
stant C' > 0 such that for every HP-atom a,

T@)ls < C.

Let a be a HP-atom, that is that a supported on a cube Q = Q(zo, 1),
lal|= < |Q|7Y7 and [, a(z)z'dx = 0 for |y| < [n(1/p —1)].
Write

mwei < (o) (e
NG

For I, choose 1 < p; < 1/3 and ¢; such that 1/¢; = 1/p; — 5/n. By
the boundednss of Tj from L' (R") to L% (R™)(see Theorem 1), we get

I < Cl[Ty(a)]|La R™ < Cllal[pa R" < C.
For I, let 7,7/ € N such that 7 + 7 = m, and 7/ # 0. We get
T5(@) ()| = ||| Tty ) — @(y))ﬂ(as,wa(y)dyu\
< b1(@) = bi(xo)| - - - [bm () — bin (0 |f |Fi(z, y) — Fy(x, o)l la(y)|dy
+ 22501 2gecm [(0(x) = b(zo) oc!fQ y) — b(zo))o ||| Fi(z, y)llaly)|dy
< C[B]| iy |2 = o™ - [, || Fyl,y) — Ft(fv,wo)Hla(y)ldy
+ OBl ips s sgrm |2 = 207 fo ly = ol || Fy(, )| l|a(y)|dy

VARVAN
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< CJ[b| i, =2 [ Lo — yllaly)|dy

+ 1Bl gy g B2 S 1y — 0P la(y)|dy
< CJ[B]|zipy 2L [ 1o — yllaly)|dy

+ 1Bl gy g B2 [y — 0] la(y)|dy
< Ol i = ol =0+ mPretnis)

+ C|[Bl iy, | — o] - 707

< CHEHL’ipglx B $0‘_n ) rngrn(l,%)’ S0

1/q
IT < Clbl|pip, - 70 ( / |x—x0|_”qu>
|x—xzo|>2r

< Cbl|zip,-
This completes the proof of Theorem 2.
Proof of Theorem 3. By Lemma 5, let f € HK%”(]R") and f =
S Ajaj, supp a; C B; = B(0,27), a; be a central («, ¢)—atom,

j=—00

and 37 |Aj[P < oo. We have

oo k—2 p
Ty < C 30 2 ( 3 |Aj|||Tg<aj>xk||m)

k=—o0 Jj=—00
o) o0 P
+C Y 2k ( > |)‘j|||T5(aj)Xk||Lq2>
k=—o00 j=k—1
= I+1I.

For II, by the boundedness of Ty (see Theorem 1) on (L%, L%), we
get

11 < Clblig,, Y 270 lllallzn )

k=—oc0 j—kfl
< OlbllLip, Z 2ker( Z ] - 279y
k=—00 Jj=k—-1

Hence,
11 < C||b||L2p5 ZZO:—OQ Z;ik—l |)\J|p ' 2(k*j)&p7 0< p S 1
and
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I1 S C||b||1£zp,5 Zk_—oo Qkap(Z] k—1 |)\ |
ijap/Z)(Z;’ik_l 2-iew' [2yp/Y' 1 < p < o0,
therefore

11 < C’||b||L2p Z]*—oo |)\ |p
For I, when m = 1, similarly to Theorem 2, we have

Ty (a)(@)]| < [ba(2) — b1 0)] Js, 1E (@, y) = Fu(y)llla;(y)|dy
+1 [, [1fe(ba(y) = 01(0))]l]a;(y)Idy

z|Pyle
< Ollballuany [, S ay @)y + [, 725 - lay (vl
< Ollbaluan, [ #55e fs, wllas w)ldy + g J, loFlas(w)ldy|
< Cllballzig, [Jol =0+ a]? - 70 g 7407070

< O||b1||Lipﬁ|.l’|7” . 2j(3+n(17i),a).
From that we have

i _1y_ 1/g2
1T, (a)xallpee < Cllba]|nap, - 27007207 (/ Vx\nqux)
By,

S CHblHLlpﬁ 6+n(1_*)_0‘) 2—kn(1—é)
S C||b1||LipB ° 2[j(/8+n(17i)fa)*k‘(ﬁ«kn(l,i))]

Y

SO

1< Ol SR o 250 (52 Py - 20— k=g
)RS DN DY LR L R
S 2 (SR b Bl n(1-2)- ki)

< CHblHI[J/ip,g p/Y
y (E]_w Nar 6+n(1—)—a)—k(6+n(1—;1))]> Cl<p<oo
k)(B+n 17— «

< Clnll, { Er-e M B2 T 0<ps

i 00 L k n 1—— —o

% Z]_im’)\ l Zk J+2 2[(3 )(B+n( ) )}’ 1<p<oo
< Ollbal [, 2252 -0 [AG17-
Then

T (Dl < Cllballzin,( " APIY? < Cll s

j=—o0
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When m > 2, we have
Ti(a)(@)] < [(bu(x) = b1(0) -+ [bm(z) — b (0)] [, [1Fe(2 — ) —
Ft(fv)oulaj(y)ldy
+’§:jzﬂ,§:aecgn|(b(
< ClIbllLips 2™ [, 11F3( fc,y) - Ft( )Ha]( )| dy
+ Clbl|zipy 2orprr—m 12 [, yI" PN Fi(, )] |a; (y)|dy
< C1Bl ips 5= [, 19Flas (v)1ly

|8 -
+ ClBl iy s e S, 19177l () dy
< OBl |28 | ~+9) - 27O
+ O8] Ling or e 2P| - (7' B+n(1= 1) =a)
S C||E||Lipg|x|in X 2J(mﬁ+n(1fa)*a)'

b(0))o||| Fi(, y)llla;(y)|dy

Then
HTE(GJ)XkHqu
1/g2
o . )
< C|b]|zips . gimBin(l—gr)=a) / 2|2 dy
B;
< OBy, - 20O k(g
SO o
1S Oy, 37 27 (S ] 290t
DI Do DY LR )(mwn(l_*)_“)p, 0<p<l1
o0 kap D Q[J(mﬁ+n( ) a)— k(mﬁJrn(l,L))])
< Ol | i (T P2 ;

N - p/p’
(ko2 o Flimn= g =a)—kmind m) Clep<oo

< C’||b||L2p5 > e oo [AjIP. From I and 17, we have

[e.9]

1/p
T ()l kgr < ClIb Lipg ( > |Aj|p> < CllfMrgyr-

j=—o00

This completes the proof of Theorem 3.



236 C.QIONG AND L.LANZHE

4. APPLICATIONS

Now we give some applications of Theorems in this paper.

Application 1. Littlewood-Paley operator.

Fixed € > 0. Let v be a fixed function which satisfies the following
properties:

Jon ¥(@)dz =0,

(2) [y )I < C(1 + fa])~ (D),

(3) [o(z+y) — o) < ClylF(L+ [2])~+1+9 when 2Jg| < |a].

The multi-sublinear commutator related to the Littlewood-Paley
operator is defined by

where
Fw - [ [Itsx) = bt = 1)y

and ¢, (x) =t "(x/t) for t > 0. Set Fy(f)(y) = f * ¥, (y). We also

define that o
w0 = ([ T1En@r)

which are the Littlewood-Paley operator(see [8]). Let H be the space

1 = {h: Inf) = (/m |h<t>|2dt/t)1/2 < oo},

then, for each fixed x € R, th(f)(x) may be viewed as the mapping
from [0, 4+00) to H, and it is clear that

(N = IFH@I, g6(H@) = IRF) @)

It is easy to see that g, satisfies the conditions of Theorems in the

paper(see [7-9]), thus Theorem 1, Theorem 2 and Theorem 3 hold for
Y-

Application 2. Marcinkiewicz operator.

Fixed 0 < v < 1. Let © be homogeneous of degree zero on R"”
with [, , Q(a’)do(2') = 0. Assume that Q € Lip,(S™"). The multi-

sublinear commutator related to the Marcinkiewicz operator is defined
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by
~ o 1/2
e = [IEn@rg)
where
By — o) by 2HE )
Finm = [ e 100 b 2
Set

R = | 2@ =9) ay,

|e—y|<t ‘l’ - y‘n—l
We also define that
oo 9 dt 1/2
ualh) = ( [TIRD@PE)
which are the Marcinkiewicz operator(see [16]). Let H be the space

H= {h B = (/OOO |h(t)|2dt/t3)1/2 < oo}.

Then, it is clear that
(D @) = 1FFN @)L ua(F)@) = 1R @)

It is easy to see that u satisfies the conditions of Theorems in the
paper(see [8][16]), thus Theorem 1, Theorem 2 and Theorem 3 hold
for pib,.

Application 3. Bochner-Riesz operator.

~

Let 6 > (n—1)/2, BY(f)(€) = (1 = £|¢P)2f(€) and B)(2) =
t~"B%(z/t) for t > 0. Set

m

FL(f)(x) = / TT(bs(x) — b5 () B — ) F(w)dy.

anl
The multi-sublinear commutator related to the maximal Bochner-
Riesz operator is defined by

BL.(1)w) = sup | B (1) ()]
We also define that
Bs(f)(x) = sup | B (£) ()

t>0
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which is the maximal Bochner-Riesz operator(see [10]). Let H be the
space H = {h : ||h|| = sup |h(t)| < oo}, then
>0

B}.(N)@) = 1B} (@), B = 1BI(H@)]

It is easily to see that Bf;’:* satisfies the conditions of Theorems in the
paper(see [8]), thus Theorem 1, Theorem 2 and Theorem 3 hold for
B,

Acknowledgement. The authors would like to express their grat-
itude to the referee for his comments and suggestions.
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