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COMMON FIXED POINT THEOREMS OF
MEIR-KEELER TYPE FOR OCCASIONALLY WEAKLY
COMPATIBLE MAPPINGS

ABDELKRIM ALIOUCHE AND VALERIU POPA

Abstract. We prove common fixed point theorems of Meir-Keeler
type for four mappings satisfying implicit relations in metric spaces
using the concept of occasionally weakly compatible mappings which
generalizes results of [1], [7], [11-17], [19], [21], [28], [34-40], [47-48] and
[50].

1. INTRODUCTION AND Preliminaries

Let A and S be self-mappings of a metric space (X,d). A and S
are commuting in X if SAz = ASx for all z € X.

Sessa [52] defined A and S to be weakly commuting in X if for all
reX

(1.1) d(SAz, ASx) < d(Az, Sx).

Jungck [16] defined A and S to be compatible as a generalization of
weakly commuting if

(1.2) lim d(SAz,, ASx,) =0

n—oo
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whenever {z,} is a sequence in X such that lim, . Az, =
lim,, o Sx, =t for some t € X. It is easy to show that commuting
implies weakly commuting implies compatible and there are examples
in the literature verifying that the inclusions are proper, see [16] and
[52].

Jungck et al [18] defined A and S to be compatible mappings of
type (A) if

(1.3) lim d(SAz,, A%r,) =0 and lim d(ASz,,S?z,) =0

n—od n—oo

whenever {z,} is a sequence in X such that lim, .. Az, =
lim,, .o Sx,, =t for some t € X.

Clearly, weakly commuting implies compatible of type (A) and the
converse is not true in general, see [18]. Examples are given to show
that the two concepts of compatibility are independent, see [18].

Recently, Pathak and Khan [42] defined S and T to be compatible
mappings of type (B) as a generalization of compatible mappings of
type (A) if

lim d(ASz,, S%2,) < <[ lim d(ASzn, At) + lim d(At, A%z,)] (dmt)

1
lim d(SAz,, A%r,) < =[lim d(SAx,,St)+ lim d(St, S%z,)]

whenever {z,} is a sequence in X such that lim, .. Az, =
lim,,_.., Sx, =t for some t € X.
Clearly, compatible mappings of type (A) are compatible mappings
of type (B), but the converse is not true in general, see [42].
However, compatibility, compatibility of type (A) and compatibility
of type (B) are equivalent if S and 7" are continuous, see [42].
Pathak et al [43] defined A and S to be compatible mappings of
type (P) if

(1.5) lim d(A%z,, S%*z,) =0

n—oo

whenever {z,} is a sequence in X such that lim, .. Az, =
lim,,_.., Sx,, =t for some t € X.

However, compatibility, compatibility of type (A), compatibility of
type (B) and compatibility of type (P) are equivalent if S and T are
continuous, see [43].

Pathak et al [44] defined A and S to be compatible mappings of
type (C) as a generalization of compatible mappings of type (A) if
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(1.6)
lim d(ASz,, S%z,) < l[lim d(ASz,, At) + lim d(At,S*z,) + lim d(At, A%z,)] «

n—00 — 3'n—o0 n—00 n—00

lim d(SAx,, A*r,) < =[lim d(SAz,, St) + lim d(St, A%z,) + lim d(St, S*z,,)]

n—o0 n—oo n—oo n—oo

W —

whenever {z,} is a sequence in X such that lim, .. Az, =
lim,, .. Sx, =t for some t € X.

Compatibility of type (B), compatibility of type (P) and compati-
bility of type (C) are equivalent if S and 7" are continuous, see [44].

Jungck [20] defined S and T to be weakly compatible if they com-
mute at their coincidence points, i.e., SAu = ASu for all u € C(A,5),
the set of coincidence points of A and S

It is proved in [16], [18], [42], [43] and [44] that if S and T are
compatible, or compatible of type (A), or compatible of type (P),
or compatible of type (B), or compatible of type (C), then they are
weakly compatible. The converse is not true in general, see [8].

In 1994, Pant [30] defined A and S to be pointwise R—weakly com-
muting if for all z € X, there exists an R > 0 such that

d(SAx,ASz) < Rd (Sz, Az) for all z € X.

It was proved in [31] that pointwise R—weakly commuting is equiv-
alent to commutativity at coincidence points. Thus, A and S are
pointwise R—weakly commuting if and only if they are weakly com-
patible.

Definition 1.1 [2]. A and S are said to be occasionally weakly
compatible (owc) if SAu = ASu for some u € C(A4,S).

Remark 1.2 [2]. If A and S are weakly compatible, then they
are occasionally weakly compatible, but the converse is not true in
general, see [2].

Lemma 1.3 [22]. If A and S have a unique coincidence point
w = Ax = Sz, then w is the unique common fixed point of A and S.

In 1969, Meir and Keeler [27] established a fixed point theorem for
self-mappings in a metric space (X, d) satisfying the following condi-
tion:

For every € > 0, there exists a 0 > 0 such that

(1.7) € <d(x,y) < e+ d implies d(fz, fy) < e.

There exists a vast literature which generalizes the result of Meir and
Keeler.
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In [26], Maiti and Pal proved a fixed point theorem for a self mapping
of a metric space (X, d) satisfying the following condition, which is a
generalization of (1.7).

For every € > 0, there exists a > 0 such that

e < max{d(z,y),d(z, fx),d(y, fy)} <e+d = d(fx, fy) <e.

In [41] and [49], Park-Rhoades, respectively, Rao-Rao extended this
result for two self-mappings f and g of a metric space (X, d) satisfying
the following condition: For every e > 0, there exists a 0 > 0 such that

e < max{d(fz, fy),d(fz,gz),d(fy, gy),
Sld(fe,g0) + d(fy. g0} < e+ 6= dlgr g0) < e

In 1986, Jungck [16] and Pant [28] extended these results for four
self-mappings A, B, S and T of a metric space (X, d).

The following conditions have been used by many authors to prove
common fixed point theorems for four mappings.

(1) d(Az, By) < hM(z,y), 0<h <1,

where M (x,y) = max{d(Sz,Ty),d(Az,Sx),d(By,Ty), [d(Sx, By) +
d(Az, Ty)]/2},

a Meir-Keeler type (¢, d)-contractive condition of the form: given
€ > 0, there exists a 0 > 0 such that

(2) e < M(z,y) < e+ 6 = d(Az, By) <,
a contractive condition of the form
(3) d(Az, By) < ¢(M(z,y))

involving a contractive gauge function ¢ : R — R is such that ¢(t) < ¢
for all ¢ > 0.

Clearly, condition (1) is a special case of both conditions (2) and
(3).

A ¢-contractive condition (3) does not guarantee the existence of a
fixed point unless some additional condition is assumed. Moreover, a
¢-contractive condition in general does not imply the contractive con-
ditions (2) or (4), see Pant [34]. Therefore, to ensure the existence of
common fixed point under the contractive condition (3), the following
conditions on the function ¢ have been introduced and used by many
authors.

(i) ¢ is non-decreasing and the function ¢ — t/(t — ¢(t)) is non-
increasing (Carbone et al. [6]),
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(ii) ¢ is non-decreasing and lim,,_,«, ¢"(t) = 0 for all £ > 0 ( Jachym-
ski [3]),

(iii) ¢ is upper semi continuous (Boyd and Wong [1], Jachymski [9],
Maiti and Pal [26], Pant [32]),

(iv) ¢ is non-decreasing and continuous from the right (Park and
Rhoades [41]).

It is now known (e.g., Jachymski [9], Pant et al. [35]) that if any
of the conditions (I), (II), (III) or (IV) is assumed on ¢, then a ¢-
contractive condition (3) implies an analogous (e, d)-contractive con-
dition (2) and both the contractive conditions hold simultaneously.

An (e, 0)-contractive condition of type (2) neither ensures the exis-
tence of a fixed point nor implies an analogous ¢-contractive condition
(3), see Pant et al [35]. Hence, the two types of contractive conditions
(2) and (3) are independent of each other.

Thus, to ensure the existence of common fixed point under the con-
tractive condition (2), the following conditions on the function ¢ have
been introduced and used by several authors:

(v) 0 is non-decreasing (Pant [29, 32] )

(vi) 0 is lower semi-continuous (Jungck [16], Jungck et al [17]).

Jachymski [9] has shown that the (e, d)-contractive condition (2)
with a non-decreasing § implies a ¢-contractive condition (3). Also,
Pant et al.[35] have shown that the (¢, §)-contractive condition (2) with
a lower semi-continuous 0, implies a ¢-contractive condition (3).

Instead of supposing one of the contractive condition (2) or (3)
with additional conditions on 0 and ¢, many authors have assumed a
contractive condition (2) together with a lipschitz condition analogue
of (3), see [11], [37] and [38].

Lemma 1.4 [9]. Let A, B,S and T be self mappings of a metric
space (X, d) such that A(X) C T(X) and B(X) C S(X). Assume
further that given € > 0 there exists d > 0 such that for all z,y € X

(4) e< M(z,y) <e+d=d(Az,By) < ¢
and
(5) d(Az, By) < M(x,y), whenever M(x,y) > 0,

where M(z,y) = max{d(Sz,Ty),d(Axz, Sx),d(By,Ty), [d(Sz, By) +
d(Az, Ty)]/2}.
Then, for each xq € X, the sequence {y,} in X defined by:

Yo = Aoy = Twop1 and Yo, = STopye = Bro,yq forn=0,1,2....

1s a Cauchy sequence.
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Jachymski [9] has shown that the contractive condition (2) implies
(4), but the contractive condition (4) does not imply (2).

The following theorem was proved by [5].

Theorem 1.5. Let (X,d) be a complete metric space, ¢ € [0, 1)
and f: X — X a mapping such that for all z,y € X

d(fx,fy) d(@.y)
p(t)dt < c / o(t)dt
0 0

where ¢ : R, — R, is a Lebesgue-integrable mapping which is sum-
mable and such that for each ¢ > 0, /gp(t)dt > 0. Then f has a

unique fixed point z € X such that, for %ach re X, lim, . f'r =z
Several authors generalized Theorem 1.5, see [3], [8], [24], [25], [51],
[54] and [55].
The study of fixed points of mappings satisfying an implicit relation
was initiated in [45] and [46].

2. IMPLICIT RELATIONS

Let F g be the set of all continuous functions F(¢y,...,ts) : RS — R
satisfying the following conditions:

(F1) : F(u,0,u,0,0,u) <0 implies u = 0.

(Fy) : F(u,0,0,u,u,0) <0 implies u = 0.

(F3) : F(u,u,0,0,u,u) >0 for all u > 0.

Example 2.1.

F(tl, t6) = tl — &tg — b(tg + t4) — C(tg, + tﬁ), a, b,C > 0, b+c<1
and a + 2¢ < 1.

Example 2.2.

F(tl, ...tﬁ) =1 —max{tg, (t3+t4)/2, ]{?(t5 —|—t6)/2}, where 0 < k <1

Example 2.3.

(tl, . ) = tl — maX{k’th,k‘Q(tg + t4)/2, (t5 + tG)/Q}, where

0<k < , 1< < ky < 2.

Example 2.4.
F(ty,..ts) = t1 — max{ki(ts + t3 + ta),kao(ts + ts)/2}, where
0§]€1<1,0§]€2<1.

Example 2.5.
F(tl, t6) =1 — hmax{tg,tg,t4,t5,t6}, where 0 < h < 1.
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Example 2.6.
F(ty,...te) = t3 —at? —tzty — bt —ct?, where a,b,c < 0,a+b+c < 1.
Example 2.7.
F(ty,...te) =t} — k(t3 + 3 + t5 + 2 + t3), where 0 < k < 3.
Example 2.8.
F(tl, t6) = (1 —|—pt2)t1 — pmaX{t3t4, tg,tﬁ}

—hmax{tg,tg,t4,t5,t6}, 0O<h<l1l,p>0.
Example 2.9.
F(ty,..tg) = t2 — cy max{t3, 12,13} — cy max{tstg, tats} — cstsls,
C1,Co,C3 > 0, cp+c<l,cg+c3 <1
Example 2.10.
F(ty,...ts) = t3 — atity — btytsty — ctite — dist, a,b,c,d > 0 and

at+c+d<1.

Example 2.11.

Fl(ty,...tg) =13 — ¢

Example 2.12.

F(tl, t6) =1 — ¢(max{t2,t3,t4, k(t5 + t6>/2}), where 0 < k£ < 1
and ¢ : Ry — Ry is such that ¢ (t) < ¢ for all ¢ > 0.

The following theorem was proved by [47].

Theorem 2.13. Let f,g,S and T be self-mappings of a metric
space (X,d) such that

(2.1) S(X) Cg(X)and T(X) C f(X).
Given € > 0, there exists a 0 > 0 such that for all z,y € X
e < max{d(fz,gy),d(fz,Sx),d(gy; T8)?)
Sld(fe. Ty) +d(Swgu)]} < 40
implies d(Sx,Ty) < €

22 + 22
to+tg+t,+1’

0<cec<1.

and there exists F' € Fg satisfying

F(d(Sz,Ty),d(fx,gy),d(fz,Sx),d(gy, Ty),d(fx,Ty),d(Sz, gy)) <0

for all z,y € X. If one of f(X), g(X), S(X) and T(X) is a
complete subspace of X, then f and S have a coincidence point and
g and T have a coincidence point. Moreover, if the pairs (f,S) and
(g9,T) are weakly compatible, then f,g,S and T have a unique common
fixed point in X.

Let F 4 be the set of all continuous functions F(¢y,...,t4) : R — R
satisfying the following conditions:
(Fy) : F(u,0,u,u) <0 implies u = 0.
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(Fs) : F(u,u,0,2u) > 0 for all u > 0.

Example 2.14.

F(tl,tg,tg,t4) =t — aty — bty — cly, a,b,c > 0, b+c < 1 and
a-+2c<1.

Example 2.15.

F(tl,tg,t3,t4) =1 — max{tg,t3/2,kt4/2}, where 0 < k <1.

Example 2.16.

F(tl,tg,tg,t4) = tl —maX{kth,kgtg/Q,t4/2}, where 0 S kl S 1, 1 S
ko < 2.

The following theorem was proved by [48].
Theorem 2.17. Let f,g,S and T be self-mappings of a metric
space (X,d) satisfying (2.1), (2.2) and there exists F' € Fy satisfying

F(d(Sz, Ty), d(fx, gy), d(fz, Sx)+d(gy, Ty), d(fz, Ty)+d(Sz, gy)) <0
for all x,y € X. If one of f(X), g(X), S(X) and T(X) is a

complete subspace of X, then f and S have a coincidence point and
g and T have a coincidence point. Moreover, if the pairs (f,S) and
(9, T) are weakly compatible, then f,g,S and T have a unique common
fixed point in X.
Theorems 2.13 and 2.17 generalize the results of [11], [37] and [38].
The purpose of this paper is to prove common fixed point theorems
of Meir-Keeler type for owc mappings satisfying implicit relations.

3. MAIN RESULTS

Lemma 3.1. Let f,g,5 and T be self-mappings of a metric space
(X, d) satisfying the inequality

d(Sz,Ty) d(fz,gy)
F( / p(t)d, / o(1)df3.1)
0 0
d(fx,Sx) d(gy,Ty)
p(t)dt, @(t)dt,
0 0
d(fz,Ty) d(Sz,gy)
St)dt, / S)dt) < 0
0 0

forall x,y € X, x # y, where F satisfies (Fg) and ¢ is as in Theorem
1.4. If there exist u,v € X such that fu = Su and gv = Tv, then f
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and S have a unique point of coincidnce u and g and 7" have a unique
point of coincidnce v.

Proof. First, we prove that Su = Twv. If Su # Tv. Using (3.1) we
have

d(Su,Tv) d(fu,gv) d(fu,Su) d(gv,Tv)
PO i [ ewan [ i [ e
0 0 0 0
d(fu,Tv) d(Su,gv)
p(t)dt, p(t)dt)
0 0
d(Su,Tv) d(Su,Tv)
= P [ i [ e
0 0
d(Su,Tv) d(Su,Tv)
p(t)dt, p(t)dt)
0 0

< 0

which is a contradiction of F3 and so Su = T'v. Assume that Sp =Tp
with Sp # Su. Then Sp # Tv and by (3.1) we get

d(Sp,Tv) d(Sp,Tv)

P / o(t)dt, / H()dt,0,0,

0 0
d(Sp,Tv) d(Sp,Tv)

o(t)dt, / o (t)dt)

< 0

which is a contradiction of F3 and so Sp = Tw = Su. Therefore,
z = fu = Swu is the unique point of coincidnce f and S. Similarly,
z = fv = Swv is the unique point of coincidnce g and 7'

Theorem 3.2. Let f,q,S and T be self-mappings of a metric space
(X,d) satisfying (2.1) and (2.2) and there exists F' € Fy satisfying
(3.1) and ¢ is as in Theorem 1.4. If one of f(X), g(X), S(X) and
T(X) is a complete subspace of X, then f and S have a coincidence
point and g and T have a coincidence point. Moreover, if the pairs

(f,S) and (g,T) are owe, then f,g,S and T have a unique common
fixed point in X.
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Proof. Let xzy be an arbitrary point in X. By (4.2) we can define
inductively a sequence {y,} such that

Yon = STon = gTony1 and Yopy1 = fTopqp = Ta9,4q for n=0,1,2....

By Lemma 1.4, it follows that {y,} is a Cauchy sequence in X.

Suppose that g(X) is complete. Since the subsequence {ys,} =
{Jxap41} C J(X) is a Cauchy sequence, it converges to a point z = gv
for some v € X. Hence, the subsequence {ys,.1} converges also to z.

So, the subsequences { fxoni2}, {gTant1}, {ST2n} and {T'xa,11} con-
verge to z.

If z # T, using (3.1) we obtain

d(Sz2n,Tv) d(fron,gv) d(fz2n,STan) d(gv,Tv)

< 0

Letting n — 00, we obtain

d(z,Tv) d(z,Tv) (z,Tw)
F(/ o(t)dt, 0,0, / /gp t)dt,0)) <0
0 0

By (F3), we get z = Tv = gv. Since T(X) C f(X), there exists
u € X such that z =Tv = fu.
If z # Su, using (3.1) we have

d(Su,Txon+1) d(fu,9r2n+1) d(fu,Su) d(gzan+1,TTan+1)
FC [ ewa [ e [ s
0 0 0 0
d(fu,Txan+1) d(Su,gz2n+1)
p(t)dt, p(t)dt)
0 0
< 0

Letting n — oo we get
d(Su,z) d(z,5u) d(z,Su)

P / S(t)dt, 0, / H(t)dt, 0,0, / S(t)dt < 0.

0 0 0

p(t)dt,
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Using (F}), we get z = Su = fu = gv = Tv. By Lemma 3.1, f
and S have a unique point of coincidnce v and g and T" have a unique
point of coincidnce v and by Lemma 1.3, z is the unique common fixed
point of f, g, S and T. Assume that f(X) is complete. Since the sub-
sequence {yoni1}t = {frans2} C f(X) is a Cauchy sequence, it con-
verges to a point z = fu for some u € X . Hence, the sequence {y,}
converges also to z. So, the subsequences {fza,12}, {gTons1}, {STon}
and {Tzy,,1} converge to z. Similarly, we get z = fu = Su. Since
S(X) C g(X), there exists u € X such that z = Su = gv. Similarly,
we obtain z =gv=Tv = fu=Suand z = fz2 =Sz =gz =T=.

Corollary 3.3. Theorem 2.13.

Proof. It follows from Theorem 3.2 for ¢(t) = 1.

Corollary 3.4. Let f,g,S and T be self-mappings of a metric
space (X,d) satisfying (2.1),(2.2) and

d(Sz,Ty) < max{kid(fz,gy), k[d(fz,Sx) + d(gy, Ty)]/2,
[d(fz,Ty) + d(Sz, gy)]/2}

for all z,y € X, where 0 < ky < 1 and 1 < ky < 2. If one of
f(X), g(X), S(X) and T(X) is a complete subspace of X, then f
and S have a coincidence point and g and T have a coincidence point.
Moreover, if the pairs (f,S) and (g,T) are owe, then f,g,S and T
have a unique common fized point in X.

Proof. It follows from Example 2.3 and Theorem 3.2.

Corollary 3.5. Let f,g,S and T be self-mappings of a metric
space (X,d) satisfying (2.1),(2.2) and

d(Sz,Ty) < max{d(fz,gy),[d(fz, Sx)+ d(gy, Ty)]/2,
kld(fz,Ty) + d(Sz, gy)]/2}

forall z,y € X, where 0 < k < 1. Ifone of f(X), g(X), S(X) and
T(X) is a complete subspace of X, then f and S have a coincidence
point and g and T have a coincidence point. Moreover, if the pairs
(f,S) and (g,T) are owc, then f,g,5 and T have a unique common
fixed point in X.

Proof. It follows from Example 2.2 and Theorem 3.2.

Corollary 3.6. Let f,g,S and T be self-mappings of a metric
space (X, d) satisfying (2.1),(2.2) and

d(Sz,Ty) < max{k(d(fz,gy) +d(fzx,Sz)+ d(gy,Ty)),
kold(fx, Ty) + d(Sx, gy)]/2}
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forall x,y € X, where 0 < k; <1 and 0 < ky <1 If one of f(X),
g(X), S(X) and T(X) is a complete subspace of X, then [ and
S have a coincidence point and g and T have a coincidence point.
Moreover, if the pairs (f,S) and (g,T) are owc, then f,g,S and T
have a unique common fixed point in X.

Proof. It follows from Example 2.3 and Theorem 3.2.

Remark 3.7. By Examples 2.1, 2.4-2.12, we obtain several Corol-
laries.

As in Lemma 3.1 and Theorem 3.2, we can prove

Lemma 3.8. Let f,g9,5 and T be self-mappings of a metric space
(X, d) satisfying the inequality

d(Sz,Ty) d(fz.gy)
F / o(0)dt, / (1)t
0 0
d(fz,Sz) d(gy,Ty)
S0Vt + / ()t
0 0
d(fz,Ty) d(Sz,gy)
/ S(1)dt + / S0 < 0
0 0

for all x,y in X, where F satisfies (Fy) and ¢ is as in Theorem 1.4.
If there exist u,v € X such that fu = Su and gv =T, then f and S
have a unique point of coincidnce u and ¢ and T have a unique point
of coincidnce v.

Theorem 3.9. Let f,g,S and T be self-mappings of a metric space
(X,d) satisfying (2.1) and (2.2) and there exists F' € Fy satisfying
(3.2) and ¢ is as in Theorem 1.4. If one of f(X), g(X), S(X) and
T(X) is a complete subspace of X, then f and S have a coincidence
point and g and T have a coincidence point. Moreover, if the pairs
(f,S) and (g,T) are owc, then f,g,5 and T have a unique common
fixed point in X.

Corollary 3.10. Theorem 2.17.

Proof. It follows from Theorem 3.9 for p(t) = 1.
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