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Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 20 (2010), No. 2, 39 - 48

COMMON FIXED POINTS OF TWO MAPS IN
COMPLETE G-METRIC SPACES

HAKAN KARAYILAN AND MUSTAFA TELCI

Abstract. In this paper, we present some common fixed point the-
orems for contraction type and expansion type mappings in complete
G- metric spaces.

1. Introduction and preliminaries

Recently, Mustafa and Sims [2] introduced a new structure of gen-
eralized metric spaces, which are called G-metric spaces as generaliza-
tion of metric spaces (X, d). Some authors [1, 2, 3, 4, 5, 6, 7] have
proved some fixed points theorems for mappings satisfying different
contractive conditions in this new structure.

The main purpose of this paper is to present some common fixed
point theorems for contraction type and expansion type mappings in
complete G-metric spaces.

We now recall the definitions of G-metric spaces and some their
properties.

Throughout this paper, we denote by N the set of positive integers.

Definition 1.1 ([2]). Let X be a nonempty set and let G : X ×X ×
X → [0,∞) be a function satisfying the following conditions:
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(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y) for all x, y ∈ X, with x 6= y,
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z with z 6= y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three

variables),
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectan-

gle inequality).

Then the function G is called a G-metric on X, and the pair (X,G)
is called a G-metric space.

Note that if G(x, y, z) = 0, then x = y = z (see [2]).

Example1.2 Let (X, d) be a usual metric space. Then (X,Gs) and
(X,Gm) are G-metric spaces, where

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z),

Gm(x, y, z) = max{d(x, y), d(z, y), d(x, z)}
for all x, y, z ∈ X.

Definition 1.3 ([2]). Let (X,G) be a G-metric space. A squence {xn}
in X is said to be:

(a) a G-convergent sequence if, for each ε > 0, there is an x ∈ X
and N ∈ N such that for all n,m ≥ N , G(x, xn, xm) < ε,

(b) a G-Cauchy sequence if, for each ε > 0, there is an N ∈ N such
that for all n,m, l ≥ N , G(xn, xm, xl) < ε.

A G-metric spaces (X,G) is said to be complete if every G-Cauchy
sequence is convergent in X.

Proposition 1.4 ([2]). Let (X,G) be a G-metric space. Then the
following are equivalent.

(1) {xn} is G-convergent to x,
(2) G(xn, xn, x)→ 0, as n→∞,
(3) G(xn, x, x)→ 0, as n→∞,
(4) G(xm, xn, x)→ 0, as m,n→∞.

Proposition 1.5 ([2]). If (X,G) is a G-metric space, then the follow-
ing are equivalent.

(1)The sequence {xn} is G-Cauchy.

(2)For every ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε,
for all n,m ≥ N .
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Definition 1.6 ([2]). Let (X,G) and (X ′, G′) be two G-metric spaces
and let f : (X,G) → (X ′, G′) be a function, then f is said to be G-
continuous at a point a ∈ X if and only if, given ε > 0, there exists δ >
0 such that x, y ∈ X, and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) <
ε.

A function f is G-continuous at X if and only if it is G-continuous
at all a ∈ X.

Proposition 1.7 ([2]). Let (X,G), (X ′, G′) be two G-metric spaces.
Then a function f : X → X ′ is G-continuous at a point x ∈ X if and
only if it is G sequentially continuous at x; that is, whenever {xn} is
G-convergent to x, {f(xn)} is G-convergent to f(x).

It is easy to prove the following the lemma:

Lemma 1.8 Let (X, d) be a metric space and (X,Gm) a G-metric
space defined by metric d on X as in Example 1.2. Then (X, d) is
complete if and only if the G-metric space (X,Gm) is complete.

2. Fixed points for contraction type mappings

In this section we will prove a common fixed point theorem for
contraction type mappings in complete G-metric spaces.

Theorem 2.1 Let (X,G) be a complete G-metric space and let f and
g be self mappings of X satisfying the following inequalities;

G(fgx, gx, gx) ≤ ϕ(G(gx, x, x)),(1)

G(gfx, fx, fx) ≤ ϕ(G(fx, x, x))(2)

for all x in X, where ϕ : [0,∞)→ [0,∞) is a nondecreasing function
, with

∑∞
n=1 ϕ

n(t) < ∞ for all t > 0. If either f or g is continuous,
then f and g have a common fixed point.

We note that the function ϕ satisfies ϕ(0) = 0.

Proof. Let x0 be an arbitrary point in X and define sequence {xn}
inductively by

x2n+1 = fx2n , x2n+2 = gx2n+1

for n = 0, 1, 2, ...

Note that if xn = xn+1 for some n, then xn is a fixed point of f and
g. Indeed, if x2n = x2n+1 for some n ≥ 0, then x2n is a fixed point of
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f . On the other hand, we have from inequality (2) that

G(x2n+2, x2n+1, x2n+1) = G(gx2n+1, fx2n, fx2n) = G(gfx2n, fx2n, fx2n)

≤ ϕ(G(fx2n, x2n, x2n)) = ϕ(G(x2n+1, x2n, x2n))

= ϕ(0) = 0

which implies G(x2n+2, x2n+1, x2n+1) = 0 and so x2n+1 = x2n+2. Thus
x2n is a common fixed point of f and g. If x2n+1 = x2n+2 for some
n ≥ 0, similarly by using inequality (1) leads to x2n+1 is a common
fixed point of f and g.

Now we suppose that xn 6= xn+1 for all n. Using inequality (1), we
have

G(x2n+3, x2n+2, x2n+2) = G(fx2n+2, gx2n+1, gx2n+1)

= G(fgx2n+1, gx2n+1, gx2n+1)

≤ ϕ(G(gx2n+1, x2n+1, x2n+1))

= ϕ(G(x2n+2, x2n+1, x2n+1)).(3)

Similarly using inequality (2), we have

G(x2n+2, x2n+1, x2n+1) = G(gx2n+1, fx2n, fx2n)

= G(gfx2n, fx2n, fx2n)

≤ ϕ(G(fx2n, x2n, x2n))

= ϕ(G(x2n+1, x2n, x2n)).(4)

Then from inequalities (3) and (4), we obtain

G(xn+2, xn+1, xn+1) ≤ ϕ(G(xn+1, xn, xn))

for n = 0, 1, 2, ..., and in general

G(xn+2, xn+1, xn+1) ≤ ϕn+1(G(x1, x0, x0))

for n = 0, 1, 2, ...

Let n > m. Then from rectangle inequality of G, we have

G(xn, xm, xm) ≤
≤ G(xn, xn−1, xn−1) +G(xn−1, xn−2, xn−2) + ...+G(xm+1, xm, xm)

≤ ϕn−1(G(x1, x0, x0)) + ϕn−2(G(x1, x0, x0)) + ...+ ϕm(G(x1, x0, x0))

= (ϕn−1 + ϕn−2 + ...+ ϕm)(G(x1, x0, x0))

=
n−1∑
k=m

ϕk(G(x1, x0, x0)) ≤
n−1∑
k=1

ϕk(G(x1, x0, x0)).
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Take any ε > 0. Since
∑∞

n=1 ϕ
n(t) <∞ for all t > 0, we can choose

a sufficiently large natural number such that

n−1∑
k=1

ϕk(G(x1, x0, x0)) < ε,

for all n > m ≥ N , and it follows from Proposition 1.5 that {xn} is a
G-Cauchy sequence in the complete G-metric space (X,G) and so has
a limit z in X.

Now we suppose that f is continuous. Since x2n+1 = fx2n, it follows
from Proposition 1.7 that

z = lim
n→∞

x2n+1 = lim
n→∞

fx2n = fz

and so z is fixed point of f .

Using inequality (2) we have

G(gz, z, z) = G(gfz, fz, fz)

≤ ϕ(G(fz, z, z)) = ϕ(G(z, z, z)) = ϕ(0) = 0

which implies G(gz, z, z) = 0. Hence gz = z. We have therefore proved
that z is a common fixed point of f and g.

Similarly, considering the continuity of g, it can be seen that f and
g have common fixed point and this completes the proof.

Putting f = g in Theorem 2.1, then we get the following corollary;

Corollary 2.2 Let (X,G) be a complete G-metric space and let f be
a self-mapping of X satisfying the following inequality;

G(f 2x, fx, fx) ≤ ϕ(G(fx, x, x))

for all x in X, where ϕ : [0,∞)→ [0,∞) is a nondecrasing function ,
with

∑∞
n=1 ϕ

n(t) < ∞ for all t > 0. If f is continuous, then f has a
fixed point.

Corollary 2.3 Let (X, d) be a complete metric space and let f and g
be a self-mappings of X satisfying the following inequalities;

d(fgx, gx) ≤ ϕ(d(gx, x)),(5)

d(gfx, fx) ≤ ϕ(d(fx, x))(6)

for all x in X, where ϕ : [0,∞)→ [0,∞) is a nondecrasing function ,
with

∑∞
n=1 ϕ

n(t) < ∞ for all t > 0. If either f or g continuous, then
f and g have a common fixed point.
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Proof. We consider the Gm-metric defined by metric

Gm(x, y, z) = max{d(x, y), d(z, y), d(x, z)}
on X as in Example 1.2. Then from Lemma 1.8, (X,Gm) is complete.
If f is continuous on (X, d), then f also continuous on (X,Gm).

From inequalities (5) and (6) and definition of Gm, we get

Gm(fgx, gx, gx) = d(fgx, gx) ≤ ϕ(d(gx, x)) = ϕ(Gm(gx, x, x))

and

Gm(gfx, fx, fx) = d(gfx, fx) ≤ ϕ(d(fx, x)) = ϕ(Gm(fx, x, x)).

Thus f and g satisfy the inequalities (1) and (2). Hence, from
Theorem 2.1, f and g have a common fixed point in X.

3. Fixed points for expansion type mapping

In this section we consider expansion type mapping.

Theorem 3.1 Let (X,G) be a complete G-metric space and let f and
g be surjective self-mappings of X satisfying the following inequalities;

ϕ(G(fgx, gx, gx)) ≥ G(gx, x, x)(7)

ϕ(G(gfx, fx, fx)) ≥ G(fx, x, x)(8)

for all x in X, where ϕ : [0,∞)→ [0,∞) is a nondecreasing function
, with

∑∞
n=1 ϕ

n(t) < ∞ for all t > 0. If either f or g is continuous,
then f and g have a common fixed point.

Proof. Let x0 be an arbitrary point in X. Since f and g are surjective
mappings, there exist points x1 ∈ f−1(x0) and x2 ∈ g−1(x1). Contin-
uing in this way, we obtain the sequence {xn} with x2n+1 ∈ f−1(x2n)
and x2n+2 ∈ g−1(x2n+1).

Note that if xn = xn+1 for some n, then xn is a fixed point of f and
g. Indeed, if x2n = x2n+1 for some n ≥ 0 then x2n is a fixed point of
f . On the other hand, we have (7) that

0 = ϕ(0) = ϕ(G(x2n, x2n+1, x2n+1))

= ϕ(G(fx2n+1, gx2n+2, gx2n+2))

= ϕ(G(fgx2n+2, gx2n+2, gx2n+2))

≥ G(x2n+1, x2n+2, x2n+2)

which implies G(x2n+1, x2n+2, x2n+2) = 0 and so x2n+1 = x2n+2. Thus
x2n is a common fixed point of f and g.
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If x2n+1 = x2n+2 for some n ≥ 0, similarly by using inequality (8)
leaads to x2n+1 is a common fixed point of f and g.

Now we suppose that xn 6= xn+1 for all n. Using inequality (8), we
have

ϕ(G(x2n+1, x2n+2, x2n+2)) = ϕ(G(gfx2n+3, fx2n+3, fx2n+3))

≥ G(x2n+2, x2n+3, x2n+3).(9)

Similarly, using inequality (7), we have

ϕ(G(x2n, x2n+1, x2n+1)) = ϕ(G(fgx2n+2, gx2n+2, gx2n+2))

≥ G(x2n+1, x2n+2, x2n+2).(10)

Then form inequalities (9) and (10), we obtain

ϕ(G(xn, xn+1, xn+1)) ≥ G(xn+1, xn+2, xn+2)

for n = 0, 1, 2, ... and it follows that

ϕn(G(x0, x1, x1)) ≥ G(xn, xn+1, xn+1)

for n = 0, 1, 2, ...

Let m > n. Then from rectangle inequality of G, we have

G(xn, xm, xm) ≤
≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + ...+G(xm−1, xm, xm)

≤ ϕn(G(x0, x1, x1)) + ϕn+1(G(x0, x1, x1)) + ...+ ϕm−1(G(x0, x1, x1))

=
m−1∑
k=n

ϕk(G(x0, x1, x1)) ≤
m−1∑
k=1

ϕk(G(x0, x1, x1)).

Take any ε > 0. Since
∑∞

n=0 ϕ
n(t) <∞ for all t > 0, we can choose a

sufficiently large natural number such that
∑m−1

k=n ϕ
k(G(x0, x1, x1)) < ε

for all m > n ≥ N , and it follows from Proposition 1.5 that {xn} is a
G-Cauchy sequence in the complete G-metric space (X,G) and so has
a limit z in X.

Now we suppose that f is continuous. Since x2n = fx2n+1, it follows
from Proposition 1.7 that

z = lim
n→∞

x2n = lim
n→∞

fx2n+1 = fz

and so z is fixed point of f . Since g is surjective, there exists y such
that gy = z. Thus, using inequality (7) we have

0 = ϕ(G(fz, gy, gy)) = ϕ(G(fgy, gy, gy) ≥ G(gy, y, y)

= G(z, y, y))
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which implies G(z, y, y) = 0 and so y = z. Thus z = gz. We have
therefore proved that z is a common fixed point of f and g.

Similarly, considering the continuity of g, it can be seen that f and
g have a common fixed point and this completes the proof.

Putting f = g in Theorem 3.1, then we get the following corollary.

Corollary 3.2 Let (X,G) be a complete G-metric space and let f be
a surjective self-mapping of X satisfying the following inequality;

ϕ(G(f 2x, fx, fx)) ≥ G(fx, x, x)

for all x in X, where ϕ : [0,∞)→ [0,∞) is a nondecrasing function ,
with

∑∞
n=1 ϕ

n(t) < ∞ for all t > 0. If f is continuous, then f has a
fixed point.

Using the same procedure as in the proof of Corollary 2.3, we obtain
the following corollary.

Corollary 3.3 Let (X, d) be a complete metric space and let f and g
be self-mappings of X satisfying the following inequalities;

ϕ(d(fgx, gx)) ≥ d(gx, x)

ϕ(d(gfx, fx)) ≥ d(fx, x)

for all x in X, where ϕ : [0,∞)→ [0,∞) is a nondecrasing function ,
with

∑∞
n=1 ϕ

n(t) < ∞ for all t > 0. If either f or g continuous, then
f and g have a common fixed point.

Putting f = g and define ϕ : [0,∞) → [0,∞) by ϕ(t) = 1
k
t where

k > 1 in Corollary 3.3. Then we obtain the following corollary.

Corollary 3.4 ([8]) Let (X, d) be a complete metric space and let f
be a self-mapping of X satisfying the following inequalities;

d(f 2x, fx) ≥ kd(fx, x)

for all x in X, where k > 1. If f is continuous, then f has a fixed
point.
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