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ON THE CURVATURE TENSOR FIELD ASSOCIATED
TO HOMOGENEOUS METRICAL STRUCTURES
ON T*M

ADRIAN SANDOVICI

Abstract. The main goal of this paper is to compute the curvature
tensor field of the geometrical model determined by the second order
prolongation of a Riemannian space endowed with certain homoge-
neous structure.

1. INTRODUCTION

The generalized Lagrange geometry of second order was defined
and studied by R. Miron [6, 7] and represents the geometry of gen-
eralized Lagrangians modeled on the second order tangent bundle
(T>M, p, M). These spaces are useful in the study of the geometry of
higher-order Lagrangians [6, 7], for the prolongation of Riemannian,
Finslerian and Lagrangian structures [6, 7], for the study of stationary
curves [9], and for the development of a gauge theory having the second
order tangent bundle as the geometrical model [3, 10, 12]. The term
"homogeneity” has been discussed in Miron’s papers [4, 5] where new
geometrical models on Riemannian spaces and on Finslerian spaces
are also introduced, respectively. In [12, 14] an extension of Miron’s
theory of homogeneity to the second order tangent bundle is presented.
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This paper is a continuation of our previous works [11, 14]. The
curvature tensor field is a powerful tool in differential geometry and
its applications. The aim of this paper is to study the curvature tensor
field within the framework of the second order tangent bundle endowed
with the homogeneous metrical structure. The basic concepts and the
notations are the same with those from [11, 14].

2. HOMOGENEOUS SASAKI LIFT OF A (M,~) RIEMANNIAN SPACE
TO THE MANIFOLD T?M

Consider R" = (M,~) a Riemannian space generated by a real,
differentiable, n—dimensional manifold M and by a Riemannian metric
v on M, given by the local components (v;;(z)), z € U C M. It is
possible to extend v to p~(U) C E = T?*M by:

(1) (vijop) (W) = v(x), wep™(U), plu)=uz.

In this case 7;; o p are the local components of a tensor field on E.
Usually, we write these local components with ~,; as well. Further-
more, with ﬁj () we will denote the Christoffel symbols of the second
species of the metric 7y and with J%, (z) we will denote the local com-
ponents of the curvature tensor field of the metric ~. It is possible to
introduce on E a nonlinear connection determined only by this metric,
cf. [6]. Moreover, the coeflicients of connection are determined by the
following relations (see also [11]):

(0)i i
(2) Nys (@) =7k,

(0)i D ooy L (Do i m i
(3) N(Q)j (xvy( )Jy( )> - 5 (E)_xjpy( )p+70m"7j0 +7j(_)7
where the notation 70”7 stands for the contraction by (y(l)) and the
notation 70" stands for the contraction by (y(2)). In the next section,
we will partially avoid this particular nonlinear connection and we will
use one, more general, determined in the following result.

Theorem 2.1. If N((f)); and N((g)); are the local components of the non-
linear connection determined only by Riemannian metric v, and Xj

and Y]Z are the local components of any d- tensor field of type (1,1) on
E, then the functions

i _ ar(0) i

(4) N; = N + X5
i _ ar(0) i i m
(5) N(2)j = N(2)j + (Ym - ’Ymo) Xj )
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are the local components of a nonlinear connection N on E.
The nonlinear connection N assures the existence of a basis

<dk,dk ),d@)) adapted to the tangent space T, F. The vector fields

of the adapted basis are defined with the help of the following rela-
tions:

o .9 9

(6) dy, = ock Ny Dy — Ny Dy @i’
m_ 0 ;0 @_ _0

(7) dy,” = Dy o N(l)kay(z)z" = Dy

For further developments, we need the following result.

Theorem 2.2. The Lie brackets of the vector fields of the adapted
basis (dk,d,(:),dgf)> are given by:

i 1 i 2
(8) [dja dk] = R(Ol)jk ) df» ) + R(02)jk ) dz(' ),
2 i 1 i 2

(1()) [dja dl(g )} = B(21)jk ) dz( : + B(22)jk ) dz( ),

1 2) i
(11) [d d )} Ry - d2, [d dt } Bigyji - d?
where:

i (0)i i i (0)i i
(12> (01)jk — R(Ol)jk + Xjka (02)jk — R(OQ)jk + (XY>jk7
0)i

(13) Risay = Rithye + X4

i _ o) (1) i _ o) i
(14) B(ll)jk - B(ll)jk + Xjk ) B(lZ)jk - B(12)jk + (XY)(12)jk7

i _ p(0y (2)i i _ p(0y i
(15) B(21)jk - B(21)jk + ng ) B(zz)jk - B(22)jk + (XY)(22)jk7
with the following notations:
dX; B dX; Wi _ dX: @i _ dX;
dzk  dxi’ ik dy(Dk’ gk dy )k’

(16) X;k =
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i 0)i m i 0)m i m
(17) (XY = NOb - X0+ X5 RO, + X5 - X0
N (d(Y; - XT) Ay - X;‘i))

dxk dxi
(A0l XD e XD)
dxk dxi

7 0)7 1)m i 0)m : 1)m
(18) (XY)(IQ)jk: = N((l))m ) X;k) + X5 B((li)jk + X - XJ(k)
de" dY,j

+dy(1)k o dyMi’

7 0)7 2)m i 0)m 7 2)m
(19) (XY)(QQ)jk: = N((l))m ) X;k) + X5 - B((Zi)jk + X - XJ(k)
dei dY,f

T dy@k — qy(@)i’

1)i 1)i 1)i
(20) X0 =x3" - x{)
It is known from [6] that the pair Prol?R" = <T2M , G), where:

7 1 1)2 1)7 2)1 2)9
(21) G = v;(2)-da' ®dz’ +,;;(z)-dyV' @dy MV ++,;(2)-dy® @dy

is a Riemannian space of dimension 3n, with the metrical structure
G depending only on the Riemannian structure which is apriori given
on the Riemannian space (R",v). We say that G is the Sasaki lift
of the Riemannian structure . Define the omotety h; : (x,y', y?) —
(z,ty, t?y?), t € R\{0} on the fibres of T?M. Mention that G is
transformed according to:

(22) Gohy (z, y W, y(z)) = y(2) - da' @ da? +
+t* () - dy®' @ dy™®’.
The above remark makes us affirm that the Sasaki lift G is non—

homogeneous on the space T?M. In the following part we concentrate
upon a new lift of Sasaki type, called the homogeneous Sasaki lift and
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denoted by G
(23) Gohy (z, y W, y(2)) = 7y(2) - da’ @ da’ +
1
F?
1 .

where 2 = =Yy - yWiy(Mi - Clearly, the following properties hold true:

e The pair (TT?M, G(O ) is a Riemannian space;

e The metric G» depends only on the Riemannian metric v(z);
e The distributions N, V;, V5 are orthogonal each other with
respect to G(©)

Definition 2.3. A linear connection D on T?M is said to be the (0)—
metrical connection with respect to G if DG =0 and D preserves
by parallelism the horizontal distribution N.

With respect to the adapted basis <dk, d,(:), d,(f)>, any linear connec-

tion D on E can be represented as follows

(24) Dyud; = L5 - i + LY dz(l) n Lﬁ)i. e
B Dad? = I L L
(26) Dy, dS? = Lﬁ)i.di + L9 4 L(Uz)l dEQ)
(27) Dwd, _ij -d; +F 1)i d()+F<2)z 4
(28) Ddg)dg,l FJ(;: - d +F(vl) 'dz(l) _}_Fj(;l)i ' dz@)
(29) D dg)df) = FOd+ FO a4 B g
(30) Dywd; = G0 di 4+ CR -V + R - d?
(31) Dy = " di+ OV + O
(32) Ddf)df):c](.z)i.dﬁg](g)i 4 4 ot g

The set consisting of the functions Lgf)i,..., C](;f)i represents the set of
the coefficients of the linear connection D. Concerning the notion of
(0)—metrical connection, there can be proved the following result.
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Theorem 2.4. There exist (0)-metrical connections D on T*M,
which depend only on the Riemannian tensor field . One of these
connections has its coefficients given by:

1): 2)1 3) 4)i 5) 6)2
(33) LY =19 =15 =L =15 = L) =0,
i _ p@i _ @i _ @i _ ()i _ (6
(34) ij :ij :ij :ij :ij :ij =0,
1)i 2)i 3)i (4)i 5)i 6)i
(35) o) =0 =c =) =) =) =0,
(HYi _ i Wi _ i Lo )i _ i 2 i
37y FMig povio L opesi o 2y
jk ) Jk F2 jk> Jk F2 7k
(39) = Cp = O =0,
with the following notations
(39) b= (XL di+ X dy — XLy ™) g,
(40) A =iy + di oyt =gy

Theorem 2.5. The set of all (0)-metrical connections is given by
the coefficients L\T™ CJ(Z"”*)Z whose expressions are given by the

following relatz’on?sk )

(41)

LG = LWy ot gGor - plent = LGt ot g g = 1,2,
(42)

R B OB I E = OB A a=12
(43)

" — Gl OB, Y~ G OB, a2
where

(44 O = 5 (dh- i =, 9™).

ond 7, 107 I I I I B Y B an
arbitrary d—tensor fields.



CURVATURE TENSOR FIELD ASSOCIATED TO METRICAL STRUCTURES73

3. THE CURVATURE THEORY OF A LINEAR CONNECTION ON THE
MANIFOLD T?M
For the definition of the curvature tensor field in higher order ge-
ometry we refer to [6, 7]. Using the adapted basis (dk, dlil), d;?), the

curvature tensor field of a (0)-metrical connection D can be expressed
as

(45) R(dy,dj)dy, = Ry -diy  R(dy,dj)dy? = RSV -d™, a=1,2
(46) |

R, dj)dn = PO iy R(dD,dy)d® = P&, a=1,2
(47)

R(dY, dy)dy = Q4 - di, R d))dy = Qi - dl®, a=1,2

a=1,2

)
R(d", d"d, :sfg.’,j-di, R(d),d")d" —s;;;m.dg@,
)
R, )iy = O+ di, R, d)d = O, a= 1,2
(50) | |
RdY, dP)d, = 230 - di; - R(dD,d)d = 25 - d”

1 )

a=1,2

Theorem 3.1. The local components of the curvature tensor field of
a (0)-metrical connection D are given by the following relations:

(51) R}jj,),j = d L(W — ;L +L§fj)m Ui _ pEm (i

mk mj
H m H)i
(01) F( )i R(Ol)kj ' Cf(zm) )

a+1)7 Vg )t va'L Vg )M Va )t Vg )M Vg )T
(52) B = AL L 4 L L L 1

mj

_pm F(va)i m O(Ua)i

0Dkj "L hrm  — YOk T Yhm >
a = 1,2
1) 7 (H)i HYi H)ym HYi Hym 5 (H)i
(33) Py = &Ly = B+ LT Bt — BT L)
m H)i m H)i
+B 1)k - Fh(,m) + Biiay; - Cf(zm) ;
a+1 1 Vg )t Vg )T Vg )M V)l
P = AL R T Rl
—F;EZ“)’" : L(mv;)l + Bil)kj - ngvma)l + Bilo; Of(;;)l,

a = 1,2,
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Vi 4(2) p(H)i (H)i (H)m (H)i (H)m (H)i
(55) Qpjx = dy Ly —d;Ch + Ly - Oyt — ™ - Ly
HYi H)i

hm >

a+1) 2 Va )t Va )t Vg )M Va )t
3 QG = AP s Lol

J
—Cpp™ - L(mv?l + B Freel + Boy; + o’

hm >
a = 1,2,
L 5Q) p(H) (1) (H)i (H)m (H)i
(57) Shik = A Fyy” —di Fym + Fy oy
(H)m (H)i m (H)i
_Fhkz ’ ij — Y 21)kj T Ohm )
a+1)i 1 Va )t 1 Vg )T Vg )M Vg )l
58 SV = AR - DR E Y
Vg )m (va)i m (va)i
_F}Ek ’ ij = Y 22)kj ¢ Chm) )
a = 1,2
1)i 2) -(H)i 1) ~(H)i H)m H)i
59 O = PR - dC Ll
H H)i m H)i
_Cl(zk; . F?ilj) + B(21)kj ) O}(lm)z7
a+1)i 2 Va )t 1 Va )l Vg )M Vg )T
(60) O = a? B —dVoge + By ol
_C}(;l]ca)m ’ Fr(nvf)z + BgZ)kj ’ C;(féi)z,
a = 1,2

1)¢ 2 H)i 2 H)i H)m H)i H)m H)i
(61) 20 = dI I _ gt 4 oim | i _ clim o

mk mj

2 = Ol - A Y~ iyl
a = 1,2
Theorem 3.2. Assume that D is the (0)- connection determined in

Theorem 2.3. Then the non-zero local components of its curvature
tensor field are given by the following relations

1) i
(62) Réj)k; = Thjk>
@i _ 2 i, b T ey
(63) Ry = Thjr + i Apje + e Ak + e Apies
3) 7 4 1)2 2 2)1 2 3)1
(64) Ry =1+ e A+ =h AT+ o AL
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@i_ 2 4w, Loei 1 e
(65> Phjk - ﬁ ’ Ahjk + ﬁ ’ Ahjk + ﬁ ’ Ahjk?
@i_ 4 i, 2 e, 2 e
(66) Phjk - ﬁ ’ Ahjk + ﬁ ’ Ahjk + ﬁ ’ Ahjk?
(67) 02 — 1 Q¥ — _ 2 i
ik = T pa gk hik = T2 gk
@i 1 ®i 2 @i 1 (10)i
(68) Shjk - _ﬁ ’ Ahjk + ﬁ ' Ahjk + ﬁ ’ Ahjk )
@p 2 ®i 4 @i 2 (10)i
(69) Shik = R Aj e + i Apji + i Ay >
with the following notations
1)z 7 7
(70) Al(lj)k = (Xif ) th - X;'D : ehk) ) y;(gl)a
2)1 7 7 m 7 m 7
(71) Al(lj)k = dib; — diOh + Vhi O + O Vo

~Vhi * ‘%nj — Ok - ’anj - Rzgl)jk ) Ainlw

3)i m 7 m )
(72) Agj)k = ehj ) 9mk - Qhk ) emjv
4)i i i 1
(73) Agzj)k = Xf ) y](}) Ay — hj yl(c )a

5)1 1) pi I m 7 [ m m [
(74) AELj)k = d](f) nj T AN — Ay - M + Ay - Ak — Bl e

m C A hmeo

(75) At = Oy - Nk = 07 - A
(76> Agj)lz = Bgl)jk ) A;Lm - dl(f)ezﬁja
(1) Ay = 4Ny = dPA,

(78) Ak = Ny -y = M-y,

(79) Aggsgi = AP AL — AR AL



76 ADRIAN SANDOVICI

4. CONCLUSIONS

This paper discusses the second order prolongation of a Riemannian
space. The basic concepts were introduced by Radu Miron in [6, 7].
On the mentioned geometrical model, in [12] we introduced and stud-
ied the notion of (a, 3, ~)—-Sasaki lift of a Riemannian space (M, ) to
T2M and then determined the (o, 3,7) corresponding metrical linear
connection. For the canonical metrical connection we also determined
the local components of the tensor fields of curvature and torsion. We
introduced and studied the notion of almost 2 — 7 structure on T2M
and dealt with the linear connection compatible with such a structure,
as well as with certain necessary conditions for normality. Moreover, it
was considered also the d- gauge linear connections on 7?M, preparing
the basis for the determination of the second order generalized EYM
equations, and the gravitational field equations as well. In a partic-
ular case, the (a, 3,7)- Sasaki lift of a Riemannian space (M,~) to
T2 M becomes the so-called homogeneous metrical structure on T2M.
Few steps in the study of the second order homogeneous model of a
Riemannian space have been done in [12, 13, 14]. This paper can be
view as a continuation of our previous work with respect to the above
mentioned model in order to obtain a good "gauge” model for the
theory of physical fields.
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