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SEQUENCES THAT CONVERGE TO A
GENERALIZATION OF IOACHIMESCU’S CONSTANT

ALINA SINTAMARIAN

Abstract. We consider a  generalization  of
loachimescu’s constant as the limit J(a;s) of the sequence

1 1 1 1 1-s _ 1-s
<a—s+m+---+m—1—_s((a+n—l) —a ))nEN,

where a € (0,400) and s € (0, 1).
The purpose of this paper is to give some sequences that converge
quickly to I(a; s).

1. INTRODUCTION

A. G. Toachimescu [8] proposed in 1895 a problem in which he asked
to be shown that the sequence (S, ),en, defined by S, = 1+ \% +e 4+
\/iﬁ — 24/n, for each n € N, is convergent and its limit lies between —2
and —1.

Many generalizations and other results regarding the above-
mentioned problem have been obtained in the literature. See, for
example, [1], [2], [3], [4, Theorem 1, parts a) and b)], [5, problem 3,
p. 534], [6, problem 3.1, p. 431], [7, problem P2, parts (i) and (ii)].
Also, see [14, pp. 27-33], [15], [16], [17], [18].

In [15], we considered the sequence (I, ) ey defined by I,, = 1+ \/Li +

st \/iﬁ —2(y/n—1), for each n € N. We denoted the limit of (1,,),en
by J, calling it Toachimescu’s constant. In [18], we have proved that
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1
<I,-J<—m,
2¢/n+ 1 2y/n+ 3
for each n € N. Using these inequalities we get J = 0.53964549119. . ..
Let a € (0,400). We considered in [15, Theorem 2] the sequence
(yn(a))nen, defined by

1 1 1
w@)=—=+—+ F ——e 2
yn(a) va  Va+1 Va+n—1 (

for each n € N, and J(a) = lim y,(a). Surely, J(a) is a generalization

Va+n—1-+a),

of Toachimescu’s constant, because J(1) = J. We have lim /n(y,(a)—

1
I(a)) = 5 ([15, Theorem 2, part (iii)]).
Let a € (0,400) and s € (0,1). In [17, Theorem 2], we considered
the sequence (y,(a; $))nen, defined by
(a: ) 1 n 1 T 1 1
n a; S) = — e _
Y a® (a+1) (a+n—1) 1—s5

(wtn=1)"*=a!™)

for each n € N, and I(a; s) = lim y,(a;s). Clearly, J(a;s) is a gener-

alization of Ioachimescu’s constant, since J (1; %) = J. We have proved
in [17, Theorem 2, part (iii)] that

i w(ns5) — s 8)) = 5.
We have also given in [17, Theorems 3, 4 and 5] some sequences that
converge to J(a; s) with order s + 1.

We remind a lemma given by C. Mortici [10, Lemmal, which we
shall need further on. Applications of this lemma can be also found
in [11], [12], [13] as well as in some of the references therein.

Lemma 1.1. Let (z,)nen be a convergent sequence of real numbers
and r* = lim z,. We suppose that there exists o € R, a > 1, such

that

lim n®(z, — p11) =1 €R.

n—oo

Then there exists the limit

: a—1 ) —
nlglgon (X, — ™) 1
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Also, we mention for Lemma 1.1 another proof than the one given

by C. Mortici [10, Lemma]. According to the Stolz-Cesaro Theorem,

the case %, we can write that

lim,, oo n* Yz, — %) =
. ¥ . x —x*—(zp—a*
= lim, oo 227% = lim,,_,oe 25 (@n . )
no—1 (n+1)0‘*1 T pa—1
and

lim, o n® Yz, — 2%) =

Y n+1)2—1 _ 1
= lim, oo (0 (20 — Tpt1) - n((n—l(—l)afl—nafl)> T a1

In Section 2 we give some sequences that converge quickly to I(a; s).

2. SEQUENCES THAT CONVERGE TO J(a; $)

Inspired by an idea of C. Mortici [11, Theorem 2.1] in getting se-
quences that converge quicker to a generalization of the well-known
Euler’s constant, we give the following theorem in order to obtain
sequences that converge quicker to J(a;s).

Theorem 2.1. Let a € (0,+00), b,c € R, s € (0,1) and ny =
max {1, [1 —a — c|}, where [z] is the ceiling of the real number x.
We consider the sequence (vn(a,b, ¢;s))n>n, defined by
. 1 1 1 b
wn(a:b:68) = o ey T Y ek sy T @an =1y
1
1—s
for each n € N, with n > ng. Also, we specify that I(a; s) is the limit
of the sequence (Yn(a; $))nen from Introduction.
(i) Ifb+# c— 3, then
lim, o0 n*(vy(a, b, ¢;8) — I(a;s)) =b—c+ 1.
(i6) Ifb=c— 5 and c # i‘/?é, then
limy, oo 2T (v, (0,0 = 5,¢58) = I(a;8)) =5 (= ¢).

(iti) Ifb=c— 3 and c = */?6, then

lim,, o n512 (Un (a7 ‘/76 — 1 v6. s) — J(a; 5)) _ _s(s+DVE

a+n—1+c)™°—a*],
[( )

27 6 216

. o 1 _ 6

(1v) Ifb=c—3 and ¢ = —*2, then Ve
. B . X s(s+1)v6
hmnﬂoon +2 ('Un (a, _\/Té - %7 _\/?67 S> - j(a’ S)) = ( 216) :

Proof. We are able to write that lim v,(a,b, ¢; s) = J(a; s), taking into

n—oo

account that lim [(a+n—1+¢)'™* —(a+n— 1)1 =0.

n—oo



92 ALINA SINTAMARIAN

We have
vn(a, b, ¢;5) — vny1(a, b, c;5) = b b+l

(a+n—1)3 (a+n)s

and

vn(a,b,¢;8) —vpi1(a,bc;s) = —=[(a+n—14¢)' = —(a+n+c)' =,
for each n € N, with n > ng. We can write that

vn(a,b,c;8) — vpia(a, b, c;s) = bel (1 —e,)~* — (b4 1)ed,

and

vn(a, b, c;s) — vn+1(a,b ¢ s) = —l—ise (1- S)[(1 +(c— De)* — (1 +
ce,)' %], where e, := —, for each n € N, with n > ng. Let mo =
max {ng, [—a+c|}. Since [(c—1)e,| < 1 and |ce,| < 1, for each n € N,
with n > my, using the Binomial Theorem ([9, p. 209]) we obtain that
'Un(aa b: G S) - Un-‘rl(aa ba & 3)

= bes [1 b2 (e,) + D (g, )? 4 me e (g3
_i_fs(fsfl)(;f*?)(fsf?))(_gn)4 +o | = (b4 1e
— %57(175) [1 + 11;,3(0 — e, + —(1752),(75) (c—1)%2

n

Ol (s (ks)@s)(;sﬁ)(fsfm(c_1)45;
4 (=9)(Zs)(=s é)( ><+3>(C ) .

_ (175)(78)(;!871)(7872) C4€;1L
3

_ (=) (=s) (=) (=s=2)(=s=

i
—s)(=s—1) 3.3
3 c’e,

)0555__-_}

51
— bet [%Sn n s(s+1)6 n s(s+1)(s+2) &y s(s+1)(s4—|!—2)(s+3)€i T }
— e8| &(2c— 1)ep — L (3¢2 — 3¢+ 1)e2

Ao (43 62 de — 1)}

— SADERE) (564 1063 4 10¢% — e + 1)ed + - }
(b—c—|— 1) 5“—1—““ b+ —c+3)est?

+ s(s+13)(s+2) (b 3 + —c+ Z) Ez+3

4 Sletl)ed2)(o43) (b—i—c 2 +2¢7 —c+ L) est™+- - foreachn € N,
with n > my.
(i) Because b # ¢ — 3, we can write that

limy, o0 T (v (@, b, ¢; ) — Vnga(a,b,c;8)) = 5 (b—c+3) .

Now, according to Lemma 1.1, it follows that
limy, o0 n*(vy(a, b, ¢;8) —I(a; ) =b—c+ 3.
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(i4) Because b =c¢ — % and ¢ # i‘[ we can write that

lim,, o 112 (vn (a c— ;,c s) (O (a,c—%,c;s)) =

s(s+1) (62 B l)
2! 6/

Now, according to Lemma 1.1, it follows that

limy, oo n°™ (v, (2,0 — 5, ¢58) = I(a;8)) =5 (2 —2) .

(#11) Because b=c — 5 and ¢ = \/?6, we can write that

lim,,_, o n*T3 <vn (a v6 _ 1 VG, 8) — Up+1 (a % _1 \/?6;5)>

76 27 6 )6 2
_s(s+1)(s+2) . @
N 3 36 )
Now, according to Lemma 1.1, it follows that

V6 1 V6 s(s+1)v6
li s+2 = . _ . — — .
B (“” (a’ 6 260 ) " Nws) 216

|

(iv) Because b=c — 1 and ¢ = —‘/?g, we can write that
hmn—>oo ns+3 <U (CL _\/Fé - %7 _\/?67 ) — Unt1 (CL _\/Té - %7 _\/?éa 5))

— s(s+1)(s42)
- 3!

hm n8+2 (vn (CL, _@ - la _@, 8) — j(azy 5)) = S(S + —1)\/6
o 6 2 6 216

. 3—\€. Now, according to Lemma 1.1, it follows that

O

Corollary 2.1. Let a € (0,+0), b,c € R and ng = max{1,[1 —a —
cl}, where [x] is the ceiling of the real number x. We consider the
sequence (v (a, b, ¢))p>n, defined by

/Un(abc) \[+\/a;+71+”.+\/a+1n—1+\/a—‘fn—1_Z(M_
Va),

for each n € N, with n > ngy. Also, we specify that J(a) is the limit of
the sequence (yn(a))nen from Introduction.

(i) Ifb+# c— %, then

lim v/n(v,(a,b,c) —I(a)) =b—c+ —.

n—oo 2

(i) Ifb=c— 5 cmdc;éi , then

i (o e 1) ) = (- 1),
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(iii) Ifb=c— 1 and c = ‘/Té, then

lim n%/n (vn (a, @ — %, \/6> — J(a)) = —@.

n—oo

(i) Ifb=c—3 and ¢ = —¥8 then

lim n*v/n <vn (a, —\/6 - %, —@> - J(a)) \/6

@]

n—oo

Proof. We take s = % in Theorem 2.1. !

In the next theorem we shall give a sequence that converge to J(a; s)
quicker than the sequences from parts (i7i) and (iv) of Theorem 2.1.

Theorem 2.2. Let a € (0,+00) and s € (0,1). We consider the

sequence (wy,)n>2 defined by
L) 1 1 1 1
wala;8) = 55+ e Tt Gy T et

1-s 1-s
—ﬁ{(a—kn—qu%é) —|—<a—|—n—1—‘/?é> —2a'7% |,
for each n € N\ {1}. Also, we specify that I(a;s) is the limit of the
sequence (Yn(a; s))nen from Introduction.
Then

, 11s(s+1)(s+2)
1 5+3 . _ . —
lim (wn(a; s) — I(a; s)) 1550

Proof. As can be easily seen, we have

wy(a;s) = 1 [vn (a,@ 1 \/68> + vy, (a,—@ — %,—@;s>] ,

2 6 26 6 6
, \/76; s)) and
neN
<vn (a, V6 _ 1 . s)) are the sequences considered in The-
n>2

orem 2.1, in parts (i7i) and (iv) respectively. We have that

. s s(s+1)(s+2)(s+3) 11
T 1 (01.8) — g )) = O FDEE2EEI L

Now, according to Lemma 1.1, it follows that

, 11s(s+1)(s +2)
s+3 CQ) . —
nlgon (wn(a;s) —I(a; s)) 1390 .

for each n € N\ {1}, where <vn (a,

=]
=
N[ —=
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Corollary 2.2. Let a € (0,+00). We consider the sequence
(wy(a))n>2 defined by

1 1 1 1
wy(a) = —= 4+ —— +-
va  Va+1 \/a+n— Covatn—1
\/_

- +n—1+—+ a+n —1———2f ,

for each n € N\ {1}. Also, we specify that I(a) is the limit of the
sequence (Yn(a))nen from Introduction.

Then
11
li 3 n(a) — = —.
T V(i 0) = 9(a) = oo
Proof. We take s = % in Theorem 2.2. O
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