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SEQUENCES THAT CONVERGE TO A
GENERALIZATION OF IOACHIMESCU’S CONSTANT

ALINA SÎNTĂMĂRIAN

Abstract. We consider a generalization of
Ioachimescu’s constant as the limit I(a; s) of the sequence(

1
as

+ 1
(a+1)s

+ · · ·+ 1
(a+n−1)s

− 1
1−s((a+ n− 1)1−s − a1−s)

)
n∈N

,

where a ∈ (0,+∞) and s ∈ (0, 1).
The purpose of this paper is to give some sequences that converge

quickly to I(a; s).

1. Introduction

A. G. Ioachimescu [8] proposed in 1895 a problem in which he asked
to be shown that the sequence (Sn)n∈N, defined by Sn = 1+ 1√

2
+ · · ·+

1√
n
− 2
√
n, for each n ∈ N, is convergent and its limit lies between −2

and −1.
Many generalizations and other results regarding the above-

mentioned problem have been obtained in the literature. See, for
example, [1], [2], [3], [4, Theorem 1, parts a) and b)], [5, problem 3,
p. 534], [6, problem 3.1, p. 431], [7, problem P2, parts (i) and (ii)].
Also, see [14, pp. 27–33], [15], [16], [17], [18].

In [15], we considered the sequence (In)n∈N defined by In = 1+ 1√
2

+

· · ·+ 1√
n
− 2(
√
n− 1), for each n ∈ N. We denoted the limit of (In)n∈N

by I, calling it Ioachimescu’s constant. In [18], we have proved that

————————————–
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1

2
√
n+ 1

5

< In − I <
1

2
√
n+ 1

6

,

for each n ∈ N. Using these inequalities we get I = 0.53964549119 . . ..
Let a ∈ (0,+∞). We considered in [15, Theorem 2] the sequence
(yn(a))n∈N, defined by

yn(a) =
1√
a

+
1√
a+ 1

+ · · ·+ 1√
a+ n− 1

− 2(
√
a+ n− 1−

√
a),

for each n ∈ N, and I(a) = lim
n→∞

yn(a). Surely, I(a) is a generalization

of Ioachimescu’s constant, because I(1) = I. We have lim
n→∞

√
n(yn(a)−

I(a)) =
1

2
([15, Theorem 2, part (iii)]).

Let a ∈ (0,+∞) and s ∈ (0, 1). In [17, Theorem 2], we considered
the sequence (yn(a; s))n∈N, defined by

yn(a; s) =
1

as
+

1

(a+ 1)s
+· · ·+ 1

(a+ n− 1)s
− 1

1− s
((a+n−1)1−s−a1−s),

for each n ∈ N, and I(a; s) = lim
n→∞

yn(a; s). Clearly, I(a; s) is a gener-

alization of Ioachimescu’s constant, since I
(
1; 1

2

)
= I. We have proved

in [17, Theorem 2, part (iii)] that

lim
n→∞

ns(yn(a; s)− I(a; s)) =
1

2
.

We have also given in [17, Theorems 3, 4 and 5] some sequences that
converge to I(a; s) with order s+ 1.

We remind a lemma given by C. Mortici [10, Lemma], which we
shall need further on. Applications of this lemma can be also found
in [11], [12], [13] as well as in some of the references therein.

Lemma 1.1. Let (xn)n∈N be a convergent sequence of real numbers
and x∗ = lim

n→∞
xn. We suppose that there exists α ∈ R, α > 1, such

that

lim
n→∞

nα(xn − xn+1) = l ∈ R.

Then there exists the limit

lim
n→∞

nα−1(xn − x∗) =
l

α− 1
.
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Also, we mention for Lemma 1.1 another proof than the one given
by C. Mortici [10, Lemma]. According to the Stolz-Cesaro Theorem,
the case 0

0
, we can write that

limn→∞ n
α−1(xn − x∗) =

= limn→∞
xn−x∗

1
nα−1

= limn→∞
xn+1−x∗−(xn−x∗)

1
(n+1)α−1−

1
nα−1

and
limn→∞ n

α−1(xn − x∗) =

= limn→∞

(
nα(xn − xn+1) · (n+1)α−1

n((n+1)α−1−nα−1)

)
= l

α−1
.

In Section 2 we give some sequences that converge quickly to I(a; s).

2. Sequences that converge to I(a; s)

Inspired by an idea of C. Mortici [11, Theorem 2.1] in getting se-
quences that converge quicker to a generalization of the well-known
Euler’s constant, we give the following theorem in order to obtain
sequences that converge quicker to I(a; s).

Theorem 2.1. Let a ∈ (0,+∞), b, c ∈ R, s ∈ (0, 1) and n0 =
max {1, d1 − a − ce}, where dxe is the ceiling of the real number x.
We consider the sequence (vn(a, b, c; s))n≥n0 defined by

vn(a, b, c; s) =
1

as
+

1

(a+ 1)s
+ · · ·+ 1

(a+ n− 1)s
+

b

(a+ n− 1)s

− 1

1− s
[
(a+ n− 1 + c)1−s − a1−s] ,

for each n ∈ N, with n ≥ n0. Also, we specify that I(a; s) is the limit
of the sequence (yn(a; s))n∈N from Introduction.

(i) If b 6= c− 1
2
, then

limn→∞ n
s(vn(a, b, c; s)− I(a; s)) = b− c+ 1

2
.

(ii) If b = c− 1
2

and c 6= ±
√

6
6

, then

limn→∞ n
s+1
(
vn
(
a, c− 1

2
, c; s

)
− I(a; s)

)
= s

2

(
c2 − 1

6

)
.

(iii) If b = c− 1
2

and c =
√

6
6

, then

limn→∞ n
s+2
(
vn

(
a,
√

6
6
− 1

2
,
√

6
6

; s
)
− I(a; s)

)
= − s(s+1)

√
6

216
.

(iv) If b = c− 1
2

and c = −
√

6
6

, then

limn→∞ n
s+2
(
vn

(
a,−

√
6

6
− 1

2
,−
√

6
6

; s
)
− I(a; s)

)
= s(s+1)

√
6

216
.

Proof. We are able to write that lim
n→∞

vn(a, b, c; s) = I(a; s), taking into

account that lim
n→∞

[(a+ n− 1 + c)1−s − (a+ n− 1)1−s] = 0.
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We have
vn(a, b, c; s)− vn+1(a, b, c; s) = b

(a+n−1)s
− b+1

(a+n)s

and
vn(a, b, c; s)−vn+1(a, b, c; s) = − 1

1−s [(a+n−1+ c)1−s− (a+n+ c)1−s],
for each n ∈ N, with n ≥ n0. We can write that
vn(a, b, c; s)− vn+1(a, b, c; s) = bεsn(1− εn)−s − (b+ 1)εsn
and
vn(a, b, c; s) − vn+1(a, b, c; s) = − 1

1−sε
−(1−s)
n [(1 + (c − 1)εn)1−s − (1 +

cεn)1−s], where εn := 1
a+n

, for each n ∈ N, with n ≥ n0. Let m0 =
max {n0, d−a+ce}. Since |(c−1)εn| < 1 and |cεn| < 1, for each n ∈ N,
with n > m0, using the Binomial Theorem ([9, p. 209]) we obtain that
vn(a, b, c; s)− vn+1(a, b, c; s)

= bεsn

[
1 + −s

1!
(−εn) + −s(−s−1)

2!
(−εn)2 + −s(−s−1)(−s−2)

3!
(−εn)3

+−s(−s−1)(−s−2)(−s−3)
4!

(−εn)4 + · · ·
]
− (b+ 1)εsn

− 1
1−sε

−(1−s)
n

[
1 + 1−s

1!
(c− 1)εn + (1−s)(−s)

2!
(c− 1)2ε2

n

+ (1−s)(−s)(−s−1)
3!

(c− 1)3ε3
n + (1−s)(−s)(−s−1)(−s−2)

4!
(c− 1)4ε4

n

+ (1−s)(−s)(−s−1)(−s−2)(−s−3)
5!

(c− 1)5ε5
n + · · ·

− 1− 1−s
1!
cεn − (1−s)(−s)

2!
c2ε2

n −
(1−s)(−s)(−s−1)

3!
c3ε3

n

− (1−s)(−s)(−s−1)(−s−2)
4!

c4ε4
n

− (1−s)(−s)(−s−1)(−s−2)(−s−3)
5!

c5ε5
n − · · ·

]
= bεsn

[
s
1!
εn + s(s+1)

2!
ε2
n + s(s+1)(s+2)

3!
ε3
n + s(s+1)(s+2)(s+3)

4!
ε4
n + · · ·

]
− εsn

[
s
2!

(2c− 1)εn − s(s+1)
3!

(3c2 − 3c+ 1)ε2
n

+ s(s+1)(s+2)
4!

(4c3 − 6c2 + 4c− 1)ε3
n

− s(s+1)(s+2)(s+3)
5!

(5c4 − 10c3 + 10c2 − 5c+ 1)ε4
n + · · ·

]
= s

1!

(
b− c+ 1

2

)
εs+1
n + s(s+1)

2!

(
b+ c2 − c+ 1

3

)
εs+2
n

+ s(s+1)(s+2)
3!

(
b− c3 + 3

2
c2 − c+ 1

4

)
εs+3
n

+ s(s+1)(s+2)(s+3)
4!

(
b+ c4 − 2c3 + 2c2 − c+ 1

5

)
εs+4
n +· · · , for each n ∈ N,

with n > m0.
(i) Because b 6= c− 1

2
, we can write that

limn→∞ n
s+1(vn(a, b, c; s)− vn+1(a, b, c; s)) = s

1!

(
b− c+ 1

2

)
.

Now, according to Lemma 1.1, it follows that
limn→∞ n

s(vn(a, b, c; s)− I(a; s)) = b− c+ 1
2
.
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(ii) Because b = c− 1
2

and c 6= ±
√

6
6

, we can write that

limn→∞ n
s+2
(
vn
(
a, c− 1

2
, c; s

)
− vn+1

(
a, c− 1

2
, c; s

))
=

s(s+1)
2!

(
c2 − 1

6

)
.

Now, according to Lemma 1.1, it follows that
limn→∞ n

s+1
(
vn
(
a, c− 1

2
, c; s

)
− I(a; s)

)
= s

2

(
c2 − 1

6

)
.

(iii) Because b = c− 1
2

and c =
√

6
6

, we can write that

limn→∞ n
s+3
(
vn

(
a,
√

6
6
− 1

2
,
√

6
6

; s
)
− vn+1

(
a,
√

6
6
− 1

2
,
√

6
6

; s
))

= − s(s+1)(s+2)
3!

·
√

6
36
.

Now, according to Lemma 1.1, it follows that

lim
n→∞

ns+2

(
vn

(
a,

√
6

6
− 1

2
,

√
6

6
; s

)
− I(a; s)

)
= −s(s+ 1)

√
6

216
.

(iv) Because b = c− 1
2

and c = −
√

6
6

, we can write that

limn→∞ n
s+3
(
vn

(
a,−

√
6

6
− 1

2
,−
√

6
6

; s
)
− vn+1

(
a,−

√
6

6
− 1

2
,−
√

6
6

; s
))

= s(s+1)(s+2)
3!

·
√

6
36
. Now, according to Lemma 1.1, it follows that

lim
n→∞

ns+2

(
vn

(
a,−
√

6

6
− 1

2
,−
√

6

6
; s

)
− I(a; s)

)
=
s(s+ 1)

√
6

216
.

�

Corollary 2.1. Let a ∈ (0,+∞), b, c ∈ R and n0 = max {1, d1− a−
ce}, where dxe is the ceiling of the real number x. We consider the
sequence (vn(a, b, c))n≥n0 defined by
vn(a, b, c) = 1√

a
+ 1√

a+1
+ · · ·+ 1√

a+n−1
+ b√

a+n−1
− 2(
√
a+ n− 1 + c−√

a),
for each n ∈ N, with n ≥ n0. Also, we specify that I(a) is the limit of
the sequence (yn(a))n∈N from Introduction.

(i) If b 6= c− 1
2
, then

lim
n→∞

√
n(vn(a, b, c)− I(a)) = b− c+

1

2
.

(ii) If b = c− 1
2

and c 6= ±
√

6
6

, then

lim
n→∞

n
√
n

(
vn

(
a, c− 1

2
, c

)
− I(a)

)
=

1

4

(
c2 − 1

6

)
.
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(iii) If b = c− 1
2

and c =
√

6
6

, then

lim
n→∞

n2
√
n

(
vn

(
a,

√
6

6
− 1

2
,

√
6

6

)
− I(a)

)
= −
√

6

288
.

(iv) If b = c− 1
2

and c = −
√

6
6

, then

lim
n→∞

n2
√
n

(
vn

(
a,−
√

6

6
− 1

2
,−
√

6

6

)
− I(a)

)
=

√
6

288
.

Proof. We take s = 1
2

in Theorem 2.1. �

In the next theorem we shall give a sequence that converge to I(a; s)
quicker than the sequences from parts (iii) and (iv) of Theorem 2.1.

Theorem 2.2. Let a ∈ (0,+∞) and s ∈ (0, 1). We consider the
sequence (wn)n≥2 defined by
wn(a; s) = 1

as
+ 1

(a+1)s
+ · · ·+ 1

(a+n−1)s
− 1

2(a+n−1)s

− 1
2(1−s)

[(
a+ n− 1 +

√
6

6

)1−s
+
(
a+ n− 1−

√
6

6

)1−s
− 2a1−s

]
,

for each n ∈ N \ {1}. Also, we specify that I(a; s) is the limit of the
sequence (yn(a; s))n∈N from Introduction.

Then

lim
n→∞

ns+3(wn(a; s)− I(a; s)) =
11s(s+ 1)(s+ 2)

4320
.

Proof. As can be easily seen, we have

wn(a; s) =
1

2

[
vn

(
a,

√
6

6
− 1

2
,

√
6

6
; s

)
+ vn

(
a,−
√

6

6
− 1

2
,−
√

6

6
; s

)]
,

for each n ∈ N \ {1}, where
(
vn

(
a,
√

6
6
− 1

2
,
√

6
6

; s
))

n∈N
and(

vn

(
a,−

√
6

6
− 1

2
,−
√

6
6

; s
))

n≥2
are the sequences considered in The-

orem 2.1, in parts (iii) and (iv) respectively. We have that

lim
n→∞

ns+4(wn(a; s)− wn+1(a; s)) =
s(s+ 1)(s+ 2)(s+ 3)

4!
· 11

180
.

Now, according to Lemma 1.1, it follows that

lim
n→∞

ns+3(wn(a; s)− I(a; s)) =
11s(s+ 1)(s+ 2)

4320
.

�
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Corollary 2.2. Let a ∈ (0,+∞). We consider the sequence
(wn(a))n≥2 defined by

wn(a) =
1√
a

+
1√
a+ 1

+ · · ·+ 1√
a+ n− 1

− 1

2
√
a+ n− 1

−

√a+ n− 1 +

√
6

6
+

√
a+ n− 1−

√
6

6
− 2
√
a

 ,

for each n ∈ N \ {1}. Also, we specify that I(a) is the limit of the
sequence (yn(a))n∈N from Introduction.

Then

lim
n→∞

n3
√
n(wn(a)− I(a)) =

11

2304
.

Proof. We take s = 1
2

in Theorem 2.2. �
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[3] D. M. Bătineţu-Giurgiu, Problem C: 1525, Gaz. Mat. Seria B 99 (4), 1994,
191.
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