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NORMAL APPROXIMATIONS OF GEODESICS ON
SMOOTH TRIANGULATED SURFACES

ELI APPLEBOIM AND EMIL SAUCAN

Abstract. In this paper we study relations between normal curves
and geodesic curves on triangulated smooth surfaces. Based on a
curvature measure for normal curves, we define normal geodesics and
build a semi discrete curvature flow under which normal geodesics con-
verge to classical geodesic curves and vice versa, each geodesic in the
classic differential geometric sense can be approximated by a sequence
of normal geodesics under the defined flow. We give experimental re-
sults for the approximation of geodesics on both synthetic as well as
on meshes generated from point clouds obtained by sampling of real
data.

1. INTRODUCTION

Geodesics and their approximations represent not only a fundamen-
tal subject of research in Differential Geometry, see, e.g. [2], [33], [32],
[26], [1]

and its various applications in other fields of mathematics [10], they
also are of great importance in various aspects of Computer Graphics
27], [19], Imaging [30] Computational Geometry [12], Pattern Analysis
[21], Learning [3], Computation Theory [10], Networks [9], etc.
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In particular, geodesics and quasi-geodesics (see below) on PL
(piecewise linear) and piecewise flat surfaces are of great interest both
in their theoretic as well as computer driven implementations (see,
amongst others, [32], [26] and [27], [30], [19] respectively).

It is in this context that our study is undertaken, hence the am-
bient space is a triangulated surface, and we study relations between
geodesics on that surface, and shortest normal curves (to be defined
in Section 2), with respect to the given triangulation and its subdivi-
sions. Informally, normal curves can be regarded as a specific type of
quasi-geodesics in the sense of [2], representing a subset of the set of all
quasi-geodesics, formed of those quasi-geodesics that will be termed
as “straight”.

In [5], two flavors of results where proved.

e Convergence results: There is a semi discrete variational
method under which a sequence of locally shortest normal
curve will converge to a geodesic curve, not necessarily short-
est. If, in addition, the triangulation is assumed to be fat
(see Section 4), then we can guarantee convergence to shortest
geodesics.

o Approximation results: Every geodesic on a surface is the limit
curve, under the variational method mentioned above, of a
sequence of short normal curves with respect to some triangu-
lation and its subdivisions.

In order to achieve the above goals we will define length and cur-
vature measures on normal curves according to which least-weight,
minimal, shortest and straight curves will be defined. This will be
done in Section 3. Note that straight curves are of interest also in the
paper [27], however, since the curvature measure we will define herein
is different from the one in [27], (see also [32]), so does the meaning of
being straight.

In Section 4 the variational process is described, basically a curva-
ture flow, given in [5] for normal curves, and show that we obtain a
family of straight normal curves which converges to a limit curve that
is a geodesic. Two types of flows will be considered: One is merely
an extension of the standard curvature flow as studied in [11], [14],
[13] and others, to piecewise smooth curves; the second one is a semi-
discrete version of the former, where we restrict the flow only to the
points at which the curve is non-smooth. In this section we will review
convergence results for both flows, as proved in [5]. In Section 5, we
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will change the direction of interest and briefly discuss the approxi-
mation theorems proven in [5] for geodesic curves. A special type of
triangulations will be taken into account, namely the so called fat tri-
angulations. We will rely on works such as [31] for the ability to build
a fat triangulation desirable for our needs. PL-approzimations of the
surface will also be considered, based on the constructed fat triangu-
lation and its subdivisions, and we will show that for every geodesic
curve on a smooth surface there is an approzximating sequence of PL
straight normal curves. In addition, we will also deduce an algorith-
mic way to find such a sequence in the case of shortest geodesics. In
Section 6 some very preliminary experimental results are presented,
regarding the algorithm mentioned above, for approximating shortest
geodesics by straight normal curves. Finally, in Section 7 we briefly
discuss study in progress, its goal being to prove some similar conver-
gence and approximation results for least area normal surface, with
respect to minimal surfaces, see also [4]. However, we begin in the
following Section 2, with a brief introduction to normal surfaces and
normal curves. As normal surfaces where introduced first, we shall
also start with surfaces.

2. PRELIMINARIES - NORMAL CURVES

2.1. Normal Curves.

Definition 2.1. A curve C on a triangulated orientable surface 3 is
called normal curve iff all intersections of C' with 2-simplecies of the
triangulation T are made of normal pieces, i.e. made of pathes which
run from one edge to a different edge of the same triangle. We assume
C s smooth in the interior of the 2-cells it passes through.

O

normal piece non-normal pieces

F1GURE 1. Normal and not normal pieces.
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2.1.1. Matching equations. Consider a normal curve v and let 7, u be
two 2-cells, adjacent along an edge e. We may code each normal piece
of v in 7 say, according to the single vertex of 7 it separates from the
other two vertices. Since each normal piece in 7 which pathes through
e into p will separate either of the vertices of e, we get an equation of
the form,
Tr +Yr :xu+yu7

where z,, z,, are the number of normal pieces separating the vertex x
in 7, ;4 respectively.

, ' T
'
Some normal piece

separating = in pu

F1GURE 2. Illustration of matching equations.

Theorem 2.2. Every normal curve on a triangulated surface induces
a set of matching equations and vice versa every integral solution all
values of which are non negative, of a system of matching equations
can be realized as a normal curve, not necessarily connected.

2.1.2. Historical remark. Normal curves can be regarded as a remi-
niscent of Normal Surfaces theory first introduced during 1930’s by
H.Kneser, [22], in his studies of the topology of 3-manifolds. In 1960’s
the theory of normal surfaces was revised and put in fully rigorous
manner by W.Haken, [15], and where shown to give some first al-
gorithmic solutions to problems related to 3-manifolds topology and
geometry. In [17] a version of Theorem 2.2 for surfaces is given. We
will refer to normal surfaces again in Section 7.

3. LENGTH AND CURVATURE MEASURES FOR NORMAL CURVES

In this section we will define length and curvature measures for
normal curves with respect to which we will have definitions of minimal
(shortest) curves. These definitions will lead in turn to curvature flows
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minimizing the length of normal curves. In this process we will go from
fine to coarse in the sense that, first we will have the usual length
function of a curve that will result in the curvature flow very well
known in the literature, [14], [13], [11]. The second will be a discrete
version of length measure that will induce a discrete curvature flow
that yields a sequence of minimal normal curves which converges to a
smooth geodesic curve.

3.1. Length and weight. Let (2, 7) be a triangulated surface where
T = (V,E,F) is a geodesic triangulation with respect to a given Rie-
mannian structure on X.

Definition 3.1. (1) The weight w of an embedded curve on a tri-
angulated surface is the total number of intersection points of

the curve with T,

A normal curve is called least-weight iff its weight is minimal

in its isotopy class. For curves with non empty fixed boundary,

we can also have curves with non-zero least-weight amongst all
1sotopy classes rel-boundary points. We will term such a curve
as global least-weight curve.

(2) The length L, of a normal curve on a surface is the sum of
lengths of all its normal pieces.

(a) A curve will be called minimal iff its length is stationary
with respect to a small variation.

(b) A normal curve is shortest iff its length is non zero and
minimal with respect to its isotopy classes. The same dis-
tinguish as above between closed curves and curves with
boundary, holds also for shortest curves. For curves with
fizxed boundary we can have non-zero length, minimal with
respect to all isotopy classes. Such a curve can be termed
global shortest curve.

Unless mentioned otherwise, when dealing with curves with boundary,
least-weight /shortest will always mean in the global sense.

Remark 3.2. Defining weight as above for general embedded curves
on a surface, one can easily show that any curve on a triangulated
surface can always be isotoped to a curve which is either normal or
completely contained in a single triangle. Hence, a least-weight curve
15 always normal or has zero weight. If the curve is closed and essen-
tial, i.e. not null-homotopic, it is isotopic to a normal curve. Yet,
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all normally isotopic curves (i.e. isotopies that do not deform a nor-
mal curve through any vertex) have the same weight so, there is no
uniqueness of a least-weight normal curve.

Definition 3.3. Similar to vertex linking sphere [18], we define a link-
ing circle to be a circle in the link of a small disc neighborhood of a
vertex. A multiple of linking circle is a finite brunched cover of a
linking cuircle.

Using elementary hyperbolic geometry one can show,

Lemma 3.4. [5] If ¥ is a hyperbolic surface and T is a geodesic ideal
triangulation, of X, and I' is a normal curve which is not a multiple
of a linking circle, then there exists a minimal length normal curve, in
the normal homotopy class of T'. every.

3.2. Dual graph reflections of normal curves. Let v be a normal
curve on the triangulated surface (X, 7). Suppose 9y = {p, ¢} are two
fixed points on ¥ interior in some two 2-cells, 7,, 7,, respectively. It is
possible that p = q.

~ naturally defines a weighted path +* in the dual graph 7* of T,
in the following way.

e Each vertex of the dual path +* corresponds to a triangle in-
tersected by .

e Each edge of v* is assigned to an edge of T at which ~ crosses
from one 2-cell to an adjacent one.

o We weight each edge of v* according to the number of times ~
crosses through the corresponding edge of T.

e We define the length of v* to be the sum of weights of all its
edges.

Evidently each normal isotopy class uniquely determines such a dual
path. It is our intension to find efficient characteristics for least-weight
normal curves. In this course we would like to view such a normal
curve as a realization of a shortest weighted path in the dual graph.
Yet, some caution must be taken since, generally, we cannot expect a
general weighted path in the dual graph to be realizable as a normal
curve on the surface. Restrictions on this are due to the matching
equations. We will show in the following that for a least-weight normal
curve the situation is simpler and that, in fact, it can indeed be viewed
as a realization of a shortest path in the dual graph.

Decoding of the matching equations in the dual setting is doable
and should give a characterization of the weighted dual paths that
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can be realized as normal curves yet, to this point, it is left out of the
scope of this current paper.

Remark 3.5. [t is essential in this context to consider curves that are
least-weight in the global sense, for while proving some of the preceding
lemmas we may not be able to keep isotopy class fized. If the curve is
closed, we will assume it is essential with some fixed initial point p,
and consider least weight curves with respect to all isotopy classes of
closed essential curves initialized at p. In the case of a non-essential
closed curve where the least-weight is zero, results below are evident.

Lemma 3.6. [5] Let v be a normal curve from p to q, that has least-
weight amongst all normal curves connecting p to q. Then, v has at
most one normal piece in every triangle of T .

Lemma 3.7. [5] A path in the dual graph for which all weights along
its edges equal to 1 is realizable as a normal curve with respect to T .

Theorem 3.8. [5] A normal curve is a global(w.r.t isotopy
classes least-weight curve if and only if its corresponding dual path
s a shortest path according to the length function defined in 3.2.

Corollary 3.9. There is an algorithm which finds in finite time least-
weight normal curve on a triangulated surface.

Definition 3.10. Let I' be a normal curve with respect to a triangu-
lation T on a surface . We will define the curvature of I' at a point
x as follows.

(1) If x is an internal point on a segment of T N T2, we will take
the curvature to be,

ﬁ(ﬁ) = kg(F,x),
where ky(I', x) denotes the geodesic curvature of I' at x.
(2) If x is a vertex formed by the intersection of T with T*, and

let ty,t9, be the two vectors tangent to I' at x. The curvature
at x 1s defined to be

R(z) = cos(#y) + cos(6s),

where 01,05 are the angles between t1,ts and t., the vector tan-
gent to the edge e at x.

Remark 3.11. There exists a vast amount of literature concerning
curvature measures for piecewise smooth curves. Usually, to some
angle defect is considered at points where the curve is not smooth.
The definition given herein is meant to be compatible with a variation
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FiGURE 3. Three tangent vectors defining curvature
along an edge.

of length formula which will be referred to soon, and also for being
compatible with a definition of curvature for normal surfaces given in
[18] (to be referred to in Section 6).

4. CURVE SHORTENING FLOWS

Following Cheeger and Ebin, [7], we use first variation of arc length
to find out conditions for which a normal curve is minimal. suppose
I's(t) is a small variation of I' with arc length parameter ¢. Let S be
the variation vector field and T be the tangent vector field ( S = %,
T = 2). Note that at each point of 'NT™?, S coincides with the vector
field tangent to 7' at that point. Then the length of T',(¢) is given by,

Li Li
Li=) L= Z/ I, (t)|dt = Z/ <T,T>Y*dt,
i i 70 i 70
where the indices 7 stands for the i"* normal piece of I
For a curve to be minimal we demand
0L,
ds

aLS—Z/Lii<TT>1/2dt—Z/LiS<TT>dt—
ds ~ Jo ds ’ B — Jo ’ B

L;
:Z/ (T < S,T>—<8,VyT >)dt =
i 0

= <ST> gi—Z/Li<S,VTT>)dt:
i i 70

|(s=0) = 0.
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Z/o i VoTdt + Z(cos(ﬁi) + cos(63)).

This gives therefore, that in order for a curve to be a minimal normal
curve it should both be a geodesic arc along the interior of each 2-cell it
intersects, as well being “straight” along the intersections with the 1-
skeleton. Straight means that along each edge, (cos(f;) + cos(6;)) =0
which in turn generalizes the condition (#; + 0 = 7), traditionally
obtained from other common curvature measures for polygonal curves,

27].

Definition 4.1. From the above we define the semi smooth curvature
flow to be

1) o = A)

Where I' is a normal curve and R is its curvature as defined previously.

Lemma 4.2. [5] Let I" be a piecewise smooth normal curve on a smooth
triangulated surface (X,T). Suppose x € T N T' is an intersection
point of the curve on the interior of some edge e, so that I' is straight
at x in the sense defined above. Then the geodesic curvature of I' at x
exists and equals zero.i.e.

kg(I',2) =0

Corollary 4.3. The curvature flow defined above transforms a normal
curve embedded in a smooth surface to a geodesic curve.

As already mentioned, the formulation above is a rephrasing of the
curvature flow, extensively studied in the past, for piecewise smooth

curves. In the following, we will further modify the flow by restricting
it to N7

Definition 4.4. Let the weight of a curve be as in Definition
3.1.
(1) The normalized weight of a normal curve is given by

nw(l) = L(T) - \?

where X is the parameter of T, i.e. the mazimal edge length,
where we range over all edges of T .
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4.0.1. Minimizing through straightening. Let C' be a rectifiable (i.e of
finite total length) curve on a triangulated surface (X,7). In this
section we alter the minimization process while restricting it merely
to points on C'NTL. More precisely, consider the following procedure.

(1) Normalize C' with respect to T .

(2) Take a least-weight normal curve C , isotopic to C.

(3) Straighten C' at all intersections with the edges of 7.

(4) Take a subdivision of T to obtain a new triangulation 7.
(5) Go to (1) while C is replaced by C.

Remark 4.5. Step 3 is done by moving each point x of C N'T' ac-
cording to,
Ox

(2) En

where 601,05 are as before. Using say, partition of unity we can
smoothly extend this process inside some small collar neighborhood of

T

= cos(61) + cos(b2) ,

% = cos(01) + cos(62)

/

FIGURE 4. Combinatorial flow.

Remark 4.6. There exists a variety of subdivisions that can be con-
sidered in the above procedure. The two that will be used herein are
the barycentric subdivision and the “median” subdivision which s ob-
tained by connecting the middle point of the edges of each triangle to
each other, see Figure 4.2. If not necessary, we will not specify the
actual subdivision taken.

Theorem 4.7. [5] The obtained sequence of straight curves converges
to a smooth geodesic on
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Median subdivision
FIGURE 5. Median Subdivision.

Remark 4.8. Normality of curves is crucial and best illustrated by
the lemma above, for if the curve was not normal then we could not
assume a bound on the arc length of its normal pieces, relative to the
distance between y, and ys above, even when the division parameter A
gets very small.

A natural question that arises is, if one restricts the above straight-
ening procedure to global least-weight curves, do one gets convergence
to shortest geodesics?

For having a chance of affirmative question to that question it is
essential that the triangulation we work with, capture somehow the
geometry of a collar neighborhood of a shortest geodesic. To be more
precise, suppose I' is a geodesic curve between two points P and @)
on Y. Then restricting to all triangles intersected by I', we get some
triangular strip section of ¥. The length of I" is naturally a monotonic
increasing function of the (average) curvature of ¥ along this section.
If we can have a triangulation that admits similar behavior between
the number of triangles in a neighborhood and (some averaging of)
the curvature in that neighborhood, we can hope for answering the
question posed above. It turns out that such triangulations do exist
and in fact can be specifically built.

4.1. Fat triangulations. In this subsection we will give basic defini-
tion notations and quote relevant results. All details can be found in
the relevant cited literature.

Definition 4.9. (1) A triangle in R? is called o-fat iff all its an-
gles are larger than a prescribed value p > 0.

(2) A k-simplex 7 C R™, 2 < k < n, is p-fat if there exists ¢ > 0

such that the ratio = > @, where r and R, are resp. the radii

R
of the inscribed and circumscribed (k-1)-spheres of T.
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(3) A triangulation T = {0, }icx is fat if all its simplices are p-fat
for some ¢ > 0.

Proposition 4.10 ([8]). There exists a constant c(k) that depends
solely upon the dimension k of T such that

1

®) o) < min (o) < clh) - o(7).
and
(@) o(r) < V) < k) ).

where ¢ denotes the fatness of the simplex T, £(7,0) denotes the (in-
ternal ) dihedral angle of the face o < 7 and Vol;(o); diamo stand
for the Euclidian j-volume and the diameter of o respectively. (If
dimo =0, then Vol;(0) =1, by convention.)

Condition 3 is just the expression of fatness as a function of dihe-
dral angles in all dimensions, while Condition 4 expresses fatness as
given by “large area/diameter”. Diameter is important since fatness
is independent of scale. Existence of fat triangulations of Riemannian
manifolds is guaranteed by the studies given in [6], [25], [28] and [29].
These are summarized below.

Theorem 4.11 ([6]). Fvery compact C* Riemannian manifold admits
a fat triangulation.

Theorem 4.12 ([25]). Every open (unbounded) C* Riemannian man-
ifold admits a fat triangulation.

Theorem 4.13 ([29]). Let M™ be an n-dimensional C* Riemannian
manifold with boundary, having a finite number of compact boundary
components. Then, any fat triangulation of OM™ can be extended to a
fat triangulation of M™.

Following the above, a scheme for achieving fat triangulations for
smooth n-Riemannain manifolds, n > 2 is given in

Theorem 4.14 ([31]). Let 3 be a connected, non-necessarily compact,
smooth of class C",r > 2, n-Riemannian manifold, n > 2, with
finitely many boundary components. Then, there exists a sampling
scheme (i.e a way of building fat triangulation) of ¥, with a proper

density D = D(p) = D(@), where k(p) = max{|ky|, |kal, ..., |knl},

and kq, ..., k, are the principal curvatures of X2, at the point p € 3.
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e According to the above Theorem 4.14 the density should be

understood in the sense that the length of each edge of the tri-

angulation is given locally as \/% where | K| is the appropriate

maximal curvature at a neighborhood of an edge. The fatness
condition of the triangulation ensures that the “radial” den-
sity of the triangulation in the sense of the number of triangles
around every vertex is almost uniform. As a result we have a
greater number of triangles at curved areas of the surface and
fewer and larger triangles at flat regions. Hence a shortest ge-
odesic curve between two points will intersect fewer triangles
than non-shortest geodesics.

Resulting from the remark above we get that at each iteration, a short-
est geodesic and a global least-weight normal curve are contained in
the same triangular section of the surface >. This in turn shows,

Theorem 4.15. If in the shortening procedure described previously,
we take in step (2) global least-weight normal curves then the obtained
sequence of curves converge to a shortest geodesic between the end
points.

5. PL APPROXIMATIONS OF SURFACES AND GEODESICS

In this section we alter our attention in the opposite direction from
the previous one. While in previous section we showed that we can
have sequences of normal curves that converge to geodesics, which
can be titled as convergence results, in this section we are interested in
approzimation results. We wish to show that every geodesic curve on a
smooth surface is a limit of a sequence of normal curves with respect to
some triangulation and its subdivisions. Opposed to previous section,
we will have to consider a specific triangulation for our purpose or
rather, a triangulation satisfying specific geometric constrains, and as
a result we will also have to specify the subdivision scheme that can
be used in order to fulfill these constrains.

Input: A surface ¥, two points p and ¢ on it and a geodesic curve
I' from p to q.

Output: A sequence of curves I, each of which is a shortest /least-
weight normal curve on a PL-surface Y, so that

(1) ¥, =% and (i) T, = T

5.1. Fat triangulations and PL-approximations. Before stating
the main theorem of this section we will review fat triangulations some
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more while at this point we focus on their usage for P L-approximating
of surfaces.

Definition 5.1. (1) Let f : K — R™ be a C" map, and let
d: K — R be a continuous function. Then g : |[K| — R”
15 called a d-approximation to f iff:
(i) There ezists a subdivision K' of K such that g €
C'(K',R™);
(i1) dewer (f (), 9(x)) < 0() , for any x € |K];
(i1i) dever (dfu(), dga(z)) < 6(a) - deya(z, @), for any a € |K|
and for all x € St(a, K").

(2) Let K' be a subdivision of K, U = U, and let f €
C'(K,R"), g € C"(K',R™). g is called a é-approximation of
f (on U) iff conditions (ii) and (iii) above hold for any a € U.

Definition 5.2 (Secant map). Let f € C"(K) and let s be a simplex,
s < o € K. Then the linear map: Ls : s — R", defined by Ls(v) =
f(v) where v is a vertex of s, is called the secant map induced by f.

The motivation for having fat triangulations for manifolds in terms
of PL-approximations is stressed by the following theorem.

Theorem 5.3 ([23]). Let f : 0 — R™ be of class Ck. Then, for § >0,
there exists €,9 > 0, such that, for any T < o, fulfilling the following
conditions:

(i) diam(t) < € and,

(i) T is po-fat,

then, the secant map L, is a §-approximation of f|r.

Following the theorem above combined with Theorem 4.14 we use
the secant map as defined in order to reproduce a PL-surface as a
d-approximation for the sampled surface, [31].

We are now in a position to state the following approximation the-
orem.

Theorem 5.4. [5] Let T be a geodesic curve between two points p and
q on a triangulated surface (X,7T) where T is a fat triangulation of ¥,
for which TNT© = 0. Let Ty, be the n'* median subdivision of T.
Let X, be the PL-approzimation of ¥ built as the secant map on T,.
Then, there exists a sequence of curves I',, embedded in ¥, each of
which is a shortest/least-weight normal curve, where ¥, is given as a
triangulated polyhedral surface with a triangulation induced from T,
such that
r, —» I.
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Corollary 5.5. [5] The sequence of shortest normal curves I',, con-
verges to I'.

While in the above theorem we showed that every pre-given geodesic
curve can be PL approximated by PL normal curves, we will show that
if only the end points are given, we can still find a sequences of PL
normal curves that approximates the shortest geodesics between these
points.

Theorem 5.6. [5] Let p and q be two given points on a smooth surface
3I. Then there is an algorithm to find a sequence of PL-normal curves,
each of which embedded inside some PL-approximation ¥, of ¥ such
that this sequence converges to a shortest geodesic curve from p to q.

6. EXPERIMENTAL RESULTS

In this section we give some preliminary experimental results ob-
tained from testing the algorithm described in Section 3 on both ana-
lytical surfaces as well as a surface which is part of a CT-Colonoscopy.

6.1. Analytic surfaces. We bring here results obtained on a sphere
with different resolutions. Similar results where obtained also for the
torus and in the final version of this paper will be referred to in the
authors web site.

The tests where run on a sphere of radius 1. On such a sphere, the
angle between two radii ending at the start and end points is equal
to the length of the shortest path between these 2 points on the face
of the sphere. The sphere was approximated 5 times, using 80, 320,
1280, 5120 and 20480 triangles, respectively. The following Figure 6
depicts the algorithm results. For each mesh, several pairs of start and
end points were picked, according to the angle between them, and the
algorithm was applied.

It is important to notice that a mesh of a sphere is bounded by the
sphere, and a path on its surface can be shorter than the minimum
path on the sphere itself. The higher the accuracy of the mesh, the
smaller this possible difference is.

6.2. Colon Surface. In Figure 7 there are shown results of comput-
ing shortest normal curve with respect a triangulated mesh of some
resolution obtained from a CT-Colonoscopy. Even in this fairly low
resolution one can see a reasonable approximation of the shortest ge-
odesic between the start and end points by the computed normal ge-
odesic.
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Algorithm results on unit radius sphere mesh
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FicURE 6. The dotted line is describes the length of
the true shortest path on the face of the sphere.

@ (b)

FIGURE 7. Shortest Normal curve on a Colon mesh:
(a) The mesh with indicating start and end points; (b)
Computed shortest normal curve.

6.3. Convergence. The following examples show an initial normal
approximation of a geodesic on the sphere and its convergence to the
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actual geodesic while subdivisions of the triangulation is taken, see
Figure 8 and Figure 9 to the case of a non simply connected surface.
It can be seen that subdivision are actually taken only inside the initial
triangle path.
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FIGURE 8. Initial normal curve (top) and the curve af-
ter 1 (middle) and 9 (bottom) iterations.
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FiGURE 9. Normal approximation of a geodesic curve
on a surface of high genus. Results shown is obtained
after 12 iterations.
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F1GurE 10. Normal geodesic curve on a knotted torus.
Top image shows the surface and bottom shows results
obtained after 12 iterations.

7. FURTHER STUDY

7.1. Geometric Measures on Normal Surfaces. A natural direc-
tion for further study is the possibility to extend the study presented
herein to surfaces embedded in three dimensional manifolds. As noted
before in Section 2, normal surface theory do exists and used in the
context of three dimensional manifolds topology and geometry. In the
seminal paper [18], length and area of a normal surface and the def-
initions of pl-minimal and of least-area normal surfaces are defined.
Existence and uniqueness of PL minimal surfaces is shown in [18] and
also in [24]. In a succeeding work we intend to prove results similar to
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Theorems 4.7 and 5.4 for least-weight normal surfaces with respect to
minimal surfaces in the classical differential geometric sense. Doing so,
enables one to give an algorithmic way to define semi-discrete version
of the Laplace-Beltrami operator yielding with a constructive ability
of finding minimal surfaces. Applications will be in the direction of
using this semi-discrete flow for images in the spirit of [16],

20].
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