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ON A ONE-DIMENSIONAL MATHEMATICAL MODEL
RELATED TO SOIL BIOREMEDIATION

ELENA- ROXANA ARDELEANU

Abstract. In this paper we present a mathematical model associ-
ated to a bioremediation process. We consider a one-dimensional soil
composed of a single layer. In this bioremediation process the bacteria
migrates by diffusion and chemotaxis, where the diffusion coefficient
is supposed to be constant.

The mathematical model is given by a system of nonlinear partial
differential equations. In order to study this system of equations,
we use the perturbation method for small parameters. The existence
and uniqueness of the solution is studied within the framework of the
equations‘ evolution theory based on m-accretive operators.

1. Model formulation

1.1. Description of the physical process. In this paper we
consider the bioremediation model (F-G model) given by A. Fasano
and D. Giorni in [2]. The F-G model is a special case of the Keller
and Segel model [7]. We suppose a one-dimensional polluted soil,
homogeneous, occupying the layer 0 < x < L. We consider in this soil
the propagation of a single pollutant and one type of bacteria able to
distroy it. During bioremediation, bacteria migrate by diffusion and
chemotaxis. Diffusion is the movement of molecules within in terms
of decreasing concentration of bacterial population (from an area with
a higher concentration to an area with a lower concentration).

————————————–
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tions; Diffusion and Chemotaxis.
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Chemotaxis phenomenon is particular sensitivity of some microor-
ganisms (bacteria in our case) to the attraction of a chemical (in our
case the pollutant). Consider also that the soil contains adequate
nutrients for maintenance of the bacteria, at a temperature that is
convenient and does not contain other chemicals that could inhibit
the bioremediation process.

We denote by t the time, by x the spatial coordinate, by c (t, x) the
concentration of pollutant agent and by b (t, x) the concentration of
bacteria able to distroy it. Bioremediation process starts at t = 0.
We denote by c0 (x) and b0 (x) the concentration of the pollutant,
respectively the concentration of bacteria, at t = 0.

1.2. F-G one-dimensional mathematical model. Let Ω = (0, L)
be an open, bounded subset of R with the boundary Γ = ∂Ω =
{x ∈ R : x = 0 şi x = L}. Let (0, T ) be a finite time interval in which
takes place the bioremediation process. We denote Q = (0, T )×Ω and
Σ = (0, T )× Γ.

In this model, the bacteria also migrate by diffusion and chemoat-
traction. In order to write the equation for the flux of bacteria j (t, x)
we denote with D > 0 the diffusion cofficient, supposed constant, and
with K(b, c) ≥ 0 the function measuring the chemotactic response:

j (t, x) = −D∂b

∂x
+ bK (b, c)

∂c

∂x
.

Substituting the flux in the continuity equation we obtain the mass
conservation equation:

(1.1)
∂b

∂t
−D

∂2b

∂x2
+

∂

∂x

[
bK (b, c)

∂c

∂x

]
= f (b, c) for (t, x) ∈ Q.

The function f (b, c) denoting the proliferation rate of the bacteria per
unit volume depends on the concentration of bacteria, as well as on
the concentration of pollutant.

The kinetic law for pollutant absorption is as follows:

(1.2)
∂c

∂t
= − β1c

1 + β2c
b for (t, x) ∈ Q,

where β1 > 0 and β2 ≥ 0 are constants. The initial conditions for
concentrations of pollutant and bacteria are:

c(0, x) = c0(x) for x ∈ Ω,(1.3)

b(0, x) = b0(x) for x ∈ Ω,(1.4)
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with c0(x), b0(x) pozitive. To obtain the boundary condition we con-
sider the flux of bacteria null on the both sides of the layer:

(1.5) −D∂b

∂x
+ bK (b, c)

∂c

∂x
= 0 for (t, x) ∈ Σ.

Thus, the model to be studied is a nonlinear parabolic problem with
Neumann boundary conditions and initial conditions, represented by
system (1.1)- (1.5).

1.3. Dimensionless F-G model. We consider the characteristic
sizes, denoted by index ”a”: La for length, Ta for time, ba, ca for
concentrations of bacteria and of pollutant, respectively, Da for the
diffusion coefficient, Ka for the chemotactic response, fa for the rate
of multiplication of bacteria. With their help, the system of equations
(1.1)- (1.5) will be written in dimensionless form.

We introduce the following notations:

x = x∗La, t = t∗Ta, b = b∗ba, c = c∗ca,

D = D∗Da, K = K∗Ka, f = f ∗fa,

where by superior index * we denote the dimensionless variables. Next
we replace into the dimensional system.

The equation (1.1) becomes:

ba
Ta

∂b∗

∂t∗
− Daba

La
D∗ ∂

2b∗

∂x∗2
+
baKaca
La

× ∂

∂x∗

[
b∗K∗ (b∗ba, c

∗ca)
∂c∗

∂x∗

]
= faf

∗ (b∗ba, c
∗ca) for (t, x) ∈ Q.

We multiply the equation obtained by Ta/ba. We make the following
notations for the dimensionless expressions of f and K:

f̃ ∗ (b∗, c∗) = f ∗ (b∗ba, c
∗ca) ,

K̃∗ (b∗, c∗) = K∗ (b∗ba, c
∗ca) ,

and we obtain:

∂b∗

∂t∗
−D∗TaDa

La

∂2b∗

∂x∗2
+
TaKaca
La

× ∂

∂x∗

[
b∗K̃∗ (b∗, c∗)

∂c∗

∂x∗

]
=
faTa
ba

f̃ ∗ (b∗, c∗) for (t, x) ∈ Q.

We denote:

(1.6) D =
TaDa

La
, K =

TaKaca
La

and f =
faTa
ba
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and we obtain the following dimensionless form for the equation (1.1):

(1.7)
∂b∗

∂t∗
−DD∗ ∂

2b∗

∂x∗2
+K

∂

∂x∗

[
b∗K̃∗ (b∗, c∗)

∂c∗

∂x∗

]
= ff̃ ∗ (b∗, c∗) , (t, x) ∈ Q.

The dimensionless form of kinetic law (1.2) has the next form:

(1.8)
∂c∗

∂t∗
= − β1c

∗b∗

1 + β2c
∗
, (t, x) ∈ Q,

where

(1.9) β1 = β1Taba and β2 = β2ca.

The initial conditions (1.3)- (1.4) are written in dimensionless form
as:

c∗(0, x) = c∗0(x) for x ∈ Ω,(1.10)

b∗(0, x) = b∗0(x) for x ∈ Ω,(1.11)

where c∗0(x) =
c0 (x)

ca
and b∗0(x) =

b0 (x)

ba
. The boundary condition

(1.5) is:

(1.12) −DD∗ ∂b
∗

∂x∗
+Kb∗K̃∗ (b∗, c∗)

∂c∗

∂x∗
= 0, (t, x) ∈ Σ.

Since the diffusion coefficient is constant, we can assume Da = D
and La = L. In this case D∗ = 1. Finally, we get the following
dimensionless system, where we agree to not denote index *:

∂b

∂t
−D

∂2b

∂x2
+K

∂

∂x

[
bK (b, c)

∂c

∂x

]
= ff (b, c) , (t, x) ∈ Q,(1.13)

∂c

∂t
= − β1bc

1 + β2c
, (t, x) ∈ Q,(1.14)

c(0, x) = c0(x), x ∈ Ω,(1.15)

b(0, x) = b0(x), x ∈ Ω,(1.16)

−D∂b

∂x
+KbK (b, c)

∂c

∂x
= 0, (t, x) ∈ Σ.(1.17)

To study the equations system obtained we use the small parameter
perturbation method. The case where β2 is the small parameter is
treated in the paper [2]. In this paper we consider the model described
by equations (1.13)- (1.17) with the small parameter β1. We make
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series expansion with respect to the small parameter β1 denoted with
ε and we consider here only the approximation of order ”0” system.

Let

b (t, x) = b0 (t, x) + εb1 (t, x) + ...,

c (t, x) = c0 (t, x) + εc1 (t, x) + ...,

K (b, c) = K
(
b0, c0

)
+ εKb

(
b0, c0

)
b1 (t, x) + εKc

(
b0, c0

)
c1 (t, x) + ...,

f (b, c) = f
(
b0, c0

)
+ εfb

(
b0, c0

)
b1 (t, x) + εfc

(
b0, c0

)
c1 (t, x) + ...,

where Kb, Kc, fb, fc represent the derivatives of K and f with respect
to b and c. Replacing in the system of equations (1.13)-(1.17) and
identifying coefficients of ε0 we get the system for approximation of
order ”0”:

∂b0

∂t
−D

∂2b0

∂x2
+K

∂

∂x

[
b0K

(
b0, c0

) ∂c0
∂x

]
= ff

(
b0, c0

)
, (t, x) ∈ Q,

(1.18)

∂c0

∂t

(
1 + β2c

0
)
= 0, (t, x) ∈ Q,(1.19)

c0 (0, x) = c0 (x) , x ∈ Ω,(1.20)

b0 (0, x) = b0 (x) , x ∈ Ω,(1.21)

−D∂b
0

∂x
+Kb0K

(
b0, c0

) ∂c0
∂x

= 0, (t, x) ∈ Σ.(1.22)

Since (1.19) implies
∂c0

∂t
= 0 for all (t, x) ∈ Q, it follows by (1.19)

and (1.20) that for all (t, x) ∈ Q

(1.23) c0 (t, x) = c0 (x) .

In the following we assume that c0 (x) = c0 is constant. In this case,
in the equation (1.18) we will denote by f(b0) = ff (b0, c0). We thus
get the following system of equations for approximation of order ”0”:

∂b0

∂t
−D

∂2b0

∂x2
= f(b0), (t, x) ∈ Q,(1.24)

b0 (0, x) = b0 (x) , x ∈ Ω,(1.25)

∂b0

∂x
= 0, (t, x) ∈ Σ.(1.26)

The condition (1.26) amount to assume that the bacteria does not go
through the boundaries.
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It is known that in general, a nonlinear equation with a nonlinear
term of the form f (b, x) does not admit a global solution in time [4],
[5]. We consider a condition for the function f (b, x) for which the
problem admits a global solution. We suppose that the function f(b0)
is negative, which means that the mortality rate of bacteria is grater
that its rate of multiplication. We denote by µ(r)r = −f(r). In the
context of population dynamics, an important case is the one where
the nonnegative function µ(r) is locally Lipschitz on R, i.e., there exist
Lµ(R) > 0, such that as |r| ≤ R and |r| ≤ R we have:

(1.27) |µ(r)− µ(r)| ≤ Lµ(R) |r − r| .
We also consider that the diffusion coefficient

(1.28) D ≥ ρ > 0, b0 ≥ 0.

(1.29) 0 ≤ µ (r) and µ (0) = 0.

For the simplicity in writing we shall no longer indicate the ”0” symbol.

2. The existence, uniqueness and properties of the
solution

We study the existence of solutions for the approximation of order
”0” system. The mathematical formulation of the problem falls within
the equations‘ evolution theory based on m-accretive operators.

2.1. Functional framework. We set Ω = (0, L) and we consider the
spaces V = H1(Ω); H = L2(Ω) with V ⊂ H ⊂ V

′
( V

′
the dual of

V ). V is endowed with the norm ∥ψ∥2V =

∥∥∥∥∂ψ∂x
∥∥∥∥2 + ∥ψ∥2 . We mention

that by (·, ·) and ∥·∥ we denote the scalar product and respectively
the norm in L2(Ω). We denote the value of g ∈ V

′
in ψ ∈ V with

g (ψ) = ⟨g, ψ⟩V ′,V , representing duality between V ′ and V .

We define the linear operator A0 : V → V
′
by

⟨A0b, ψ⟩V ′,V =

∫
Ω

[
D
∂b

∂x

∂ψ

∂x
− f (b)ψ

]
dx(2.1)

=

∫
Ω

[
D
∂b

∂x

∂ψ

∂x
+ bµ (b)ψ

]
dx(2.2)

for all ψ ∈ V and the operator A : D (A) ⊂ L2 (Ω) → L2 (Ω) by

(2.3) Ab = A0b,
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for all b ∈ D (A) where

D (A) = {b ∈ V , A0b ∈ V ′} .
Everywhere in the following we shall use the standard nota-
tion for the Sobolev spaces on Ω. Moreover W 1,2 (0, T ;H) ={
b ∈ L2 (0, T ;H) ;

db

dt
∈ L2 (0, T ;H)

}
, where

db

dt
is in sense of distri-

butions. Recall that any b ∈ W 1,2 (0, T ;H) is absolutely continuous

on [0, T ] and
db

dt
exists a.e. on (0.T ). We may notice that b0 ∈ H and

b ∈ C ([0, T ] ;H).
So, we get the next Cauchy problem:

db

dt
(t) + Ab(t) = 0, a.e. t ∈ (0, T ) ,(2.4)

b(0) = b0.(2.5)

Note that if b is a strong solution [1] for the problem (2.4)-(2.5), then
b0(t, x) := b(t)(x) satisfies (1.24) in the sense of distributions. Indeed,
if f ∈ L2(Ω), then (2.4) can be written as:

(2.6)

∫
Ω

[
∂b

∂t
+D

∂b

∂x

∂ψ

∂x
− f (b)ψ

]
dx = 0,

a.e. t ∈ (0, T ) and for all ψ ∈ L2(Ω). After some calculations we get∫
Ω

[
∂b

∂t
ψ −D

∂2b

∂x2
− f (b)

]
ψdx = 0,

which implies that (1.24) is satisfied in sense of distributions on (0, T )×
(0, L).

Conversely, starting from (1.24), with b0(t, x) := b(t)(x), multiply-
ing by ψ and integrating on Ω we get

(2.7)

∫
Ω

∂b

∂t
ψdx−D

∂b

∂x
ψ
∣∣L
0 +

∫
Ω

D
∂b

∂x

∂ψ

∂x
dx−

∫
Ω

f (b)ψdx = 0.

Using (1.26) we get D
∂b

∂x
ψ
∣∣L
0 = 0, hence the above equality implies

(2.6), therefore (2.4) is satisfied.
On the other hand, the initial condition (2.5) corresponds to (1.24).
We define the function b −→ E(b) ≡ µ(b)b from L2(Ω) to L2(Ω)

and we prove the existence of the solution in two step. In the first
one we suppose that the function b −→ E(b) is globally Lipschitz on
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L2(Ω) and we prove that in this case the problem (2.4) has a unique
solution. In the second step we show the existence of the solution of
problem (2.4) while the function b −→ E(b) is locally Lipschitz [6].

In order to prove the existence of a solution to problem (2.4), we
are going to show the quasi m-accretiveness of the operator A.

Assume that for every R > 0, there exist C(R) > 0 such that

(2.8)
∣∣µ(b)− µ(b)

∣∣ ≤ C (R)
∥∥b− b

∥∥
a.e. on Ω, whenever b, b ∈ H with ∥b∥ ≤ R and

∥∥b∥∥ ≤ R. The next
lemma will be used in the second part of the demonstration.

Lemma 1. Assume that (2.8) is satisfies. Then for any R > 0, there
exist M(R) > 0 such that if ∥b∥ ≤ R and

∥∥b∥∥ ≤ R, then

(2.9)
∥∥E(b)− E(b)

∥∥ ≤M(R)
∥∥b− b

∥∥ .
Proof. Let b, b ∈ L2(Ω) such that ∥b∥ ≤ R and

∥∥b∥∥ ≤ R. Then∣∣E(b)− E(b)
∣∣ = ∣∣µ(b, ·)b− µ(b, ·)b

∣∣
=
∣∣µ(b, ·)b+ µ(b, ·)b− µ(b, ·)b− µ(b, ·)b

∣∣
≤ |µ(b, ·)|

∣∣b− b
∣∣+ ∣∣b∣∣ ∣∣µ(b, ·)− µ(b, ·)

∣∣(2.10)

≤ C (R) ∥b∥
∣∣b− b

∣∣+ ∣∣b∣∣C (R)
∥∥b− b

∥∥ .(2.11)

Then: ∥∥E(b)− E(b)
∥∥ ≤M(R)

∥∥b− b
∥∥ ,

where M(R) = 2RC(R).

In this section we will assume that b→ E (b) is Lipschitz continuous
on L2(Ω), i.e., there exist M > 0, such that for b, b ∈ L2(Ω) we have:

(2.12)
∥∥E(b)− E(b)

∥∥ ≤M
∥∥b− b

∥∥ .
We first prove the quasi-accretiveness of the operator A.

Lemma 2. Assume (1.28)- (1.29) and the additional condition (2.12).
Then the operator A is quasi-accretive on L2(Ω).

Proof. We have to prove that for λ > 0 sufficiently large the operator
λI + A is accretive, namely:(

(λI + A) b (t)− (λI + A) b (t) , b (t)− b (t)
)
≥ 0,
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for b, b ∈ D(A). We have(
(λI + A) b (t)− (λI + A) b (t) , b (t)− b (t)

)
=

=
(
λb (t) + Ab (t)− λb (t)− Ab (t) , b (t)− b (t)

)
= λ

(
b (t)− b (t) , b (t)− b (t)

)
+
(
Ab (t)− Ab (t) , b (t)− b (t)

)
= λ

∥∥b (t)− b (t)
∥∥2 + ∫

Ω

D

(
∂b

∂x
− ∂b

∂x

)(
∂b

∂x
− ∂b

∂x

)
dx

+

∫
Ω

[
E (b)− E

(
b
)] (

b− b
)
dx

≥ λ
∥∥b (t)− b (t)

∥∥2 −M
∥∥b (t)− b (t)

∥∥2
= (λ−M)

∥∥b (t)− b (t)
∥∥2 ≥ 0,

for λ large enough, λ ≥ λ0 ≥M . In conclusion, the operator (λI +A)
is accretive, so the operator A is quasi- accretive.

Lemma 3. Assume the same conditions as in Lemma 2. Then A is
quasi m-accretive on L2(Ω).

Proof. We know that the operator A is quasi-accretive. It remains to
show that R(λI+A) = L2(Ω), for λ large enough. This is equivalent to
show that for all g ∈ L2(Ω), there exists b ∈ D(A) so that (λI+A)b =
g. We show that this equation has a unique solution through a fixed
point theorem. We fix ω ∈ L2(Ω) and we study the associated Cauchy
problem:

(2.13) (λI + AV ) v = g − E(ω)

where AV : V → V
′
is defined by:

⟨AV v, ψ⟩V ′,V =

∫
Ω

D
∂v

∂x

∂ψ

∂x
dx,

for all ψ ∈ V .
In order to prove that the problem (2.13) has a solution we use

Lax-Milgram lemma. To come to this end we show that (λI + AV ) is
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coercive for λ > λ0 and bounded.

⟨(λI + AV ) v, v⟩V ′,V = λ ⟨v, v⟩V ′,V + ⟨AV v, v⟩V ′,V

= λ ∥v∥2 +
∫
Ω

D
∂v

∂x

∂v

∂x
dx

≥ λ ∥v∥2 + ρ

∥∥∥∥∂v∂x
∥∥∥∥2

= (λ− ρ) ∥v∥2 + ρ ∥v∥2V , ∀v ∈ V,

and so the operator (λI + AV ) is coercive and bounded since

∥AV v∥V ′ = sup
∥ψ∥V ≤1

∣∣∣⟨AV v, ψ⟩V ′,V

∣∣∣ ≤ ∥v∥V .

So, the operator AV ∈ V ′ is surjective. Furthermore, E(ω) ∈ L2(Ω) ⊂
V ′ and there exists v ∈ V so (λI + AV ) v = g−E(ω), for all ω ∈ L2(Ω).
Let us set two solutions v and v corresponding to ω and ω. We have
the equations:

(λI + AV ) v = g − E(ω),

(λI + AV ) v = g − E(ω).

Let us multiply scalarly by (v − v) their difference

λ (v − v, v − v) + (AV (v − v) , v − v) + (E(ω)− E(ω), v − v) = 0

and we have:

λ ∥v − v∥2 +
∫
Ω

D

(
∂v

∂x
− ∂v

∂x

)2

dx

+

∫
Ω

(E(ω)− E(ω)) (v − v) dx = 0.(2.14)

But AV v = g − E(ω)− λv ∈ L2(Ω).

∥E(ω)∥2 ≤M2 ∥ω∥2 ≤ C,

and from (2.14) we get:

∥v − v∥2 ≤ M

λ
∥ω − ω∥2 ,

for λ large enough, λ > max [M, 1].
Denoting by ϕ : L2(Ω) → L2(Ω) , ϕ (ω) = v ∈ L2(Ω) a solution of

equation (2.13). Since ∥v − v∥L2(Ω) ≤
√

M
λ
∥ω − ω∥L2(Ω) and

√
M
λ
< 1
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for λ large enought, it yields that ϕ is a contraction on L2(Ω). By
Banach fixed point theorem, ϕ has a fixed point ϕ (ω) = ω = v, and
the equation (2.13) has a solution v ∈ L2(Ω) and the operator A is
quasi m-accretive on L2(Ω).

Now we can formulate the existence theorem for the solutions of
problem (2.4)-(2.5).

Theorem 4. Assume (1.28)- (1.29), (2.12) and let b0 ∈ D(A). Then
problem (2.4)-(2.5) has a unique strong solution

(2.15) b ∈ C([0, T ], L2(Ω)) ∩ L2 (0, T ;D(A)) ,

which satisfies the estimates:∥∥b (t)− b (t)
∥∥ ≤

∥∥b0 − b0
∥∥ eMt ,(2.16)

∥b(t)∥2 + 2D

t∫
0

∥∥∥∥ ∂b∂x
∥∥∥∥2 dτ ≤ ∥b0∥2 ,(2.17)

for any t ∈ [0, T ], where b is another solution of (2.4), with b (0) = b0.

Proof. As the operator A is quasi m-accretive in L2(Ω), by Lemma 2
and Lemma 3, the existence of the solution and (2.15) follows imme-
diately from the fundamental theory of the existence of solution for
evolution equations with m-accretive operators in Hilbert spaces [1].

The first inequality is an immediate consequence of the quasi-
accretiveness of operator A. Suppose two solutions b and b corre-
sponding to the initial data b0 and b0 and multiplying the equation:

d

dt
(b− b) + Ab− Ab = 0

with (b− b), we get:

1

2

d

dt

∥∥b (t)− b (t)
∥∥2 + (Ab (t)− Ab (t) , b (t)− b (t)

)
= 0.

We integrate on (0, T ):

1

2

t∫
0

d

dτ

∥∥b (t)− b (t)
∥∥2 dτ+

t∫
0

(
Ab (t)− Ab (t) , b (t)− b (t)

)
dτ = 0.
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But
(
Ab (t)− Ab (t) , b (t)− b (t)

)
≥ −M

∥∥b (t)− b (t)
∥∥2 and so

1

2

∥∥b (t)− b (t)
∥∥2 − 1

2

∥∥b0 − b0
∥∥2 −M

t∫
0

∥∥b (τ)− b (τ)
∥∥2 dτ ≤ 0

∥∥b (t)− b (t)
∥∥2 ≤ ∥∥b0 − b0

∥∥2 + 2M

t∫
0

∥∥b (τ)− b (τ)
∥∥2 dτ .(2.18)

Next we apply Gronwall’s lemma and we get (2.16)∥∥b (t)− b (t)
∥∥ ≤

∥∥b0 − b0
∥∥ eMt, ∀t ∈ [0, T ].

To obtain (2.17), we multiply (2.4) by b and integrate over (0, T ). We
get:

(2.19) ∥b(t)∥2 − ∥b0∥2 + 2

t∫
0

(Ab (τ) , b (τ)) dτ = 0

and from here we have (2.17)

∥b(t)∥2 + 2D

t∫
0

∥∥∥∥ ∂b∂x
∥∥∥∥2 dτ ≤ ∥b0∥2 .

Once completed the first stage, we proceed to demonstrate the ex-
istence of solution of the problem (2.4) while the function b −→ E(b)
is locally Lipschitz. In fact we use Theorem 4.

Theorem 5. Assume conditions (1.28)- (1.29) and let b0 ∈ D(A).
Then the problem (2.4)-(2.5) has a unique solution

(2.20) b ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ C([0, T ], L2(Ω)) ∩ L2 (0, T ;V ) ,

such that

(2.21) ∥b(t)∥2 + 2ρ

t∫
0

∥∥∥∥ ∂b∂x
∥∥∥∥2 dτ ≤ ∥b0∥2 ,

for any t ∈ [0, T ].

Proof. From Lemma 1 we know that b −→ E(b) ≡ µ (b) b is locally
Lipschitz on L2 (Ω). We reduce the problem to the previous case in
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which this function is Lipschitz continuous. For this we approximate
the function E(·) for each N ≥ 1 setting:

(2.22) EN (b) =

{ E(b) , ∥b (t)∥ ≤ N

E

(
Nb

∥b∥L2(Ω)

)
, ∥b (t)∥ > N

.

Actually this truncated functions is Lipschitz continous on L2 (Ω) for
each N fixed.

We consider the approximating problem:

∂bN
∂t

(t) + ANbN(t) = 0, a.e t ∈ (0, T ) ,(2.23)

bN(0) = b0,(2.24)

where AN is defined by (2.3)-(2.12) in which E(b) is replaced by EN(b).
For each N , the assumptions of theorem 4 are fulfilled. So we find
that for b0 ∈ D (A), the problem (2.23)-(2.24) has a unique solution
bN ∈ C([0, T ], L2(Ω)) ∩ L2 (0, T ;V ) which satisfies (2.17):

∥bN(t)∥2 +
t∫
0

∥∥∥∥∂bN (τ)

∂x

∥∥∥∥2 dτ ≤ R = ∥b0 (τ)∥2 <∞.

For N large enough, N > R we get ANbN (t) = AbN (t), so that bN (t)
is a solution to problem (2.4)-(2.5).

To prove the uniqueness we consider two solutions b and b corre-
sponding to b0. By the previous proof we have that if

N > sup
t∈[0,T ]

∥b∥L2(Ω) + sup
t∈[0,T ]

∥∥b∥∥
L2(Ω)

then b (t) = bN (t) and b (t) = bN (t), where bN (t) is the solution to
(2.23)-(2.24). This proves the uniqueness of solution.
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