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A DEFORMATION OF A QUARTIC CARTAN METRIC 
 

OTILIA LUNGU  
 
 

Abstract.  In this paper we consider a Cartan space ( )( )pxKMC n ,,= with the 

metric ( ) ( )4, hkji
ijkh ppppxapxK = and a deformation using 

( ) ( ) ii pxbp,x =ω .We call it a Randers- Quartic Cartan space and we are 

going to study some of its properties. 

 
1. PRELIMINARIES 

 
Let M be  a real n-dimensional differential manifold and ( )MMT ,, ** π  

its  cotangent bundle. If ( )ixU ,  is a local chart on M, then ( )i
i px ,  is the 

induced system of coordinates on ( )U
1*−π . 

A Cartan metric on  M is a real positive function +→ RMTK *:  
satisfying the following properties: 
i) K is differentiable on { }0* −MT  and  continuous on the null section of the 

projection *π ; 
ii) K is positively homogeneous of order one with respect to ip : 
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(1.1)                                       ( ) ( )pxKpxK ,, λλ = , 0>λ ; 
iii) ( ) { }0, * −∈∀ MTpx  , ( )pxg ij ,  is positive and nondegenerate, where 

(1.2)                                            ( )
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pp
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∂
=

22
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1, . 

The pair  ( )KMC n ,=  is called a Cartan space and ( )pxg ij ,  is called 
the fundamental tensor of the Cartan space. 

Let ijg  be the covariant tensor of ijg : h
i

jh
ij gg δ= .The Christoffel 

symbols of  ( )pxg ij ,  are given by  
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We denote 
(1.4)                                                    i

i
jkjk pγγ =0  

and 
(1.5)                                                   k

i
i
jkj ppγγ =0

0 . 

 The canonical nonlinear connection of the Cartan space ( )KMC n ,=  is 
given by the coefficients 
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h
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If we consider the canonical metrical connection ( ) ( )i

jk
i
jk CHNC ,=Γ  of the 

Cartan space, the local components of ( )NCΓ  have the expressions: 
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Where 
 

(1.8)                                             
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2. QUARTIC CARTAN SPACE 

 
Let  ( )K,MC n =  be a Cartan space with the metric  

(2.1)                                    ( ) ( )4, hkji
ijkh ppppxapxK = , 

where ( )xaijkh  are the components of a symetric tensor field of  (4,0)-type. 
We call this space a quartic Cartan space and we denote it by nQC . 
For an easier calculation we also denote: 

(2.2)                                  

( ) ( )
( ) ( )
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;,

;,
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=
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The angular metrical tensor of nQC space  is 
 (2.3)                                              ( )jiijij aaah −= 3 . 
and the fundamental tensor is  
(2.4)                                          jiijij aaag 23 −= . 
 
 
Supposing that ( )ija is regular, there exists the inverse matrix ( ) ( ) 1−

= ij
ij aa . So 

we get 
(2.5)                                         jk

i
sjk

is
jksjk

s
j

iji aaaaaaaaa === ,,  

and the components ( ) 1−
= ij

ij gg : 

(2.6)                                                     jiijij aaag
3
2

3
1

+=  

The components of the v-torsion tensor 
k

ij
ijk

p
gC
∂
∂

−=
2
1  are 

(2.7)                           ( )kjijkiijkkijijkijk aaaaaaaaaa
K

C 23
+−−−−= . 
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3. RANDERS QUARTIC CARTAN  SPACE 

 
It is well known that a Randers metric is a deformation of a Riemannian 

metric ( ) ( ) ji
ij yyxayx =,α with a 1-form ( ) ( ) i

i yxbyx =,β . In the same way 
now we are considering a deformation of a quartic Cartan metric 
( ) ( )4, hkji

ijkh ppppxapxK = with ( ) ( ) i
i pxbpx =,ω . 

 
Definition 3.1. Let ( )( )pxKMQC n ,,=  be a quartic Cartan space with the 

metric ( ) ( )4, hkji
ijkh ppppxapxK = . The space ( )( )pxFMRQC n ,,= , where 

( ) ( ) ( )pxpxKpxF ,,, ω+=  is called Randers Quartic Cartan space. 
 
 
 
 
Proposition 3.1. The fundamental tensor of nRQC  is 

(3.1)                     ( ) jiijjijiijij bbbabaaaag +++−−= 133ˆ εε  

where 
K
F

=ε  

 
Theorem 3.1. Let ( )KMQC n ,=  a Quartic Cartan space and ijg his 

fundamental tensor. The fundamental tensor of the space 
( )ω+== KFMRQC n ,  is 

(3.2)                           ( ) ( )( )jjiijiijij babaaag
K
Fg +++−=ˆ . 

 
Theorem 3.2  The components of the v-torsion tensor ijkĈ  of  nRQC are 

given by 
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   , 

where  ijkC  are the components of the v-torsion tensor of nQC  space . 
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 Proof:  We have 
k
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p
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ˆ

2
1ˆ  and from (3.2) we get 
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By a direct calculation we obtain 
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Replacing (3.5), (3.6) and (3.7) in (3.4) we get immediately the conclusion. 
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