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INDEPENDENCE POLYNOMIALS OF SOME GRAPHS
WITH EXTREMAL FIBONACCI INDEX

EUGEN MANDRESCU AND ION MIRICA

Abstract. An independent set in a graph G is a set of pairwise non-
adjacent vertices, and the independence number α(G) is the cardinality
of a maximum stable set in G. The independence polynomial of G is

I(G; x) = s0 + s1x+ s2x
2 + ...+ sαx

α, α = α(G),

where sk is the number of independent sets of size k in G (I. Gutman
and F. Harary, 1983). The Fibonacci index Fib(G) of a graph G is
the number of all its independent set, i.e., Fib(G) = I (G; 1). Tight
lower and upper bounds for Fibonacci index are known for general
graphs, connected or not, and the corresponding extremal graphs are
characterized [6], [15].

In this paper, we give explicit formulae for independence polynomi-
als of these extremal graphs, which we further use to analyze some of
their properties (unimodality, log-concavity).

1. INTRODUCTION

Throughout this paper G = (V,E) is a finite, undirected, loopless
and without multiple edges graph, whose vertex set is V = V (G) and
edge set is E = E(G). G[X] is the subgraph of G induced by X ⊂ V ,
while G−X means the subgraph G[V −X].

————————————–
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We also denote by G − F the partial subgraph of G obtained by
deleting the edges of F , for F ⊂ E(G), and we write shortly G − e,
whenever F = {e}. The neighborhood of v ∈ V is the set NG(v) =
{w : w ∈ V and vw ∈ E}, and NG[v] = NG(v) ∪ {v}; if there is no
ambiguity on G, we use N(v) and N [v], respectively.

The disjoint union of the graphs G1, G2 is the graph G = G1 ∪ G2

having V (G) and E (G) equal to the disjoint union of V (G1), V (G2),
and the disjoint union of E(G1), E(G2), respectively. In particular, nG
equals the disjoint union of n ≥ 2 copies of the graph G. The Zykov
sum of two disjoint graphs G1, G2 is the graph denoted by G1+G2 and
having V (G) = V (G1) ∪ V (G2) as a vertex set and E(G1) ∪ E(G2) ∪
{v1v2 : v1 ∈ V (G1), v2 ∈ V (G2)} as an edge set.

By an independent (or stable) set in G we mean a set of pairwise
non-adjacent vertices. A stable set of maximum size will be referred
to as a maximum stable set of G, and α(G) is the size of a maximum
stable set in G.

If sk equals the number of stable sets of size k in a graph G, then
the polynomial

I(G; x) = s0 + s1x+ s2x
2 + ...+ sαx

α, α = α(G),

is called the independence polynomial of G, (Gutman and Harary,
[8]), or the independent set polynomial of G (Hoede and Li, [10]). The
reader is referred to [12] for a survey on these graph polynomials.

Proposition 1.1. [8] The following equalities are true:
(i) I(G1 ∪G2;x) = I(G1; x) · I(G2;x);
(ii) I(G1 +G2; x) = I(G1;x) + I(G2;x)− 1;
(iii) I(G;x) = I(G−v; x)+x•I(G−N [v];x) holds for each v ∈ V (G).

A polynomial a0+a1x+a2x
2+ ...+anx

n, whose coefficients are real,
is called:

• unimodal if there is some k ∈ {0, 1, ..., n}, called mode, such
that

a0 ≤ ... ≤ ak−1 ≤ ak ≥ ak+1 ≥ ... ≥ an;

• log-concave if a2i ≥ ai−1 · ai+1, i ∈ {1, 2, ..., n− 1}.
For instance, the independence polynomial

• I(K42 + 3K7;x) = 1 + 63x+ 147x2 + 343x3 is log-concave and
has only one real root;

• I(K43 + 3K7; x) = 1 + 64x + 147x2 + 343x3 is unimodal, but
non-log-concave, because 1472 − 64 · 343 = −343 < 0;
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• I(K127 +3K7;x) = 1+ 148x+147x2 +343x3 is non-unimodal.

The unimodality of independence polynomials was studied in a num-
ber of papers, like [1], [2], [9], [13], [18].

It is known that each log-concave polynomial of positive coefficients
is also unimodal.

Theorem 1.2. (Newton Inequality) If P = a0 + a1x + ... + anx
n is

a polynomial with nonnegative coefficients, and all its roots are real,
then

(ak)
2 ≥ ak−1 • ak+1 •

k + 1

k
• n− k + 1

n− k
, 1 ≤ k ≤ n− 1.

Hence P is log-concave and unimodal with at most two modes.

The independence polynomial can have non-real roots and this is
true also for trees, e.g., I(K1,3; x) = 1 + 4x + 3x2 + x3. Brown et al.
showed that the independence polynomial of every graph has at least
one real root.

Theorem 1.3. [4] For any graph G, a root of the independence poly-
nomial of G of smallest modulus is real.

The product of two polynomials, one log-concave and the other
unimodal, is not always log-concave, for instance, if G = K40 + 3K7

and H = K110 + 3K7, then

I(G; x) · I(H; x) =
= (1 + 61x+ 147x2 + 343x3) (1 + 131x+ 147x2 + 343x3)
= 1 + 192x+ 8285x2 + 28910x3 + 87465x4 + 100842x5 + 117649x6,

which is not log-concave, because 1008422 − 87465 · 117649 < 0. How-
ever, the following result, due to Keilson and Gerber, gives a sufficient
condition for two polynomials to have a unimodal product.

Theorem 1.4. [11] If P is log-concave and Q is unimodal, then P ·Q
is unimodal, while the product of two log-concave polynomials is log-
concave.

The corona of the graphs G and H is the graph G ◦ H obtained
from G and |V (G)| copies of H, such that each vertex of G is joined to
all vertices of a copy of H. The connection between the independence
polynomials of G,H and G ◦ H is given by the following result, due
to I. Gutman.

Theorem 1.5. [9] I(G ◦H;x) = (I(H; x))n · I(G; x
I(H;x)

), where n is

the order of G.
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For example, if G = Kn, then α(G) = n and G ◦Kp = nKp+1 has
I(G ◦Kp;x) = (1 + (p+ 1) · x)n, whose roots are all real.

The Fibonacci index of a graph G is the number of all its indepen-
dent sets [16]. In other words, the Fibonacci index of G is equal to
I(G; 1) = s0 + s1 + s2 + ... + sα. This parameter was defined inde-
pendently by Merrifield and Simmons [14] in the chemistry literature,
where it has been extensively studied, especially in chemical graph
theory.

For instance, we have:

• I (Kn;x) = 1 + nx, hence Fib(Kn) = n+ 1;
• I

(
Kn;x

)
= (1 + x)n, hence Fib(Kn) = 2n;

• I (Pn;x) =
⌈n/2⌉∑
k=0

(
n+1−k

k

)
· xk, and Fib(Pn) = fn+2 (recall that

the sequence of Fibonacci numbers fn is f0 = 0, f1 = 1 and
fn = fn−1 + fn−2 for n > 1).

In this paper we give explicit formulae for independence polynomials
of graphs whose Fibonacci index is extremal.

2. RESULTS

In extremal graph theory, lower and upper bounds for Fib(G) inside
the classes of general graphs, connected graphs, and trees are well
known. The lower bound for the Fibonacci index is known for general
graphs.

Let us denote CSn,α = αK1 + Kn−α, for 1 ≤ α ≤ n − 1. Clearly,
α (CSn,α) = α.
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Figure 1. G = CS7,4.

Pedersen and Vestergaard characterize graphs with minimum Fi-
bonacci index as follows.

Theorem 2.1. [15] If G is a graph of order n and α (G) = α, then
Fib(G) ≥ 2α + n − α, with equality if and only if G is isomorphic to
CSn,α.

Using Proposition 1.1(ii) we deduce the following.
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Theorem 2.2. The independence polynomial of CSn,α satisfies:
(i) I (CSn,α; x) = (1 + x)α + (n− α)x,

hence Fib(CSn,α) = 2α + n− α;
(ii) I (CSn,α;x) is unimodal for

(1) 1 ≤ α ≤ 6 and α < n, or (2) 6 < α < n <
(
α
2

)
;

(iii) I (CSn,α;x) is log-concave for

(1) α ∈ {1, 2} and 3 ≤ n, or (2) 3 ≤ α < n ≤ 3α(α−1)
2(α−2)

.

Proof. (i) Since, in fact, we have CSn,α = αK1 + Kn−α, Proposition
1.1(ii) implies

I (CSn,α;x) = I (αK1; x) + I (Kn−α;x)− 1 = (1 + x)α + (n− α)x =

= 1 + nx+

(
α

2

)
x2 +

(
α

3

)
x3 + ...+ xα,

which clearly implies Fib(CSn,α) = I (CSn,α; 1) = 2α + n− α.
(ii) and (iii) Clearly, for α ∈ {1, 2} ⇒ I (CSn,α;x) has only real

roots, hence I (CSn,α; x) is unimodal and log-concave.

• Case α = 3. Then I (CSn,3;x) = 1 + nx+ 3x2 + x3, which is

(a) unimodal for n ≥ α + 1 = 4; (b) log-concave for 4 ≤ n ≤ 9.

• Case α = 4. Then I (CSn,4;x) = 1 + nx+ 6x2 + 4x3 + x4 and
this is

(a) unimodal for n ≥ α + 1 = 5; (b) log-concave for 5 ≤ n ≤ 9.

• Case α = 5. Then I (CSn,5; x) = 1+nx+10x2+10x3+5x4+x5,
which is

(a) unimodal for n ≥ α + 1 = 6; (b) log-concave for 6 ≤ n ≤ 10.

• Case α = 6. Then I (CSn,6;x) = 1+nx+15x2+20x3+15x4+
6x5 + x6, which is

(a) unimodal for n ≥ α+ 1 = 7 and n ≤ 15 =
(
6
2

)
, i.e., 7 ≤ n ≤ 15;

(b) log-concave for 7 ≤ n ≤ 11.
In general, for α > 6, it follows that:

• I (CSn,α;x) is unimodal for α + 1 ≤ n ≤
(
α
2

)
;

• I (CSn,α;x) is log-concave whenever

7 < α + 1 ≤ n, n2 ≥
(
α

2

)
,

(
α

2

)
•
(
α

2

)
≥ n •

(
α

3

)
,

which lead to 7 < α + 1 ≤ n ≤ 3α(α−1)
2(α−2)

.

�
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For instance, the polynomial

• I (CS10,7;x) = (1 + x)7 +3x = 1+10x+21x2 +35x3 +35x4 +
21x5 + 7x6 + x7 is log-concave;

• I(CS12,6;x) = 1+12x+15x2+20x3+15x4+6x5+x6 is unimodal,
but is not log-concave, because 152 − 12 · 20 = 225 − 240 =
−15 < 0;

• I(CS22,6;x) = 1 + 22x+ 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7

is not unimodal.

The Turán graph T (n, k) is a graph formed by partitioning a set of n
vertices into k subsets, with sizes as equal as possible, and connecting
two vertices by an edge whenever they belong to different subsets.
The graph T (n, k) will have q = n mod k subsets of size ⌈n/k⌉, and
k − q subsets of size ⌊n/k⌋. In other words, T (n, k) is a complete
k-partite graph, i.e., T (n, k) = K⌈n/k⌉,⌈n/k⌉,...,⌊n/k⌋,⌊n/k⌋, and clearly,
α (T (n, k)) = ⌈n/k⌉. According to Turán’s Theorem, the Turán graph
has the maximum possible number of edges among all (k + 1)-clique-
free graphs.

Theorem 2.3. The independence polynomial of the Turán graph
T (n, k) satisfies:

(i) I (T (n, k);x) = (nmod k) • (1 + x)⌈n/k⌉ + (k − (nmod k)) •
(1 + x)⌊n/k⌋ − (k − 1), hence

Fib(T (n, k)) = (nmod k) • 2⌈n/k⌉ + (k − (nmod k)) • 2⌊n/k⌋ − (k − 1) ;

(ii) I (T (n, k); x) is log-concave, hence unimodal, for every positive
integers n and k ≤ n;

(iii) if k ≥ n/2, then I (T (n, k); x) has only real roots.

Proof. (i) Using Proposition 1.1(ii), we get that

I (T (n, k);x) = I
(
K⌈n/k⌉,⌈n/k⌉,...,⌊n/k⌋,⌊n/k⌋;x

)
=

= (nmod k) • (1 + x)⌈n/k⌉+

+(k − (nmod k)) • (1 + x)⌊n/k⌋ − (k − 1) ,

which implies

Fib(T (n, k)) = (nmod k) • 2⌈n/k⌉ + (k − (nmod k)) • 2⌊n/k⌋ − (k − 1) .

(ii) Since the polynomials

P1 = (nmod k) • (1 + x)⌈n/k⌉ and P2 = (k − (nmod k)) • (1 + x)⌊n/k⌋

satisfy 0 ≤ deg (P1)− deg (P2) ≤ 1, it is easy to see that P = P1 + P2

has only real roots, and because P has only positive coefficients, it
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follows that P is log-concave by Newton’s Theorem 1.2. Consequently,
I (T (n, k);x) = P − (k − 1) is log-concave, and unimodal as well,
because its free coefficient is equal to 1.

(iii) If k ≥ n/2, then I (T (n, k);x) is a polynomial of degree at
most two, since α (I (T (n, k);x)) ≤ 2. Consequently, by Theorem 1.3,
I (T (n, k);x) has real roots. �

Remark 2.4. Notice that I (T (n, k);x) may have only real roots for
k < n/2; e.g., I (T (9, 4);x) = (1 + x)3 + 3 (1 + x)2 − 3 = 0, has only
real roots. However, I (T (8, 3);x) = 2 (1 + x)3 + (1 + x)2 − 2 has only
one real root.

Clearly, the complement of the Turán graph T (n, α), that we denote

by TC(n, α) = T (n, α), is the disjoint union of α balanced cliques, and
α (TC(n, α)) = α.

Theorem 2.5. [6] Let G be a graph of order n with independence
number α. Then Fib (G) ≤ Fib(TC(n, α)), with equality if and only
if G is isomorphic to TC(n, α).

Theorem 2.6. The independence polynomial of the complement of
Turán graph TC(n, α) satisfies:

(i) I (TC(n, α); x) =

= (1 + ⌈n/α⌉ • x)(nmodα) • (1 + ⌊n/α⌋ • x)α−(nmodα);
(ii) I (TC(n, α);x) has only real roots for every n and α ≤ n; hence

I (TC(n, α); x) is always log-concave and unimodal.

Proof. (i) Using Proposition 1.1(i), we get that

I (TC(n, α);x) = I
(
K⌈n/α⌉,⌈n/α⌉,...,⌊n/α⌋,⌊n/α⌋, x

)
=

=
[
I
(
K⌈n/α⌉;x

)](nmodα) •
[
I
(
K⌊n/α⌋; x

)]α−(nmodα)

= (1 + ⌈n/α⌉ • x)(nmodα) • (1 + ⌊n/α⌋ • x)α−(nmodα) ,

as claimed.
(ii) Clearly, I (TC(n, α); x) has all its roots real. Newton’s Theorem

1.2 implies that I (TC(n, α);x) is also log-concave and unimodal. �

Theorem 2.6(i) immediately implies the following.

Corollary 2.7. [6] The Fibonacci index of the complement of the
Turán graph TC(n, α) is given by the formula

Fib(TC(n, α)) = (1 + ⌈n/α⌉)(nmodα) • (1 + ⌊n/α⌋)α−(nmodα) .
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The connected complement of Turán graph with n vertices and in-
dependence number α where 1 ≤ α ≤ n− 1, denoted by TCC (n, α),
is constructed from TC(n, α) with α − 1 additional edges, as follows:
take a vertex v of one clique of size ⌈n/α⌉, and link v, by an edge, to
one vertex belonging to each of the remaining cliques. See Figure 2
for an example.
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Figure 2. G = T (8, 3) and its connected complement
H = TCC(8, 3).

Theorem 2.8. [6] If G is a connected graph of order n with indepen-
dence number α, then Fib (G) ≤ Fib(TCC(n, α)), with equality if and
only if G is isomorphic to TCC(n, α) in case of (n, α) ̸= (5, 2), and G
is isomorphic either to TCC(5, 2) or to C5 in case of (n, α) = (5, 2).

Proposition 2.9. The independence polynomial of the connected com-
plement of Turán graph TCC(n, α) satisfies:

(i) if n = tα, for some integer t ≥ 2, then

I (TCC(n, α);x) = (1 + (t− 1)x) • (1 + tx)α−1 + x (1 + (t− 1)x)α−1 ,

and Fib (TCC(n, α)) = t • (1 + t)α−1 + tα−1;

(ii) otherwise

I (TCC(n, α); x) = (1 + (k1 − 1)x) •
•
{
(1 + k1x)

p−1 (1 + k2x)
q + x · (1 + (k1 − 1)x)p−2 (1 + (k2 − 1)x)q

}
,

and Fib (TCC(n, α)) = k1 • (1 + k1)
p−1 • (1 + k2)

q + kp−1
1 • kq

2,

where k1 = ⌈n/α⌉ , k2 = ⌊n/α⌋ , p = nmodα, q = α− p.

Proof. If n = tα, then all the α cliques of TC(n, α) are of size t, and
using Proposition 1.1(iii), we get

I (TCC(n, α);x) = I (TCC(n, α)− v; x) + x • I (TCC(n, α)−N [v];x) =

= (1 + (t− 1)x) • (1 + tx)α−1 + x • (1 + (t− 1)x)α−1 ,
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which clearly gives Fib (TCC(n, α)) = t • (1 + t)α−1 + tα−1.
Otherwise, let

k1 = ⌈n/α⌉ , k2 = ⌊n/α⌋ , p = nmodα, q = α− p,

and let v be the vertex joined to all the cliques of TCC(n, α).
Taking into account that the both graphs TCC(n, α) − v and

TCC(n, α) − N [v] are disjoint union of cliques, Proposition 1.1(iii)
leads to the following

I (TCC(n, α); x) = (1 + (k1 − 1)x) • (1 + k1x)
p−1 • (1 + k2x)

q +

+x • (1 + (k1 − 1)x)p−1 • (1 + (k2 − 1)x)q =

= (1 + (k1 − 1)x) {(1 + k1x)
p−1 (1 + k2x)

q +

+x • (1 + (k1 − 1)x)p−2 · (1 + (k2 − 1)x)q},

which immediately implies that
Fib (TCC(n, α)) = k1 • (1 + k1)

p−1 • (1 + k2)
q + kp−1

1 • kq
2. �

Using Theorem 2.8, Proposition 2.9, and the fact that for every tree
T it is true that α (T ) ≥ |V (T )| /2, we infer the following.

For instance, the polynomial

• I (TCC(8, 4);x) = 1 + 8x + 21x2 + 23x3 + 9x4 has non-real
roots;

• I (TCC(9, 3);x) = 1 + 9x+ 25x2 + 22x3 has all the roots real;
• I (TCC(14, 4);x) = 1+14x+70x2+151x3+120x4 has non-real
roots;

• I (TCC(11, 3);x) = 1+11x+38x2+42x3 has all the roots real.

Corollary 2.10. [6] Let T be a tree of order n with independence
number α. Then Fib(T ) ≤ 3n−α−122α−n+1 + 2n−α−1, with equality if
and only if T is isomorphic with TCC (n, α).

3. Conclusions and open problems

In this paper we found the independence polynomials of several
graphs, whose Fibonacci index is extremal. For some of them we
proved that are unimodal, log-concave, or that they have only real
roots. A couple of examples above show that the independence poly-
nomial of the connected complement of Turán graph TCC(n, α) may
have non-real roots, but they are still log-concave. Checking many
other cases, we are led to the following.
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Conjecture 3.1. The independence polynomial of TCC(n, α) is log-
concave, for every n and α ≤ n.
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[6] V. Bruyère, H. Mélot, Turan graphs, stability number, and Fibonacci index,
LNCS 5165 (2008) 127-138.

[7] M. Chudnovsky, P. Seymour, The roots of the independence polynomial of a
claw-free graph, Journal of Combinatorial Theory B 97 (2007) 350–357.

[8] I. Gutman, F. Harary, Generalizations of the matching polynomial, Utilitas
Mathematica 24 (1983) 97-106.

[9] I. Gutman, Independence vertex sets in some compound graphs, Publications
de l’Institute Mathématique 52 (1992) 5-9.

[10] C. Hoede, X. Li, Clique polynomials and independent set polynomials of
graphs, Discrete Mathematics 125 (1994) 219-228.

[11] J. Keilson, H. Gerber, Some results for discrete unimodality, Journal of Amer-
ican Statistical Association 334 (1971) 386-389.

[12] V. E. Levit, E. Mandrescu, The independence polynomial of a graph -
a survey, Proceedings of the 1st International Conference on Algebraic
Informatics, Aristotle University of Thessaloniki, Greece, (2005) 233-254.
http://web.auth.gr/cai05/papers/20.pdf

[13] E. Mandrescu, Building graphs whose independence polynomials have only real
roots, Graphs and Combinatorics 25 (2009) 545-556.

[14] R. E. Merrifield, H. E., Simmons, Topological methods in chemistry, Wiley,
New York (1989).

[15] A. S. Pedersen, P. D. Vestergaard, Bounds on the number of vertex indepen-
dent sets in a graph, Taiwanese J. Math. 10 (2006) 1575-1587.

[16] H. Prodinger, R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20
(1982) 16-21.

[17] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48
(1941) 436-452.

[18] Zhi-Feng Zhu, The unimodality of independence polynomials of some graphs,
Australasian Journal of Combinatorics 38 (2007) 27-34.



INDEPENDENCE POLYNOMIAL AND FIBONACCI INDEX 137

Eugen Mandrescu
Department of Computer Science
Holon Institute of Technology, Israel
email: eugen m@hit.ac.il

Ion Mirica
Department of Mathematics and Informatics
Faculty of Sciences
University ”Dunarea de Jos” Galati, Romania
email: ion.mirica@ugal.ro


