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THREE EXTENSIONS OF ORLICZ-SOBOLEV SPACES
TO METRIC MEASURE SPACES AND THEIR

MUTUAL EMBEDDINGS

MARCELINA MOCANU

Abstract. We study the mutual embeddings between three exten-
sions of Orlicz-Sobolev spaces to a metric measure space, the Orlicz-
Sobolev spaces of Newtonian type, of Haj lasz type and of Cheeger
type.

1. Introduction and preliminaries

Sobolev spaces play a fundamental role in the theory of partial
differential equations and calculus of variations. There are several
extensions of first order Sobolev spaces to metric measure spaces,
namely Haj lasz spaces [8], Newtonian spaces [18], Cheeger spaces [4].
These Sobolev-type spaces, each of which extending some features
of Sobolev spaces on Euclidean spaces, are an indispensable tool in
the metric generalizations of quasiconformal theory and nonlinear
potential theory. Generalizations of Haj lasz spaces and of Newtonian
spaces that extend Orlicz-Sobolev spaces to the metric setting have
been introduced and studied in [1] and [19], respectively. Recently,
Orlicz-Sobolev spaces on metric measure spaces have been also
generalized by replacing the Orlicz space by a Banach function space
[15].
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It is natural to compare various extensions of Sobolev, respectively
of Orlicz-Sobolev, to the metric setting. In this paper we study the
mutual embeddings between three extensions of Orlicz-Sobolev spaces
to a metric measure space, namely the spaces of Newtonian type
N1,Ψ(X), of Haj lasz type M1,Ψ(X) and of Cheeger type H1,Ψ (X).

It is known that M1,Ψ(X) continuously embeds into N1,Ψ(X),
whenever Ψ is an N−function satisfying the ∆2−condition, by [19,
Theorem 6.22]. We provide sufficient conditions for the existence of a
continuous embedding of N1,Ψ(X) into M1,Ψ(X), using as a main tool
the Hardy-Littlewood maximal operator. Let X be a doubling metric
measure space supporting a weak (1,Φ)−Poincaré inequality, where
Φ is a Young function satisfying the ∆2−condition . Assuming that
Ψ is an N−function satisfying the ∆′−condition, together with its
inverse, and that the Hardy-Littlewood maximal operator is bounded
in LΨ◦Φ−1

(X), it follows that there exists a continuous embedding
N1,Ψ(X) ⊂M1,Ψ(X).

We define the Cheeger type Orlicz-Sobolev space H1,Ψ (X) as a nat-
ural generalization of the Cheeger space H1,p (X) introduced in [4]. We
show that a continuous embedding H1,Ψ (X) ⊂ N1,Ψ(X) holds when-
ever Ψ is a Young function, while N1,Ψ(X) embeds continuously into
H1,Ψ (X) provided that the Young function Ψ satisfies the ∆2−and
∇2−conditions for large values of the variable (equivalently, the Ba-
nach space LΨ (X) is reflexive).

Our results generalize Theorems 4.8 and 4.10 of [18], where Ψ (t) =
tp, with 1 < p <∞.

First we recall some important notions from the theory of Orlicz
spaces [17]. The notions of Young function and N−function are well-
known.

We deal with the growth rates of Young functions given by ∆2−,
∇2− and ∆′−conditions. Let Φ : [0,∞]→ [0,∞] be a Young function.
Φ is said to satisfy a ∆2−condition if there is a constant CΦ > 0 such
that Φ(2t) ≤ CΦΦ(t) for every t ∈ [0,∞). A Young function satisfying
a ∆2−condition is called doubling (globally). Every doubling Young
function is real-valued, strictly increasing and continuous. The inverse
Φ−1 of every strictly increasing Young function Φ : [0,∞)→ [0,∞) is
subadditive, hence it is doubling with CΦ−1 = 2. The ∆2−condition
for an increasing Young function Φ implies the power growth esti-
mate: Φ(λt) ≤ CΦλ

log2 CΦΦ(t), for all λ ≥ 1, t ≥ 0. A Young function
Φ : [0,∞) → [0,∞) is said to satisfy a ∇2−condition if there is a
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constant C > 1 such that Φ(t) ≤ 1
2C

Φ(Ct) for all t ∈ [0,∞). It is well-
known that Ψ satisfies a∇2−condition if and only if its complementary
Young function is doubling. It is said that Φ satisfies the ∆2−condition
(respectively, the∇2−condition) if there exist the constants t0 > 0 and
C > 0 such that for every t ≥ t0 we have Φ(2t) ≤ CΦ(t) (respectively,
Φ(t) ≤ 1

2C
Φ(Ct)). Φ is said to satisfy a ∆′−condition if there is a

constant C > 0 such that Φ(ts) ≤ CΦ(t)Φ(s) for all t, s ≥ 0.
Let (X,A, µ) be a measure space with a complete and σ−finite

measure µ and let Φ : [0,∞]→ [0,∞] be a Young function.
The Orlicz space LΦ (X) is the set of all measurable functions u :

X → [−∞,∞] for which there exists λ > 0 such that∫
X

Φ

(
|u(x)|
λ

)
dx <∞.

The Orlicz space LΦ (X) is a Banach space with the Luxemburg norm
defined by

‖u‖LΦ(X) = inf

k > 0 :

∫
X

Φ(
|u|
k

)dµ ≤ 1

 .

For every measurable function u : X → [−∞,+∞], denote IΦ(u) =∫
X

Φ(|u|)dµ. If IΦ(u) < ∞, then u ∈ LΦ(X) and the converse is true

provided that Φ is doubling.

Remark 1. By [20, Lemma 4], for every doubling Young function Φ
and all u ∈ LΦ(X), the following inequalities hold:

‖u‖LΦ(X) ≤ fΦ(IΦ(u)) and IΦ(u) ≤ hΦ(‖u‖LΦ(X)),

where we denoted fΦ(t) = max{t, 2t1/ log2 CΦ} and hΦ(t) =
max{t, CΦt

log2 CΦ}.

Throughout this paper we deal with a metric measure space
(X, d, µ), which is a metric space (X, d) equipped with a Borel regular
outer measure µ. Assume that µ is finite and positive on balls. Recall
that a metric space is called proper if every closed ball is compact.

Remark 2. Since µ is finite on balls, for every doubling N−function
Φ : [0,∞) → [0,∞) we have LΦ(X) ⊂ L1

loc(X), by [17, Proposition
3.1.7].
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Definition 1. The measure µ on the metric space (X, d, µ) is said to
be doubling if there is a constant Cd ≥ 1 such that

(1.1) µ(B(x, 2r)) ≤ Cdµ(B(x, r))

for every ball B(x, r) ⊂ X.

For every doubling measure µ there are some positive constants

Cb and Q so that µ(B(x,r))
µ(B(x0,r0))

≥ Cb

(
r
r0

)Q
, for all 0 < r ≤ r0 and

x ∈ B(x0, r0). Here Q is called a homogeneous dimension of the
metric measure space X.

Recall the notion of Hardy-Littlewood maximal function of f ∈
L1
loc(X), which is defined by

Mf(x) = sup
r>0

1
µ(B(x,r))

∫
B(x,r)

|f | dµ.

In the presence of the doubling condition, some classical results, such
as Vitali covering theorem, Lebesgue’s differentiation theorem and the
maximal function theorem have natural extensions to the setting of
metric measure spaces [12]. In harmonic analysis, doubling metric
measure spaces are known as homogeneous spaces [5].

In the following it is assumed that the measure µ is doubling.
The Hardy-Littlewood maximal operator M is bounded in Lp(X)

provided that X is a doubling metric measure space and p > 1 [12]. If
Φ is an N−function satisfying the ∇2−condition, thenM is bounded
as an operator from LΦ(X) into itself (see [16] for a more detailed
discussion). Under this assumptions on Φ it follows by [7, Theorem
2.2] that there exist some positive constants A and b such that

(1.2) IΦ(Mf) ≤ AIΦ(bf)

for every f ∈ LΦ(X), a property stronger in general than the bound-
edness of M in LΦ(X).

A substitute for the norm of the gradient in analysis on metric
measure spaces is the concept of upper gradient.Let u be a real-valued
function on a metric measure space X. A Borel function g : X →
[0,+∞] is said to be an upper gradient of u in X if

(1.3) |u(γ(1))− u(γ(0))| ≤
∫
γ

g ds,

for every compact rectifiable path γ : [0, 1]→ X.
Since upper gradients are unstable under changes µ−a.e. and un-

der limits, the more general notion of weak upper gradient has been
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introduced [11]. This modification of the notion of upper gradient is
essential in defining and studying some Sobolev-type spaces on metric
measure spaces.

The notion of Φ−modulus of a path family is indispensable in the
definition of the notion of Φ−weak upper gradient, on which the defi-
nition of Orlicz- Sobolev spaces of Newtonian type is based.

Definition 2. [19] Let Φ : [0,∞)→ [0,∞) be a Young function. The
Φ−modulus of a family Γ of paths in X is MΦ(Γ) = inf ‖ρ‖LΦ(X),

where the infimum is taken over all Borel functions ρ : X → [0,+∞]

satisfying

∫
γ

ρds ≥ 1 for all locally rectifiable paths γ ∈ Γ.

Definition 3. [19] Let u be a real-valued function on a metric measure
space X. A Borel function g : X → [0,+∞] is called a Φ−weak upper
gradient of u if (1.3) holds for all compact rectifiable paths γ : [0, 1]→
X except for a path family Γ0 with MΦ (Γ0) = 0 in X.

The collection Ñ1,Φ(X) of all functions u ∈ LΦ (X) having a

Φ−weak upper gradient g ∈ LΦ (X) is a vector space. For u ∈ Ñ1,Φ(X)
define ‖u‖1,Φ = ‖u‖LΦ(X) + inf ‖g‖

LΦ(X)
, where the infimum is taken

over all Φ−weak upper gradients g ∈LΦ(X) of u. Consider the equiva-

lence relation u ∼ v ⇔ ‖u− v‖1,Φ = 0. Then N1,Φ(X) = Ñ1,Φ(X)/ ∼
is a Banach space with the norm ‖u‖N1,Φ := ‖u‖1,Φ[19].

If X = Ω ⊂ Rn is a domain and Φ is a doubling Young function, then
N1,Φ(X) = W 1,Φ(Ω) as Banach spaces and the norms are equivalent
[19, Theorem 6.19].

The notion of Φ−modulus of a path family, a generalization of the
notion of p−modulus, is indispensable in order to define Orlicz-Sobolev
spaces of Newtonian type.

Definition 4. [19] Let Φ : [0,∞)→ [0,∞) be a Young function. The
Φ−modulus of a family Γ of paths in X is MΦ(Γ) = inf ‖ρ‖LΦ(X),

where the infimum is taken over all Borel functions ρ : X → [0,+∞]

satisfying

∫
γ

ρds ≥ 1 for all locally rectifiable paths γ ∈ Γ.
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Definition 5. [19] Let u be a real-valued function on a metric measure
space X. A Borel function g : X → [0,+∞] is called a Φ−weak upper
gradient of u if (1.3) holds for all compact rectifiable paths γ : [0, 1]→
X except for a path family Γ0 with MΦ (Γ0) = 0 in X.

The collection Ñ1,Φ(X) of all functions u ∈ LΦ (X) having a

Φ−weak upper gradient g ∈ LΦ (X) is a vector space. For u ∈ Ñ1,Φ(X)
define ‖u‖1,Φ = ‖u‖LΦ(X) + inf ‖g‖

LΦ(X)
, where the infimum is taken

over all Φ−weak upper gradients g ∈ LΦ (X) of u. Consider the equiva-

lence relation u ∼ v ⇔ ‖u− v‖1,Φ = 0. Then N1,Φ(X) = Ñ1,Φ(X)/ ∼
is a Banach space with the norm ‖u‖N1,Φ := ‖u‖1,Φ[19].

If X = Ω ⊂ Rn is a domain and Φ is a doubling Young function, then
N1,Φ(X) = W 1,Φ(Ω) as Banach spaces and their norms are equivalent
[19, Theorem 6.19].

We recall the (1, p)−Poincaré inequality and its generalization, the
(1,Φ)−Poincaré inequality.

Denote the mean value of a function u ∈ L1(A) over A by uA :=

1
µ(A)

∫
B

udµ, where 0 < µ(A) <∞.

Definition 6. [10] Let Ω be an open subset of the metric measure space
X. A pair formed by u ∈ L1

loc(Ω) and a Borel measurable function
g : Ω → [0,∞] is said to satisfy a weak (1, p)−Poincaré inequality,
1 ≤ p < ∞, in Ω if there exist some constants CP > 0 and τ ≥ 1
such that for every ball B = B(x, r) satisfying τB ⊂ Ω,, where τB :=
B (x, τr)

1

µ(B)

∫
B

|u− uB| dµ ≤ CP r

 1

µ(τB)

∫
τB

gp dµ

1/p

.

It is said that Ω supports a (1, p)−Poincaré inequality if the above
inequality holds for every u ∈ L1

loc(Ω) and every upper gradient g of
u, with fixed constants CP and τ .

The weak (1, p)− Poincaré inequality has been generalized for
Orlicz-Sobolev spaces, as follows:

Definition 7. [19, Definition 5.2] Let Φ : [0,∞)→ [0,∞) be a strictly
increasing Young function and Ω ⊂ X an open set. We say that a
function u ∈ L1

loc(Ω) and a Borel measurable non-negative function g
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on Ω satisfy a (1,Φ)−weak Poincaré inequality in Ω if there exist some
constants CP,Φ > 0 and τ ≥ 1 such that

(1.4)
1

µ(B)

∫
B

|u− uB| dµ ≤ CP,ΦrΦ
−1

 1

µ(τB)

∫
τB

Φ(g)dµ

 .

for each ball B = B(x, r) satisfying τB ⊂ Ω. It is said that Ω supports
a weak (1,Ψ)−Poincaré inequality if the above inequality holds for
each function u ∈ L1

loc(Ω) and every upper gradient g of u, with fixed
constants.

Remark 3. If Φ is doubling, we may replace in the above definition
upper gradients by Φ−weak upper gradients.

2. Mutual embeddings of Newtonian type and Haj lasz
type Orlicz-Sobolev spaces

Shanmugalingam proved that M1,p(X) continuously embeds into
N1,p(X) for every metric space X [18, Theorem 4.8] and that for a
doubling metric measure space X supporting a (1, q)−Poincaré in-
equality for some 1 ≤ q < p, N1,p(X) = M1,p(X) and the corre-
sponding Banach spaces are isomorphic [18, Theorem 4.9]. Tuominen
[19] extended these results to Orlicz-Sobolev spaces. It is proved that
M1,Ψ(X) continuously embeds into N1,Ψ(X) whenever Ψ is a dou-
bling N−function. If Ψ is a doubling N−function, the every function
u ∈M1,Ψ(X) with a Haj lasz gradient g ∈ LΨ(X) has a representative
that belongs to N1,Ψ(X) with 2g as a Ψ− weak upper gradient. In
particular, there is a continuous embedding M1,Ψ(X) ⊂ N1,Ψ(X) with
‖u‖N1,Ψ(X) ≤ 2 ‖u‖M1,Ψ(X) for each u ∈M1,Ψ(X) [19, Theorem 6.22].

In general, M1,Ψ(X) is a smaller space than N1,Ψ(X). Conversely,
N1,Ψ(X) embeds into M1,Ψ(X) under stronger assumptions on Ψ and
X, as follows. If X supports a weak (1,Φ)− Poincaré inequality,
where Φ is a strictly increasing Young function, and if Ψ is a dou-
bling N−function, such that Ψ ◦ Φ−1 is a N−function satisfying the
∇2−condition, then N1,Ψ(X) ⊂ M1,Ψ(X). A brief discussion on this
embedding, not involving its continuity, is given in [19, 6.2].

In the following, we prove that N1,Ψ(X) ⊂ M1,Ψ(X) under some
slightly more relaxed assumptions and provide sufficient conditions
for the continuity of this embedding.

We will need the following technical lemma, which is proved in [13].
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Lemma 1. Let Ψ be a doubling Young N−function such that Ψ ◦Φ−1

is a Young function and the Hardy-Littlewood maximal operator is
bounded in LΨ◦Φ−1

(X). If g ∈ LΨ(X), then Φ−1(M(Φ ◦ g)) ∈ LΨ(X).
Moreover, there exists a strictly increasing continuous function F :
[0,∞) → [0,∞) with F (0) = 0 such that ‖Φ−1(M(Φ ◦ g))‖LΨ(X) ≤
F (‖g‖LΨ(X)) for every g ∈ LΨ(X). Assuming in addition that Φ and

Φ−1 satisfy the ∆′−condition and Ψ◦Φ−1 is a N−function satisfying
the ∇2−condition, we may take in the previous estimate F (t) = C ′t
for all t ≥ 0, where C ′ is a positive constant.

Theorem 1. Assume that the metric space X is equipped with a dou-
bling measure and supports a weak (1,Φ)−Poincaré inequality for
some doubling Young function Φ. Let Ψ be a doubling N−function
such that Ψ ◦Φ−1 is a Young function and the Hardy-Littlewood max-
imal operator is bounded in LΨ(X) LΨ◦Φ−1

(X). Then N1,Ψ(X) ⊂
M1,Ψ(X). Moreover, if Ψ and Ψ−1 satisfy the ∆′−condition and if
Ψ ◦ Φ−1 satisfies the ∇2−condition, then the embedding N1,Ψ(X) ⊂
M1,Ψ(X) is continuous.

Proof. Let u ∈ N1,Ψ(X). Consider g ∈ LΨ(X) a Ψ−weak upper gra-
dient of u. Since X supports a weak (1,Φ)−Poincaré inequality, the
pair (u, g) satisfies a weak (1,Φ)−Poincaré inequality. By [19, Lemma
5.15] the following Lipschitz-type estimate holds:

|u(x)− u(y)| ≤ C”d(x, y)[Φ−1(M (Φ ◦ g) (x)) + Φ−1(M (Φ ◦ g) (y)],

for µ−almost all x, y ∈ X. The constant C” > 0 depends only
on the doubling constant Cd of µ and on the constant CP,Φ of the
(1,Φ)−Poincaré inequality. Note that Φ−1(M (Φ ◦ g)) is Borel mea-
surable. It follows that C” Φ−1(M (Φ ◦ g)) is a Haj lasz gradient of u
and, according to Lemma 1, C”Φ−1(M(Φ ◦ g)) ∈ LΨ(X). We proved
that u ∈M1,Ψ(X), therefore N1,Ψ(X) ⊂M1,Ψ(X).

There exists a sequence gi ∈ LΨ(X), i ≥ 1, such that
lim
i→∞
‖gi‖LΨ(X) = ‖u‖N1,Ψ(X) − ‖u‖LΨ(X). Let F be as in Lemma 1.

Since ‖Φ−1(M(Φ ◦ gi))‖LΨ(X) ≤ F (‖gi‖LΨ(X)), the definition of the

norm of the space M1,Ψ(X) shows that ‖u‖M1,Ψ(X) ≤ ‖u‖LΨ(X) +

C”F (‖gi‖LΨ(X)), for each i ≥ 1. Letting i → ∞ and taking into
account the continuity of F , we obtain

‖u‖M1,Ψ(X) ≤ ‖u‖LΨ(X) + C”F
((
‖u‖N1,Ψ(X) − ‖u‖LΨ(X)

))
.

Assume now that Ψ and Ψ−1 satisfy the ∆′−condition and that
Ψ ◦ Φ−1 satisfies the ∇2−condition. By Lemma 1 we may take
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F (t) = C ′t, t ∈ [0,∞). The above estimate implies ‖u‖M1,Ψ(X) ≤
(1 +C ′C”) ‖u‖N1,Ψ(X). Since u ∈ N1,Ψ(X) is arbitrary, the embedding

N1,Ψ(X) ⊂M1,Ψ(X) is continuous in this case.

Corollary 1. Under the assumptions of Theorem 2, N1,Ψ(X) =
M1,Ψ(X) isomorphically as Banach spaces.

Remark 4. Taking Φ(t) = tq and Ψ(t) = tp, for t ∈ [0,∞), where
1 ≤ q < p <∞, we obtain Theorem 4.9 from [18] by the above result.

3. Mutual embeddings of Newtonian type and Cheeger
type Orlicz-Sobolev spaces

First we introduce Orlicz-Sobolev spaces of Cheeger type on metric
measure spaces.

Let Ψ : [0,∞)→ [0,∞) be a Young function.
For u ∈ LΨ (X) let

(3.1) |u|1,Ψ := ‖u‖LΨ(X) + inf
(gi)

lim inf
i→∞

‖gi‖LΨ(X) ,

where the infimum is taken over all sequences (gi)i≥1, for which there

exists a sequence (ui)i≥1 such that ui → u in LΨ (X) as i → ∞ and

gi ∈ LΨ (X) is an upper gradient of ui, for each i ≥ 1.

Definition 8. For each Young function Ψ : [0,∞) → [0,∞) the
Orlicz-Sobolev space of Cheeger type H1,Ψ (X) is the set of all equiv-
alence class of functions u ∈ LΨ (X) for which |u|1,Ψ is finite, where

u, v ∈ LΨ (X) are equivalent iff |u− v|1,Ψ = 0.

Remark 5. For Ψ(t) = tp, p ≥ 1, H1,Ψ (X) is the Cheeger space
H1,p (X) introduced in [4].

Lemma 2. The set H1,Ψ (X) is a vector space, equipped with the norm
|·|1,Ψ.

Proof. Let u, v ∈ H1,Ψ (X). Consider (ui)i≥1 and (gi)i≥1 for u, respec-
tively (vi)i≥1 and (hi)i≥1, such that:

i) ui → u and vi → v in LΨ (X) as i→∞;
ii) gi ∈ LΨ (X) is an upper gradient of ui and hi ∈ LΨ (X) is an

upper gradient of vi, for each i ≥ 1. . We have ui + vi → u + v
in LΨ (X) as i → ∞ and gi + hi ∈ LΨ (X) is an upper gradient
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of ui + vi for each i ≥ 1 . Passing to subsequences we may as-
sume that there exist the limits lim

j→∞

∥∥gij∥∥LΨ(X)
= lim inf

i→∞
‖gi‖LΨ(X)

and lim
j→∞

∥∥hij∥∥LΨ(X)
= lim inf

i→∞
‖hi‖LΨ(X). Then

(3.2)
lim inf
j→∞

∥∥gij + hij
∥∥
LΨ(X)

≤ lim
j→∞

∥∥gij∥∥LΨ(X)
+ lim

j→∞

∥∥hij∥∥LΨ(X)
< +∞

It follows that u+ v ∈ H1,Ψ (X). It is easy to see that λu ∈ H1,Ψ (X)
and |λu|1,Ψ = |λ| · |u|1,Ψ for every λ ∈ R. We conclude that H1,Ψ (X)
is a vector space.

Obviously, |u|1,Ψ ≥ 0. The inequality (3.2) shows that

|u+ v|1,Ψ − ‖u+ v‖LΨ(X) ≤ lim inf
i→∞

‖gi‖LΨ(X) + lim inf
i→∞

‖hi‖LΨ(X) .

Taking the infimum over all sequences (gi)i≥1 and (hi)i≥1 as above, we
get

|u+ v|1,Ψ−‖u+ v‖LΨ(X) ≤
(
|u|1,Ψ − ‖u‖LΨ(X)

)
+
(
|v|1,Ψ − ‖v‖LΨ(X)

)
,

hence |u+ v|1,Ψ ≤ |u|1,Ψ + |v|1,Ψ.

Note that |u|1,Ψ = 0 implies u = 0 in H1,Ψ (X).

Remark 6. In the definition (3.1) of the norm |·|1,Ψ we can replace
upper gradients by Ψ−weak upper gradients. This follows from the fact
that for every Ψ−weak upper gradient g̃ ∈ LΨ (X) of a function u and
every ε > 0 there is an upper gradient g ∈ LΨ (X) of u, such that
‖g̃ − g‖LΨ(X) < ε. [19, Lemma 4.3].

In the case Ψ(t) = tp, where 1 < p < +∞ it is proved [18, Theorem
4.10] that the Cheeger space H1,p (X) is isometrically equivalent to the
Newtonian space N1,p (X). When p = 1, the space N1,1 (X) embeds
continuously into H1,1 (X) by a norm non-increasing embedding, but
it is not known if H1,1 (X) embeds into N1,1 (X). We will extend this
results to the case of Orlicz-Sobolev spaces.

In order to extend [18, Theorem 4.10] to the case of Orlicz-Sobolev
spaces, we will need the following convergence result, a Mazur-type
lemma [19, Theorem 4.17].

Lemma 3. Assume that X is a metric space and Ψ is a Young func-
tion.If (uj)j≥1 and (gj)j≥1 are a sequence of functions and a corre-
sponding sequence of Ψ−weak upper gradients in LΨ (X), such that
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uj → u and gj → g weakly in in LΨ (X), then there are sequences
(ũj)j≥1 and (g̃j)j≥1 of convex combinations

ũj =

nj∑
k=j

λkuk, g̃j =

nj∑
k=j

λkgk,

where λk ≥ 0,

nj∑
k=j

λk = 1, such that ũj → u and g̃j → g in LΨ (X).

Moreover, g is a Ψ−weak upper gradient of a representative of u.

Recall that LΨ (X) is reflexive if and only if Ψ satisfies the ∆2− and
∇2−conditions for large values of the variable, the measure µ being
nonatomic [17].

Theorem 2. Let Ψ : [0,∞) → [0,∞) be a Young function. Then
H1,Ψ (X) ⊂ N1,Ψ (X) as a continuous embedding. Moreover, if Ψ
satisfies the ∆2− and ∇2−conditions for large values of the variable,
then H1,Ψ (X) and N1,Ψ (X) are isometrically equivalent.

Proof. If u ∈ N1,Ψ (X), then we take ui = u ∈ LΨ (X) and gi ∈ LΨ (X)
an upper gradient of u, such that

‖gi‖LΨ(X) <
(
‖u‖N1,Ψ(X) − ‖u‖LΨ(X)

)
+

1

i

for all i ≥ 1. Then lim inf
i→∞

‖gi‖LΨ(X) ≤
(
‖u‖N1,Ψ(X) − ‖u‖LΨ(X)

)
, hence

|u|1,Ψ ≤ ‖u‖N1,Ψ(X). In particular, u ∈ H1,Ψ (X).
Assume now that Ψ satisfies the ∆2− and ∇2−conditions for large

values of the variable. Then LΨ (X) is reflexive. Let u ∈ H1,Ψ (X).
Consider the sequences (ui)i≥1 and (gi)i≥1 such that ui → u in LΨ (X)

as i → ∞, gi ∈ LΨ (X) is an upper gradient of ui, for each i ≥ 1 and
lim inf
i→∞

‖gi‖LΨ(X) < +∞. Passing to a subsequence we may assume

that there exists lim
i→∞
‖gi‖LΨ(X) < +∞. Then (gi)i≥1 is bounded in

LΨ (X). Since the Banach space LΨ (X) is reflexive, (gi)i≥1 has a
weakly convergent subsequence, which we denote again by (gi)i≥1. Let

g ∈ LΨ (X) such that gi → g weakly in LΨ (X). By Lemma 3, g is a
Ψ−weak upper gradient of u, hence u ∈ N1,Ψ (X). Moreover, by the
weak lower semicontinuity of the norm of LΨ (X),

‖g‖LΨ(X) ≤ lim inf
i→∞

‖gi‖LΨ(X) .
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This inequality implies ‖u‖N1.Ψ(X)−‖u‖LΨ(X) ≤ ‖u‖H1,Ψ(X)−‖u‖LΨ(X),

therefore
‖u‖N1.Ψ(X) = ‖u‖H1,Ψ(X) .
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