
                                                    193 

"Vasile Alecsandri" University of Bacău  
Faculty of Sciences  
Scientific Studies and Research  
Series Mathematics and Informatics  
Vol. 21 (2011), No. 1, 193-204 
 

 
ADAPTABLE SOFTWARE - MODULAR EXTENSIBLE MONADIC 

ENTRY-POINTLESS TYPE CHECKER IN HASKELL 
 

DAN POPA 
 

 
Abstract.  The goal of this paper is to investigate the use of a software 
technology – the pseudoconstructors over monadic values (structures capable 
of simultaneously representing both syntax and semantics) – to build modular 
entry-pointless type checkers using the VHLL Haskell. A template used by 
almost all the modules  of the modular monadic entry-pointless type checker is 
also revealed. 

 
1. THE ACTUAL SITUATION 

 
The pseudoconstructors over monadic values  was used by The Rodin Project, 
(available from on [7]) in order to build modular entry-pointless monadic 
interpreters and evaluators . The notion comes from some papers   like [4]  and 
it also have been introduced by a dedicated  page of The Haskell Community's 
Website [3] and included – as a way to promote the concept – in the English 
Version of Wikipedia.  
What is known: the pseudoconstructors (a sort of functions used to replace the 
usual data declarations in Haskell and provide modularity) offered a way of 
solving Wadlers's Expression Problem. The fact was checked and confirmed py 
Prof. Philip Wadler, by e-mail. Some questions concerning their properties and 
applications was raised by Prof. Simon Peyton Jones, related to code generation 
and optimization in a private mail, confirming the existence of such branch in 
the domain of functional interpretation and monadic semantics . 
 
Key words and phrases: pseudoconstructor(s), modular monadic typechecker 
in Haskell 
(2000) Mathematics Subject Classification: 68Q45,68Q55,18C50 
 



 DAN POPA     

 

194 

 I wish to thank you, all, for the time you had spend checking my papers, 
notices and e-mails. 
As a result, in an actually defended Ph.D thesis [5]  a supplementary chapter 
(Chap 9, pp 140 – 155) was added, also concerning pseudoconstructors over 
monadic values (The small modules of the interpreter are called, self-
evaluators, there) . Because further studies appears to be possible and due to the 
fact that Rodin is in fact a small mono-type modular language, the abilities of 
pseudoconstructors to be used as software components for adaptable modular 
monadic type-checkers have interested us. 
Some points should be remind, because, in fact, the advantages of the 
pseudoconstructors are: 
1. They are simultaneously syntactic structures of the terms and modular 
adaptable monadic representations of term's semantics. 
2. Due to the missing of (we say “unimportant”) interpret function – the 
common entry point of any interpreter like those presented in [6]  the 
pseudoconstructors can  be distributed across various modules of the project, so 
providing modularity which is crucial,for example, in natural language 
processing. [4], [5]. 
3. Examining the do-notation as it used (see also below, in the case study or in 
the template area) , the monad used by semantic implementation is not fixed, 
remaining variable,  and the programmers may use any monad to develop the 
system (including one produced by composition of Monad Transformers). The 
idea of monad replacement  - in order to produce various semantics – was 
implemented in some papers by prof. P.Wadler, important being, for us, the  [9] 
4. Pseudoconstructors,described in [3], may be used as implementation for 
modular trees (which are not declarable in Haskell using data declarations) 
.The fact that data declarations in Haskell are not modular can be found 
reading any Haskell manual, including the Haskell Report, [8].  As a 
consequence, Haskell programmers are forced to declare the whole syntax tree 
in one place, which is not modular.  
So, building a modular monadic typechecker (suitable for modular syntax 
typechecking) in Haskell is in fact a real challenge. 
 

2. STARTING POINT 
  
The type-checker is in fact a recursively  defined semantic function of terms. 
We had started from one semantic function which can be found in [2] but other 
books and papers can also serve as a starting point. Because the semantic itself 
becomes modular, some (coherent) subsets of semantic rules can be good 
starting points too. 



ADAPTABLE SOFTWARE - MODULAR EXTENSIBLE MONADIC 
                       ENTRY-POINTLESS TYPE CHECKER IN HASKELL                                     

 

 

195 

 
3. THE TEMPLATE 

 
We had succeeded in providing a standard Haskell form for such a type 
checking semantics, which can be used. Here it is (this is not Haskell code): 
 
structure :: (Monad m) => m Type -> …  -> m Type-> m Type 
structure e1 e2 … en    
  = do { t1   <- e1 ; 
             t2   <- e2 ; 
  … 
                        tn   <- en ; 
  return ( proceed t1 t2  … tn ) } 
                          where  
                            proceed t1 t2  … tn | p1 && p2 … && pn   = f t1 t2 … tn 
                            proceed t1 t2  … tn | p1' && p2' … && pn' = f' t1 t2 … tn 
      proceed _ _ _ … _         = TypeError 
 
 
Some notations should be explained: 
structure -  is the name of the syntactic structure, it may be simple or 

complex. Examples: constant, variable, operator, if0, lam, app, 
pair, prj, etc. 

m   - is the type variable left free for the use of the required monad. 
e1,..,en  - substructures of the syntactic structure  
ti <- ei  - entry-pointless monadic evaluators. Notice the missing of the 

interp (or interpret)  function, which usually looks like: 
type <- interpret ei context 

proceed - the semantic rule provided for typechecking  
p1,...,pn, 
p1',...,pn' -  predicates expressed in terms of types 
f, f' …     - auxiliary functions, sometimesneeded, sometimes not needed 
 
This design was carefully chosen, many attempts was made before. The reader 
may eventually want to reimplement such semantics in order to struggle against 
some Haskell's limitation. A part of this problems are included in the case study 
below: 



 DAN POPA     

 

196 

4. THE CASE STUDY 
 
The semantic taken from [2]  was the subject of our experiment and building 
procedure, following (as much as possible) according the above described 
template. Because the is a recursively defined set of terms, the semantic is also 
built starting from some simple cases, coresponding with the simplest terms. 
But, first of all, we have to define the set of type values: 
 

5. THE TYPE VALUES 
 
Actually, the values resulted from typechecking are also forming a union type , 
which is declared using an usual data declaration. 
 
data Type  = MyInt  
       | TypeError 
       | Arrow Type Type  
       | Pair  Type Type  
                  | BOperator Type Type Type   
         deriving (Show, Eq)        
 
which means we have had in mind the following situations: 

1. Usual integer values. 
2. Incorrect expressions. Note that an explanations, as a String, can also be 

needed and added. 
3. A functional type, used in process of computing the type of lambda 

abstractions. 
4. A product of types, used for pairs of expressions. 
5. A special, auxiliary type used to simplify the implementation of the 

typescheme associated with binary operators. 
The type values declared above will be comparable using the “==” operator, 
which is a need of the type-checking procedure.  And all this values are 
declared “showable” ; this will help the debugging, because we wish to use an 
interactive Haskell system as Hugs or GHCi to show the results of evaluations. 
Generally speaking, fort the programmer, is a good choice to create showable 
types because any results of the functions  returning such types will be 
printable, even without a special printer procedure. Of course, a commercial 
implementation may have a different set of requirements and may add a custom 
made printing  - i.e. show – function for such types. 
 
 



ADAPTABLE SOFTWARE - MODULAR EXTENSIBLE MONADIC 
                       ENTRY-POINTLESS TYPE CHECKER IN HASKELL                                     

 

 

197 

6. CONSTANT'S TYPE-CHECKING 
 
The rules required by constants was first of all implemented as: 
 
constant :: (Monad m) => Int -> m Type 
constant j = return MyInt  
 
Also, variants of those rules can be considered.  The above one leads to the 
following evaluation, for example, using the list monad as support for the do-
notation: 
 
Main>  (constant 1)::[Type] 
[MyInt] 
 
Basicaly, the rule is implementing the fact that any constant j will produce the 
MyInt type, if j belongs to Int. 
Variable's type-checking 
Both for small languages like Rodin, see [7],  having a single simple type, Int 
or for typed lambada calculus systems we may want to use a rule like: 
variable :: (Monad m) => t -> m Type 
variable _ = return MyInt 
 
This is allowing both kind of definitions  (variable 'x') and (variable “x”) to 
work fine. Of course, the next step will be to use a complete environment and a 
lookup function. But to simplify the example, this simple above definition is 
enough. So, we can evaluate: 
 
Main>  (variable 'x') ::[Type] 
[MyInt] 
 
Remark, a formula like: 
  variable :: (Monad m) => String -> m Type 
  variable s = return MyInt 
can only work for variable having identifiers expressed as elements of the 
String type. The drawback of the previous solution is tha fact that it can 
evaluate even strange sequences like: (variable (constant 1)). That is why t is 
replaced by String. 
 
 
 



 DAN POPA     

 

198 

7. COMPOSED STRUCTURES: THE IF 
 
Considering a sort of  if accepting an Int instead of a bool (using the classic C 
language convention: 1 means True, 0 and others means False). This if, called 
if0 is also used by [2]. It's implementation using monadic type is: 
 
if0:: (Monad m) => m Type -> m Type -> m Type -> m Type 
if0 e1 e2 e3   = do { tcond <- e1 ; 
                 tau   <- e2 ; 
           tau'  <- e3 ; 
           return ( proceed tcond tau tau' ) } 
                                     where  
                                           proceed MyInt t1 t2 | t1 == t2 = t1 
                                           proceed _ _ _ = TypeError 
 
The “proceed” function was a bit modified, starting from the template. 
According to the template, it may be :            
    proceed t1 t2 t3 | t2 == t3 && t1==MyInt  = t2 
    proceed _ _ _  = TypeError 
But both are equivalent, being evaluated to TypeError excepting the case when 
t2 == t3 and t1==MyInt.  
So, if it is written as below, it will match the template:  
 
if0:: (Monad m) => m Type -> m Type -> m Type -> m Type 
if0 e1 e2 e3   = do { tcond <- e1 ; 
                 tau   <- e2 ; 
           tau'  <- e3 ; 
           return ( proceed tcond tau tau' ) } 
                                     where  
                                             proceed t1 t2 t3 | t2 == t3 && t1==MyInt  = t2 
                                             proceed _ _ _  = TypeError 
 
Using any of this definitions we can evaluate: 
 
Main> (if0 (plus) (constant 1) (constant 2)):: [Type] 
[TypeError] 
 
Main> (if0 (variable 'x') (constant 1) (constant 2)) :: [Type] 
[MyInt] 
 



ADAPTABLE SOFTWARE - MODULAR EXTENSIBLE MONADIC 
                       ENTRY-POINTLESS TYPE CHECKER IN HASKELL                                     

 

 

199 

 
8. THE BINARY OPERATORS 

 
Various binary operations may require a specific treatment (at least because 
usual lambda calculus functions are single argument functions). The rule is 
implemented as:  
 
operator :: (Monad m) => m Type -> m Type -> m Type -> m Type 
operator p e1 e2 = 

 do {  tau1 <- e1 ; 
         tau2 <- e2 ; 
                        tbop <- p;  
                        return (proceed tau1 tau2 tbop) } 
                         where  
                          proceed tau1 tau2 (BOperator t1 t2 trez)  
                                                                  | tau1 == t1 && tau2 == t2 = trez 
                          proceed _ _ _ =  TypeError 
 
This is also becomes similar with the template, considering the proceed 
function being: 
   proceed tau1 tau2 tbop | tau1 == f1( tbop) &&  tau2 == f2(tbop)  = f3 (tbop) 
   proceed _ _ _ =  TypeError 
f1,f2,f3 being the projections used to decompose the (Boperator a b c)  
structure on it's components. Also some operators should added , like:  
 
plus :: (Monad m) => m Type 
plus = return (BOperator MyInt MyInt MyInt) 
 
As part of the research we also wanted to have the operator's type as a function 
from monadic values to monadic values (m Type -> m Type) but the Haskell 
language did not allow us to use something like: 
 
plus :: (Monad m) => m Type -> m Type -> m Type  
plus (return MyInt) (return MyInt) (return MyInt) = (return MyInt) 
 
This is not allowed because the monad's return is not accepted as part in a 
pattern matching, because return is not a data constructor. As a consequence we 
have decided  to use a special type for binary operators. Now we are able to 
evaluate something like: 
 



 DAN POPA     

 

200 

Main> ( operator plus (constant 1) (constant 2)) :: [Type] 
[MyInt] 
 
Of course, ore complex terms representing expressions can be type-checked.  
Also note that a solution using separate operators and no “operator” rule is also 
possible, leading us to the possibility of evaluating something like:  
 
Main> (plus (constant 1) (constant 2)) :: [Type] 
[MyInt] 
Because we had previously used something like this in [4] we did not insist on 
this case. 
 
 

9. TYPE-CHECKING PAIRS 
 
Pairs are an important part of the theory of computing, especially lambda 
calculus. See, for example the  course [1] by Prof. Mike Gordon , freely 
available resource, on the internet. 
 
Pairs can be composed and decomposed. So, projections can also be needed to 
extract  both parts of the pairs. The main rule will be accompanied by others. 
 
pair :: (Monad m) => m Type -> m Type -> m Type 
pair e1 e2 = do { tau1 <- e1; 
       tau2 <- e2; 
       return ( Pair tau1 tau2 )} 
 
This simple rule used the fact that every two types can be paired, so we don't 
need predicates at all. But in order to match the template a “proceed” function 
can be defined: 
  proceed tau1 tau2 = Pair tau1 tau2  
or simply: 
  proceed = Pair 
and the rule can also be written as: 
 
pair :: (Monad m) => m Type -> m Type -> m Type 
pair e1 e2 = do { tau1 <- e1; 
       tau2 <- e2; 
       return ( proceed tau1 tau2 )} 
                                where  proceed tau1 tau2 = Pair tau1 tau2  



ADAPTABLE SOFTWARE - MODULAR EXTENSIBLE MONADIC 
                       ENTRY-POINTLESS TYPE CHECKER IN HASKELL                                     

 

 

201 

                                   
So, we can evaluate and check pairs: 
Main> (pair  (constant 1) (constant 2) )::[Type] 
[Pair MyInt MyInt] 
 
but also more complex pairs can be checked. 
To implement the projections we need two other rules: 
 
prj :: (Num t, Monad m) => t -> m Type -> m Type 
prj 1 e = do {  t1 <- e ; 
  return (proceed t1) } 
                          where  
                              proceed (Pair tau1 tau2) = tau1 
                              proceed _ = TypeError 
prj 2 e = do {  t1 <- e ; 
  return (proceed t1) } 
                          where  
                               proceed (Pair tau1 tau2) = tau2 
                               proceed _ = TypeError 
 
Using the above rules we ca check pairs: 
 
Main> (prj 1 (pair (constant 1)(constant 2)))::[Type] 
[MyInt] 
 
Main> (prj 1 (constant 1))::[Type] 
[TypeError] 
 
Also more complex pairs can be checked.  
Remark: The deviation from the template is just apparent, and is produced by 
the way of identifying the first and the second part of a pair, using numbers. 
But the template can be strictly followed using: 
 
first :: (Monad m) => m Type -> m Type 
first e = do {  t1 <- e ; 
  return (proceed t1) } 
                          where  
                               proceed (Pair tau1 tau2) = tau1 
                               proceed _ = TypeError 
 



 DAN POPA     

 

202 

second :: (Monad m) =>  m Type -> m Type 
second e = do { t1 <- e ; 
    return (proceed t1) } 
                            where  
                               proceed (Pair tau1 tau2) = tau2 
                               proceed _ = TypeError 
 
Both this rules can be inserted in the system together with the old rules, and 
make evaluations like this possible: 
 
Main> (first (pair (constant 1) (constant 2))) :: [Type] 
[MyInt] 
Main> (second (pair (constant 1) (constant 2))) :: [Type] 
[MyInt] 
 
 

10. TYPE-CHECKING ABSTRACTIONS AND APPLICATIONS 
 
Important parts of a typed lambda calculus system, abstractions and 
applications can and should be checked. The rules are: 
 
lam :: (Monad m) => m Type -> m Type -> m Type 
lam x e1 = do { tau1 <- x; 
                          tau2 <- e1; 
     return (Arrow tau1 tau2) } 
 
In theory, functions can link any type with any type and produce a new type. A 
special value, Arrow is used as type of the abstractions. The applications are 
using an other rule: 
 
app :: (Monad m) => m Type -> m Type -> m Type 
app e1 e2  = do { t1 <- e1   ; 
       arg1 <- e2   ; 
       return (proceed t1 arg1) } 
                               where  
                                   proceed (Arrow tau1 tau2) arg1 | tau1 == arg1 = tau2 
                                   proceed _ _ = TypeError    
 
Using  lam and  app  we can check terms like this: 
 



ADAPTABLE SOFTWARE - MODULAR EXTENSIBLE MONADIC 
                       ENTRY-POINTLESS TYPE CHECKER IN HASKELL                                     

 

 

203 

Main> (lam (variable 'x') (operator plus (variable 'x') (constant 1))) ::[Type] 
[Arrow MyInt MyInt] 
 
Main> (app (lam (variable 'x') (operator plus (variable 'x') (constant 1))) 
(constant 1) )::[Type] 
[MyInt] 
 
Main> (app (constant 1) (constant 2))::[Type] 
[TypeError] 
 
 

11. CONCLUSION 
 
The use of the pseudoconstructors over monadic values, as defined in [3], over 
monadic values as part of a modular monadic type-checker is possible. We have 
also identified a template matching all rules involved, excepting the simplest 
cases. This kind of type-checker ca be used for the implementation of adaptable 
modular languages. From our point of view it is an important contribution to 
the set of adaptable tools available for language constructions and – open 
problem - for natural language processing. 
 

REFERENCES 
 
[1] Gordon, Mike ; Introduction to Functional Programming, 1996 
http://www.cl.cam.ac.uk/users/mjcg 
http://www.haskell.org/wikiupload/a/a5/Notes_Functional_programming.pdf 
http://www.haskell.org/wikiupload/2/2a/MikeGordon.pdf 
 
[2] Louis Julien Guillemette, Stefan Monier, Type Safe Code Transformation 
in Haskell, Univ. of Montreal, Electronic Notes in Theoretical Computer 
Science, Elsevier Science, 174 (2007) 23-39  
 
[3] Dan Popa, Homepage of Pseudoconstructors over monadic values 
http://www.haskell.org/haskellwiki/Pseudoconstructors_over_monadic_values  
 
[4] Dan Popa, Modular evaluation and interpreters using monads and type 
classes in Haskell , Studii si Cercetări Ştiinţifice, Seria Matematică, Univ. 
Bacău, (18) 2008, pp pag. 233 – 248  
http://www.haskell.org/wikiupload/7/7d/POPA_D.pdf  
 



 DAN POPA     

 

204 

[5] Dan Popa ; Metode si tehnici de realizare a interpretoarelor adaptabile, 
Univ. “Al.I.cuza” Iasi, 2010, first published as Popa Dan; Practica Interpretarii 
Monadice, Matrix Rom Publishing House, 2008 
 
[6] Sheng Liang,Paul Hudak,Mark Jones; Monad Transformers and Modular 
Interpreters , Yale University, Department of Computer Science , New Haven, 
Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium 
on Principles of Programming Languages, San Francisco, CA, January 1995.  
 
[7] The Rodin Project  
http://www.haskell.org/haskellwiki/Rodin  
http://www.haskell.org/haskellwiki/RodinEn 
 
[8] Peyton Jones, Simon (editor); Haskell 98 Language and Libraries The 
Revised Report, Cambridge University Press (May 5, 2003) 
http://haskell.org/definition/haskell98-report.pdf 
 
[9] Wadler, Philip;  The essence of functional programming,  The 19th 
Symposium on Principles of Programming Languages,ACM,  Albuquerque, 
New Mexico, 1992 
 
 Ro/Haskell Group, 
“Vasile Alecsandri” University of  Bacău,  
 Department of Mathematics and Informatics, 
 Bacău, Romania,  
 e-mail: danvpopa@ub.ro  cc: popavdan@yahoo.com 
  


