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Abstract. In this paper we improve, extend and generalize the main
results from [17], in G - metric spaces for mappings satisfying implicit
relations.

1. INTRODUCTION

In [4], [5], Dhage introduced a new class of generalized metric
space called D-metric space. Mustafa and Sims. Mustafa and Sims
8], [9] proved that most of the claims concerning the fundamental
topological structure of D - metric spaces are incorrect and introduced
appropriate notion of generalized metric space, named G - metric
space. In fact, Mustafa and other authors [3], [7] - [14], [19] studied
many fixed point results for self mappings in G - metric spaces
under certain conditions. In [1] and [7], some fixed point results for
two mappings satisfying a form of compatibility are proved. Quite
recently, Karayilan and Telci [6] proved some fixed point theorems
for two mappings satisfying two contractive (extensive) conditions
in G - metric spaces. In [17], Popa and Puiu proved a fixed point
theorem for several mappings in metric spaces which generalize the
main results from [19]. In [15], [16], Popa initiated the study of fixed
points for mappings satisfying an implicit relation.
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In this paper we improve, extend and generalize the corresponding
results from [17] in G - metric spaces for mappings satisfying implicit
relations.

2. PRELIMINARIES

Definition 2.1. Let X be a nonempty set and G : X3 — R be a
function satisfying the following properties:

(Gl) . G(fE,y,Z) =0ifz=y=z

(G2) : 0 < G(x,x,y) for all x,y € X with x # vy,

(G3) : G(z,z,y) < G(x,y,2) for all x,y,z € X with z # y,

(Gy) : G(z,y,2) = G(z,2,y) = Gy, z,x) = ... (symmetry in all
three variables),

(Gs) : G(z,y,2) < G(z,a,a) + G(a,y, z) for all x,y,z,a € X (rec-
tangle inequality).

Then, the function G is called a G - metric on X and the pair (X, G)
1s called a G - metric space.

Note that G(z,y,z) =0, then z =y = 2.

Definition 2.2 ([9]). Let (X,G) be a G - metric space. A sequence
() in X is said to be:

a) G - convergent if for e > 0, there exists anx € X and k € N
such that for all m,n >k, G(x,x,, ) < €.

b) G - Cauchy sequence if for € > 0, there exists k € N such
that for n,m,p > k, G(xy,, Tm, xp) < €, that is G(Ty, Tm,x,) — 0 as
n,m,p — 00.

A G - metric space is said to be G - complete if any G - Cauchy
sequence is G - convergent.

Lemma 2.1 ([9]). Let (X, G) be a G - metric space. Then the follow-
ing properties are equivalent:

1) (x,) is G - convergent to x;

2) G(Tp, Tp, ) — 0 as n — oo,

3) G(zp,z,x) — 0 as n — 0o;

4) G(Tp, Tm,x) — 0 as n,m — oo.

Lemma 2.2 ([9]). If (X,G) is a G - metric space, then the following
properties are equivalent:

1) The sequence (x,,) is G - Cauchy;

2) For everye > 0, there ezists k € N such that G(x,, Ty, Tm) <
e for allmn,m > k.
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Definition 2.3 ([9]). Let (X, G) and (X', G") be two G - metric spaces.
A function f : (X,G) — (X', G') is said to be G - continuous at a point
a € X if for e > 0, there exists 6 > 0 such that for all x,y € X and
G(a,z,y) <6, then G'(f(a), f(z), f(y)) < e.

A function f is G - continuous if it is G - continuous at each a € X.

Lemma 2.3 ([9]). Let (X,G) and (X',G") be two G - metric spaces.
A function f: (X,G) = (X',G") is G - continuous at a point v € X
if and only if it is G - sequentially continuous, that is, whenever (x,,)
is G - convergent to x we have f(z,) is G' - convergent to f(z).

Lemma 2.4 ([9]). Let (X,G) be a G - metric space, then the function
G(z,y, z) is jointly continuous in all three of its variables.

The following theorem is proved in [17].

Theorem 2.1. Let (X,d) be a complete metric space and
Py, Py, ..., P, : (X,d) = (X,d) k mappings such that

d(Pz'Ia PH—ly) S ad(m, y)+b(d($a Plx)+d(ya Pz+1y))+c(d(xv P1+1y)+d(y7 sz))

for all xz,y € X, where Pry1 = P, and a +2b+ 2¢c < 1.
Then Py, Ps, ..., Py have a unique common fixed point.

3. IMPLICIT RELATIONS

Definition 3.1. Let §g be the set of all continuous functions
F(t1,...,t6) : RS — R such that

(Fy) : F is nonincreasing in variable ts,

(Fy) - There exists hy € [0,1) such that for all u,v > 0,
F(u,v,v,u,u +v,0) <0 implies u < hyv,

(F3) There exists hy € [0,1) such that for all t,t'" > 0,

F(t,t,0,0,t,t') <0 implies t < hot'.

Example 3.1. F(ty,....,tg) = t; — aty — bty — cty — dts — etg, where
a,b,c,d,e >0 and0<a+b+c+2d+e<1.

(F1) : Obviously.

(Fy) : Let u,v > 0 be and F(u, v, v, u, u+v,0) = u—au—bv—cu—
b+d
d(u + v) < 0 which implies v < hyv, where 0 < hy = % < 1.
(F3) : Let ¢t,¢' > 0 be and F(t,,0,0,t,t') =t —at —dt —et’ <0,
then ¢t < hot’, where 0 < hy = _° < 1.

1 —(a+d)
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Example 3.2. F(tq,...,t5) = t1 — kmax{to,t3,t4,t5,t6} where k €

1
0,= 1.
")
(Fy) : Obviously.
(Fy) Let w,v > 0 be and F(u,v,v,u,u + v,0) = u —

k
kmax{u,v,u+ v} <0. Hence u < hjv, where 0 < k; = 1% <1

(F3) : Let t,t' > 0 be and F(t,t,0,0,¢,t') =t — kmax{t,t'}. If
t > t', then t(1 — k) <0, a contradiction. Hence t < ¢', which implies
t < hot', where 0 < hy = k < 1.

1
Example 3.3. F(ty,...,ts) = t; — kmax {tg,tg, ta, 5(155 - tG)} where
kel0,1).
(Fy) : Obviously.
(Fy) : Let u,v > 0 be and
1
F(u,v,v,u,u+v,0) =u— kmax{u,v,i(u—l—v)} <0.

If w > v, then u(l — k) < 0, a contradiction. Hence u < v which
implies u < hyv, where 0 < h; =k < 1.
(F3) Let t,t* > 0 be and F(t,¢0,0,t,t') = t —

1
k max {t, §(t + t’)} < 0. If t > ¢, then t(1 — k) <0, a contradiction.
Hence t < ¢/,which implies ¢ < hot’, where 0 < hy = k < 1.

Example 3.4. F(ty,...,ts) = 2 — ti(aty + bty + cty) — dtsts, where
a,bc,d>0and0<a+b+c+d<1.

(Fy) : Obviously.
(F) : Let u,v > 0 be and F(u,v,v,u,u + v,0) = u?® — u(av +
bv+cu) < 0. If u > 0, then u — av — bv — cu < 0 which implies

b
u < hqv, where 0 < hy = @t < 1. If u =0, then u < hyv.

(F3) : Lettt’>0beandF(tt0 0,t,t) =12 —at® — ctt’ <0,
which implies ¢ < hot’, where 0 < hy = % < 1.
—a

t ty t t
Example 3.5. F(t,...,tg) = t; — kmax {tg, 3;— 4, 5; 6} where
ke [0,1).
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(Fy) : Obviously.
(Fy) Let u,v > 0 be and F(u,v,v,u,u + v,0) = u —
uU-+v

2

< 0. If w > v, then u(l — k) < 0, a contradiction, hence u < v
which implies u < hyv, where 0 < hy =k < 1.

(F3) Let ¢,/ > 0 be and F(t,t,0,0,t,t') = t —

t+t
+ < 0. If t > ¢, then t(1 — k) < 0, a contradiction.

kmax< v,

kmax-< t,
Hence, t < ¢/, which implies t < hot’, 0 < hy = k < 1.
t363 + 1283
1+ to + 13+ 14

Example 3.6. F(ty,....t5) =3 — ¢ , where ¢ € [0,1).

(F1) : Obviously.

(Fy) Let w,v > 0 be and F(u,v,v,u,u + v,0) = u® —
2,2
vy < 0. Ifu>0,thenu§cv-#§cv. Hence,

Cl+2@+u 1+2v+u
u < hiv, where 0 < hy = c < 1. If u =0, then u < hyv.

t2t/2
(F3) : Let ¢,t' > 0 be and F(t,¢,0,0,t,t') = 3 <0

—c
1+t —
-t? < c- 12, which implies t < hot’, where

which implies * — ¢
0< hg =c< 1.
tote

Example 3.7. F(t,....,ts) = t2 — at? — c—5—,
P (1 6) 1 2 1+t§+t421

where a,c > 0
and 0 <a—+c<1.

(F1) : Obviously.
(Fy) : Let u,v > 0 be and F(u,v,v,u,u +v,0) = u* — av? <0,
which implies u < hyv, where 0 < hy = y/a < 1.
(F3):  Let t,t’ >0 beand F(t,t,0,0,t,¢') = t*(1 — a) — ctt’ <0
which implies ¢ < hot’, where 0 < hy = % < 1.
—a

Example 3.8. F(t1,...,t5) = t; — aty — bt3 —cmax{2t,,t5+tg}, where
a,b,c>0anda+b+2c<1.

(Fy) : Obviously.

(Fy) Let u,v > 0 be and F(u,v,v,u,u + v,0) = u — av —
cmax{2u,u + v} < 0. If u > v then u(l — (a+b+2¢c)) <0, a
contradiction. Hence u < v, which implies u < hyv, where 0 < hy =
a+b+c
— < 1.

1—c¢
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(F3) : Let t,t' > 0 be and F(t,t,0,0,t,t') =t—at—c(t+t") <0,

which implies ¢ < hot’, where 0 < hy = <
1—(a+c)

Example 3.9. F(tq,...,t) = t; —aty — bty — cmax{t, +ts5, 2ts }, where
a,b,c>0anda+b+3c<1.

(Fy) : Obviously.

(Fy) : Let uw,v > 0 be and F(u,v,v,u,u+v,0) = u —av — bv —
b
¢(2u 4+ v) <0, which implies u < hjv, where 0 < hy = CL1+—;C < 1.
—2c
(F3) Let ¢, > 0 be and F(t,t,0,0,t,t) = t — at —
cmax{t,2t'} < 0. If ¢ > 2/, then t(1 — (a + ¢)) < 0, a contradic-
2
tion. Hence, t < hot’, where 0 < hy = ¢ < 1.
—a
Example 3.10. F(tl, ...7t6) =1 — cmax{tg, t3, V' tals, \/t5t6}, where
ce(0,1).
(F1) : Obviously.
(Fy) : Let w,v > 0 be and F(u,v,v,u,u 4+ v,0) = u—cv <0

and u < hyv, where 0 < h; = c < 1.

(F3) : Let t,t' > 0 be and F(t,,0,0,t,t') = t — cmax{t, Vtt'} <
0. If t > #, then ¢(1 — ¢) < 0, a contradiction. Hence, ¢ < ¢’ which
implies ¢ < hot’, where 0 < hy = ¢ < 1.

4. MAIN RESULT

Theorem 4.1. Let (X,G) be a G - metric space and P; : (X,G) —
(X,G),i=1,2,....k such that

F(G(PZ,I‘, Pi—l—lya Pi—i—ly)? G('I? Y, y)a G(I‘, PZ'LL’, PZ'I)7
G(y7 B—‘rlya B—‘rly)a G(xa Pz'+12% B—l—ly)a G(y: -P”ixa Rx)) S 0

fori=1,2,....k, where P,y = Py for allz,y € X and F satisfying (F3).
Then P, ..., Py have at most a unique common fized point.

(4.1)

Proof. Suppose that Py, ..., P, have two fixed points v and v. Then by
(4.1) we have successively

F(G(BU, ]Di+1v7 Pi-‘rlv)a G(U, v, U)7 G(U, Piua Plu)a
G(v, Pipav, Piav), G(u, Piav, Piav), G(v, Pu, Pu)) <0,
<

F(G(u,v,v),G(u,v,v),0,0,G(u,v,v), G(v,u,u)) <0
By (F3) we obtain
(4.2) G(u,v,v) < hoG(v,u,u).
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Similarly, for x = v and y = u we obtain
(4.3) G(v,u,u) < hoG(u,v,v).

Therefore, G(u,v,v)(1 — h2) < 0 which implies u = v. O
Theorem 4.2. Let (X,G) be a G - complete metric space and
P (X,G) = (X,G), i=1,2,....k satisfying inequality (4.1) for all
1=1,...,k, Poy1 = P, and F € §g. Then Py, Ps, ..., P, have a unique
common fized point.

Proof. Let x be an arbitrary point in X. We define a sequence (x,,)
such that

ry = Pll',.fg :PQxla"'vmk :Pk‘xk‘—la
Tpr1 = Piag, Trro = Poapya, ..., Top = Prop—1,
Tokr1 = Piouk, T2 = PoTppyts o Tnpk = Pengyi—1,

By (4.1) we have successively

F(G(Pix, Poxy, Poxy),G(x, 21, 21), G(z, Pix, Pix),
G(x1, Paxy, Poxy), Gz, Pyxy, Pyxy), G(21, Piz, Pix)) <0,

F(G(z1, 29, 29), G(x, 21, 21), G(x, 21, 21),
G(xlv T2, x?)a G(Z‘, T2, ‘7:2)7 0) < 0.

By (G5) we have
(4.4) G(x, 29, 22) < G(x,x1,21) + G(21, T2, T2).
By (F}) and (4.4) we obtain

F(G(ﬂﬁ,552,1?2):(;(55:%1,331),G(%l’hflfl):
G(1,x9,29), G(z, 21, 21) + G(x1, T2, 25),0) < 0.

By (F3) we obtain
(4.5) G(x1, 29, 22) < MGz, 21, 27).
Similarly, we obtain
G(xp_1, T, 21) < RG220, 21).
By (4.2) we have successively

F(G(Pyi—1, Pizg, Pizy), G(Tg—1, Tk, ), G(Tp—1, Peo1Zp—1, Pro12k-1),
G(xy, Pyry, Pay), G(xg—1, Pixg, Pioy), G(2g, Tpy1, Tega)) < 0.
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By (Gs)
G(xp—1, Tps1, Th1) < Glap_r, T, ) + G(Thy Tht1, Thpr)-
By (F}) we obtain

F(G($k, Lh+1, xk+1)7 G(xkfh L, .Tk), G(xkfla T, .Z'k),
G(xk, Tht1, Tor1), G(ap—1, T, k) + G(Tk, Tht1, Tag1),0) < 0.

By (F,) we obtain
G (@, Ty 1, 1) < MG (Tp-1, mp, w) < WYG(x, 21, 21).
By induction we obtain
G(Tp, Tnit1, Tna1) < W1G(x, 21, 27).

Moreover, for all m,n € N, m > n we have repeated use the rect-
angular inequality that

G(xm Tm, Im) < G(xna Tn+1, $n+1> + G(xn-i-l? Tnt2, $n+2> + ot
+G(£L’m_1, L, xm)

< (WP +hT L RG(, 20,1)
hn
S 1—1h1 G(xwrlaxl)

and

lim G(z,, Tm, Tm) = 0.
m,n—00

Hence (z,,) is a G - Cauchy sequence in (X, G). Since (X,G)isa G
- complete metric space, there exist v € X such that lim,,_, x, = u.
We prove that Pu =u for s =1,2,..., k.

By (4.1) we obtain

F(G(Psxnk’-i-& Ps+1ua P8+1U)7 G(xnk+sa u, U),
G(xnk+sa PsxnkJrsa PsxnkJrs)a G(U, Ps+1u7 Perlu)a
G<xnk+s; Ps+1u> Ps+1u); G(xnkJrsa PsxnkJrs, Psxnk+s)) S 07

F(G(Ink+3+1, Ps+1u7 Ps+1u>7 G(xnk-l—s; u, U),
G (Trktss Trktst1, Tnkrst1), G(u, Popru, Popqu),
G(wnk-l-& P8+1u7 P8+1u)7 G(U, Tnk+s+1 xnk—&-s-‘,—l)) S 0.
Letting n tend to infinity we obtain

F(G(u, Psyqu, Psyqu), 0,0, G(u, Psyqu, Psyqu), G(u, Psyqu, Psyqu),0) < 0.

By (F2) we obtain G(u, Psiiu, Psyyu) = 0, which implis that v =
P,,1u and v is a common fixed point for P, ..., P, and P, = P.
By Theorem 4.1 u is the unique common fixed point for Py, P, ..., P;.

O
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Corollary 4.1. Let (X,G) be a G - metric complete space and let
Py, Py, ... P : (X,G) = (X, G) such that

F(G(plx7 P2y7 ng) (ZE Y, 9)7
(46) G(m’P1x>p1x>7G<y7 P2y7P2y)7
G(:Ij', ng, ng), G(y7 Pll', Plx) <0

F(G(P2x7 Plya Ply) (ZE Y, y)
(4.7) G(x, Pz, Poax), G(y, Py, P1y),
G(iL‘, Plya Pﬂ/), G(y7 PZQ:) PQx) <0

for all x,y € X and F € Fg. Then Py and P, have a unique
common fized point.
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