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µ- SCALE INVARIANT LINEAR RELATIONS
IN HILBERT SPACES

ADRIAN SANDOVICI

Abstract. The concept of µ-scale invariant operator with respect to
an unitary transformation in a separable Hilbert space is extended to
the case of linear relations (multi-valued linear operators). It is shown
that if S is a nonnegative linear relation which is µ-scale invariant for
some µ > 0, then its adjoint S∗ and its extreme selfadjoint extensions
SF and SN are also µ-scale invariant.

1. Introduction

Let U be a unitary operator in a separable Hilbert space H and
let µ ∈ C \ {0} a complex number. In [9] K. A. Makarov and E.
Tsekanovskii introduced and studied the concept of µ scale invariant
(unbounded) operator with respect to U . The main goal of this note
is to show how this concept can be extended to the case of linear
relations (multi-valued linear operators) in Hilbert spaces.

The note is organized as follows. In the next section some results
concerning linear relations in Hilbert spaces are presented. The third
section contains some general information with respect to nonnegative
selfadjoint linear relations in Hilbert spaces. In Section 4 the concept
of µ-scale invariant relation with respect to an unitary transformation
in a separable Hilbert space is introduced and studied. Some theoret-
ical examples are presented in Section 5.

————————————–
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2. Preliminaries

Let (H, ⟨· | ·⟩) be a separable complex Hilbert space. A typical
element of the Cartesian product H×H is an ordered pair {x, y} with
x, y ∈ H. The product space H× H equipped with the usual Hilbert-
space inner product:

(2.1) ⟨{x1, y1} | {x2, y2}⟩ = ⟨x1 | x2⟩+ ⟨y1 | y2⟩,
where x1, x2, y1, y2 ∈ H is called the Hilbert space H⊕ H.

2.1. Linear relations in Hilbert spaces. A linear relation (multi-
valued linear operator) A in H is a linear subspace of the space H×H,
The notations domA and ranA denote the domain and the range of
A, defined by

domA = {x : {x, y} ∈ A }, ranA = { y : {x, y} ∈ A }.
Furthermore, ker A and mulA denote the kernel and the multi-valued
part of A, defined by

ker A = {x : {x, 0} ∈ A }, mulA = { y : {0, y} ∈ A }.
A linear relation A is the graph of an operator if and only if mulA =
{0} and the inverse A−1 is given by { {y, x} : {x, y} ∈ A }. The
following identities express the duality between A and its inverse A−1:

domA−1 = ranA, ranA−1 = domA,

ker A−1 = mulA, mulA−1 = ker A.

For linear relations A and B in H the operator-like sum A+ B is the
linear relation in H defined by

A+B = { {x, y + z} : {x, y} ∈ A, {x, z} ∈ B }.
For λ ∈ C the linear relation λA in H is defined by

λA = { {x, λy} : {x, y} ∈ A },
while A− λ stands for A− λI, where I is the identity operator on H.
From A− λ = {{x, y − λx} : {x, y} ∈ A} it follows that

ker (A− λ) = {x : {x, λx} ∈ A }.
Furthermore, the following equality holds

(2.2) (A− λ) + λI = A for all λ ∈ C.
For linear relations A and B in H the product AB is defined as the
relation

AB = { {x, y} : {x, z} ∈ B, {z, y} ∈ A for some z ∈ H }.
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The following inclusions hold true:

domAB ⊂ domB, ranAB ⊂ ranA,

ker A ⊂ AB, mulA ⊂ mulAB.

Furthermore, the product of linear relations A and B and their inverses
A−1 and B−1 are related as follows:

(2.3) (AB)−1 = B−1A−1

For λ ∈ C the notation λA agrees in this sense with (λI)A. The
product of relations is clearly associative. Hence An, n ∈ Z, is defined
as usual with A0 = I and A1 = A. Next result collects basic properties
of powers of linear relations.

Lemma 2.1. Let A be a linear relation in a Hilbert space H. Then
for all n ∈ N ∪ {0}

(2.4) domAn+1 ⊂ domAn, ranAn+1 ⊂ ranAn,

(2.5) ker An+1 ⊃ ker An, mulAn+1 ⊃ mulAn,

and for all p, k ∈ N ∪ {0}

(2.6) ker Ap ⊂ domAk, mulAp ⊂ ranAk.

2.2. The adjoint of a linear relation. The adjoint of a linear re-
lation A in the Hilbert space H is the closed linear relation A∗ in H
defined by

A∗ = { {f, f ′} ∈ H× H : ⟨f ′ | h⟩ = ⟨f | h′⟩ for all {h, h′} ∈ A }.

It can be easily seen that (λA)∗ = λ̄A∗ for all λ ∈ C. Further-
more, observe that (A−1)∗ = (A∗)−1, so that (domA)⊥ = mulA∗ and
(ranA)⊥ = ker A∗. Clearly the double adjoint A∗∗ is the closure of
the relation A. A linear relation A in a Hilbert space H is said to be
symmetric if A ⊂ A∗, or equivalently, if ⟨f ′ | f⟩ ∈ R for all {f, f ′} ∈ A.
A linear relation A in a Hilbert space H is said to be nonnegative if
⟨f ′ | f⟩ ≥ 0 for all {f, f ′} ∈ A. Furthermore, a linear relation A in
a Hilbert space H is said to be self-adjoint if A∗ = A (so that it is
automatically closed).

If A and B are linear relations in H then always

(2.7) B∗A∗ ⊂ (AB)∗.

The following result offers certain sufficient condition in order to have
equality in (2.7).
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Lemma 2.2. Assume that A is a linear relation in H and U a bound-
edly invertible operator in H, respectively. Then the following two
identities hold:

(2.8) (UA)∗ = A∗U∗, (AU)∗ = U∗A∗.

Proof. It follows from (2.7) that A∗U∗ ⊂ (UA)∗. To prove the reverse
inclusion let {x, x′} ∈ (UA)∗. Let also {a, a′} ∈ A, so that {a, Ua′} ∈
UA. This implies that ⟨x′ | a⟩ = ⟨x | Ua′⟩, which further leads to

⟨x′ | a⟩ − ⟨U∗x | a′⟩ = ⟨x′ | a⟩ − ⟨x | Ua′⟩ = 0,

for all {a, a′} ∈ A. This implies that {U∗x, x′} ∈ A∗. Then
{x, x′} ∈ A∗U∗ and the former identity in (2.8) is now proved. The
latter identity in (2.8) can be now proved in the following way:

(AU)∗ =
(
(A−1)−1(U−1)−1

)∗
=

((
U−1A−1

)−1
)∗

=
((
U−1A−1

)∗)−1

=
(
(A−1)∗(U−1)∗

)−1
=

(
(A∗)−1(U∗)−1

)−1
= U∗A∗.

�

3. Some general remarks concerning the Krĕin-von
Neumann and the Friedrichs extensions

This section contains general information concerning nonnegative
self-adjoint extensions of a nonnegative relation S. In particular, the
Krĕin-von Neumann and the Friedrichs extensions are introduced.

A linear relation S in a Hilbert space H is said to be semi-bounded
from below if there exists a number a ∈ R such that ⟨f ′ | f⟩ ≥
a⟨f | f⟩ for all {f, f ′} ∈ S. Note that in this case the relation S is
automatically symmetric and it has equal defect numbers. The largest
number a ∈ R which serves this purpose is called the lower bound
m(S) of S. It is given by m(S) = 0 when S is purely multi-valued and
by

m(S) = inf{ ⟨f ′, f⟩ : {f, f ′} ∈ S, ∥f∥ = 1 }
otherwise. Clearly, the lower bound of closS is equal to the lower
bound of S, where the notation closS stands for the closure of S.
When the lower bound is nonnegative the relation S is called nonneg-
ative: ⟨f ′ | f⟩ ≥ 0, {f, f ′} ∈ S. The fact that:

⟨λf ′ + µg′ | λf + µg⟩ ≥ 0, {f, f ′}, {g, g′} ∈ S, λ, µ ∈ C,
leads to the Cauchy inequality for nonnegative relations:

(3.1) |⟨f ′ | g⟩|2 ≤ ⟨f ′ | f⟩⟨g′ | g⟩, {f, f ′}, {g, g′} ∈ S.
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Let S be a nonnegative linear relation and define on dom t = domS

(3.2) t[f, g] = ⟨f ′ | g⟩, {f, f ′}, {g, g′} ∈ S.

Then (3.2) gives rise to a nonnegative form since

⟨f ′ | g⟩ = ⟨f | g′⟩ = ⟨f ′′ | g⟩ ≥ 0, {f, f ′}, {f, f ′′}, {g, g′} ∈ S.

In fact, the form t in (3.2) is closable, cf. [5]. The closure t̄ of the form
t in (3.2) is nonnegative and induces a nonnegative self-adjoint relation
SF which is the orthogonal sum of the self-adjoint operator induced by
the form t̄ in domS (cf. [5]) and the multi-valued part {0} ×mulS∗

(cf. [7]). The nonnegative self-adjoint relation SF is an extension
of S and has the same lower bound as S, cf. [3]. By construction
mulSF = mulS∗, so that the Friedrichs extension is an operator if
and only if S is densely defined (and necessarily an operator). For a
nonnegative linear relation S introduce the space dom [S] as the set of
all f ∈ H for which there exists a sequence ({fn, f ′

n}) ⊂ S such that

fn → f, ⟨f ′
n − f ′

m, fn − fm⟩ → 0 m, n → ∞.

It can be shown that dom [S] = dom [SF ] = domS
1
2
F , and that

(3.3) SF = { {f, f ′} ∈ S∗ : f ∈ dom [S] }.
Moreover, the Friedrichs extension is the only self-adjoint extension of
S whose domain is contained in dom [S].

If the linear relation S is nonnegative (self-adjoint), then likewise
the formal inverse S−1 of S is nonnegative (self-adjoint). Hence the
self-adjoint relation

(3.4) SN = ((S−1)F )
−1

is also a nonnegative self-adjoint extension of S; in fact it is the Krĕin-
von Neumann extension of S, cf. [8], [1], [4]. In particular, SN is the
only selfadjoint extension of S whose range is contained in ran [S] :=
dom [S−1] and the following description holds

SN = { {f, f ′} ∈ S∗ : f ′ ∈ ran [S] }.
Notice also that ker SN = ker S∗, and that f ′ ∈ ran [S] if and only if
there exists a sequence ({fn, f ′

n}) ⊂ S, such that

f ′
n → f ′, ⟨f ′

n − f ′
m, fn − fm⟩ → 0, m, n → ∞.

The Krĕin-von Neumann and the Friedrichs extensions are extreme
nonnegative self-adjoint extensions of S in the following sense: if H is
any nonnegative self-adjoint extension of S, then SF ≤ H ≤ SN holds,
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where the inequalities are in the sense of resolvents or, equivalently,
in the sense of the corresponding forms, cf. [7].

4. µ-scale invariant linear relations in Hilbert spaces

Definition 4.1. Let U be a unitary operator in a separable complex
Hilbert space (H, ⟨· | ·⟩) and let µ ∈ C\{0}. A linear relation S is said
to be µ- scale invariant with respect to U if the following condition is
satisfied:

(4.1) µS ⊂ USU∗.

It follows from the definition that

(4.2) U∗(domS) ⊂ domS.

Indeed, if x ∈ domS then {x, x′} ∈ S for some x′ ∈ H, so that
{x, µx′} ∈ µS ⊂ USU∗. This implies that {U∗x, µU∗x′} ∈ S. Then
U∗x ∈ domS which shows that (4.2) holds true. Furthermore, a sim-
ilar invariance inclusion holds for the multi-valued part of S, namely

(4.3) U∗(mulS) ⊂ mulS.

To prove this, let m ∈ mulS, so that {0,m} ∈ S which implies that
{0,m} ∈ µS. Then {0,m} ∈ USU∗, so that {0, x} ∈ U∗, {x, y} ∈ S
and {y,m} ∈ U for some x, y ∈ H. Therefore x = 0 and y = U∗m ∈
mulS, which shows that (4.3) holds true.

Some basic properties of µ- scale invariant linear relations are col-
lected in the following result.

Lemma 4.2. Assume that S is a linear relation in H which is µ- scale
invariant with respect to U . Then

(i) the inverse relation S−1 is µ−1- scale invariant with respect to
U ;

(ii) the relation S is also µ- scale invariant with respect to the
unitary transformation Un, n ∈ N. That is µnS ⊂ UnSU∗n,
for all n ∈ N;

(iii) the adjoint relation S∗ is µ̄- scale invariant with respect to U ;

Proof. (i) It follows from (2.3) and (4.1) that

µ−1S−1 = (µS)−1 ⊂ (USU∗)−1 = (U∗)−1S−1U−1 = US−1U∗,

so that S−1 is µ−1- scale invariant with respect to U .
(ii) This follows by induction on n ∈ N.
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(iii) Taking into account the identities in (2.8) one has

US∗U∗ = (U∗)∗ S∗U∗ = (SU∗)∗ U∗

= (USU∗)∗ ⊇ (µS)∗ = µ̄S∗.

This completes the proof. �
The main result of this note is now stated.

Theorem 4.3. Assume that S is a nonnegative linear relation in H
which is µ- scale invariant with respect to U . Then

(i) the Friedrichs extension SF of S is µ- scale invariant with re-
spect to U ;

(ii) the Krein-von Neumann extension SF of S is µ- scale invariant
with respect to U .

Proof. (i) Let {f, f ′} ∈ SF . Then there exists a sequence ({fn, f ′
n}) ⊂

S such that fn → f , and

(f ′
n − f ′

m, fn − fm) → 0, as m, n → ∞.

It follows from {fn, µf ′
n} ∈ µS ⊆ USU∗ that

(4.4) {U∗fn, µU
∗f ′

n} ∈ S.

Furthermore,

(4.5) U∗fn → U∗f,

and

(4.6) (µU∗f ′
n − µU∗f ′

m, fn − fm) → 0, as m, n → ∞.

Since {f, µf ′} ∈ µSF ⊂ µS∗ ⊆ US∗U∗ it follows that

(4.7) {U∗fn, µU
∗f ′

n} ∈ S∗.

A combination of (4.5), (4.6) and (4.7) leads to {U∗f, µU∗f ′} ∈ SF ,
so that {f, µf ′} ∈ USFU

∗. This implies that µSF ⊂ USFU
∗.

(ii) Let {f, f ′} ∈ SN . Then there exists a sequence ({fn, f ′
n}) ⊂ S

such that f ′
n → f ′, and

(f ′
n − f ′

m, fn − fm) → 0, as m, n → ∞.

It follows from {fn, µf ′
n} ∈ µS ⊆ USU∗ that

(4.8) {U∗fn, µU
∗f ′

n} ∈ S.

Furthermore,

(4.9) U∗f ′
n → U∗f ′,
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and

(4.10) (µU∗f ′
n − µU∗f ′

m, fn − fm) → 0, as m, n → ∞.

Since {f, µf ′} ∈ µSN ⊂ µS∗ ⊆ US∗U∗ it follows that

(4.11) {U∗fn, µU
∗f ′

n} ∈ S∗.

A combination of (4.9), (4.10) and (4.11) leads to {U∗f, µU∗f ′} ∈ SN ,
so that {f, µf ′} ∈ USNU

∗. This implies that µSN ⊂ USNU
∗. �

Remark 4.4. Since both µSF and USFU
∗ are selfadjoint linear rela-

tions and µSF ⊂ USFU
∗ it follows that in fact µSF = USFU

∗. Similar
arguments imply that also µSN = USNU

∗.

5. Examples

5.1. A purely multi-valued relation. Let H be a Hilbert space and
assume that K is a not necessarily closed linear subspace of H. Let
U be a unitary operator in the Hilbert space H and assume that K
is an invariant subspace of U∗, i.e. U∗(K) ⊂ K. Consider the purely
multi-valued relation S in H defined by S = {0} × K. Then S is
closed if and only if K is closed. Furthermore, it is µ invariant with
respect to U for any µ > 0. To see this, let {0, k} ∈ µS so that
{0, k} ∈ S. Then U∗k ∈ mulS which implies that {0, U∗k} ∈ S, so
that {0, k} ∈ US. Therefore, {0, k} ∈ USU∗. Thus, µS ⊂ USU∗.
Furthermore, S∗ = K⊥ ×H, SF = {0}×H and SN = K⊥ ×K, where K
is the closure of K in H. It is easily seen that S∗, SF and SN are also
µ scale invariant with respect to U .

5.2. A purely kernel relation. Let H be a Hilbert space and assume
that K is a not necessarily closed linear subspace of H. Let U be
a unitary operator in the Hilbert space H and assume that K is an
invariant subspace of U , i.e. U(K) ⊂ K. Consider the purely kernel
relation S in H defined by S = K× {0}. Then S is closed if and only
if K is closed. Furthermore, it is µ invariant with respect to U for any
µ > 0. To see this, let {k, 0} ∈ µS so that {k, 0} ∈ S. Therefore
k ∈ ker S which further implies that Uk ∈ ker S. Thus {Uk, 0} ∈ S,
so that {k, 0} ∈ SU∗. Therefore, {k, 0} ∈ USU∗. Thus, µS ⊂ USU∗.
Furthermore, S∗ = H×K⊥, SF = H×{0} and SN = K×K⊥. All these
three linear relations are also µ scale invariant with respect to U .



µ- SCALE INVARIANT RELATIONS 223

5.3. The inverse of a graph of a differential operator. Let H =
L2(0,∞) and denote the usual inner product by ⟨· | ·⟩. Let also µ > 0,
µ ̸= 1, and consider U the unitary scaling transformation

(Uf)(x) = µ− 1
4f

(
µ− 1

2x
)
, f ∈ L2(0,∞).

Consider also H2,2(0,∞) the corresponding Sobolev space and define
the linear relation

S =

{{
−d2f

dx2
, f

}
: f ∈ H2,2(0,∞), f(0) = 0, f ′(0) = 0

}
.

Clearly S is a closed nonnegative linear relation with nontrivial mul-
tivalued part. Its adjoint is the linear relation given by

S∗ =

{{
−d2f

dx2
, f

}
: f ∈ H2,2(0,∞)

}
.

Then the extreme extensions SF and SN are given by:

SF =

{{
−d2f

dx2
, f

}
: f ∈ H2,2(0,∞), f(0) = 0

}
and by

SN =

{{
−d2f

dx2
, f

}
: f ∈ H2,2(0,∞), f ′(0) = 0

}
.

respectively. A straightforward computation shows that all linear re-
lations S, S∗, SF and SN are µ- scale invariant with respect to the
transformation U . Any other nonnegative selfadjoint extension of S
different from SF and SN can be parametrized as follows

Sα =

{{
−d2f

dx2
, f

}
: f ∈ H2,2(0,∞), f ′(0) = αf(0)

}
.

for some α > 0. It can be verified that Sα is not µ invariant with
respect to U . Therefore the linear relation S admits only two µ scale
invariant extensions, SF and SN .
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